Kinetics of the elementary act of charge transfer

Headed by: Victoria A. Nikitina ( 


As every electrochemical reaction involves the transfer of charge across an interphase, the mechanism of charge transfer elementary act remains one of the most fundamental problems of electrochemical kinetics. Modern theory of charge transfer allows to describe the key aspects of the kinetic patterns of various charge transfer processes, including proton and ion transfer and bond-breaking reactions (V.G. Levich, R.R. Dogonadze, A.M. Kuznetsov, Yu.A. Chizmadzhev). The developed theory allows for the prognostic assessment of electrochemical reaction rates and for the critical comparison of the computed and experimental quantities. The most successful approaches to the problem involve both the novel experimental methods to specify previously inaccessible aspects of the reactant structure, solvent dynamics, reaction layer structure, and the application of molecular modeling to estimate other parameters of the theory (reorganization energy, work terms, electronic transmission coefficient).


Research projects

I. Predicting charge transfer rates: the effects of solvent, electrode material and the reactant nature

II. Ion transfer kinetics

III. Kinetics of electrocatalytic processes

Selected publications

1. Nikitina V.A., Gruber F., Jansen M., Tsirlina G.A. Subsequent redox transitions as a tool to understand solvation in ionic liquids // Electrochim. Acta. — 2013. — V. 103. — P. 243-251.

2. Sonnleitner, Th., Nikitina, V.A., Nazet, A., Buchner, R. Do H-bonds explain strong ion aggregation in ethylammonium nitrate + acetonitrile mixtures? // Phys. Chem. Chem. Phys. — 2013. — V. 15. — P. 18445-18452.

3. N.A. Chumakova, V.A. Nikitina, V.I. Pergushov. Translational diffusion coefficient of a nitroxide radical in an ionic liquid, as determined via EPR spectroscopy, cyclic voltammetry, and chronoammetry // Russ. J. Phys. Chem. A . — 2013. — V. 87. — P. 121-125.

4. Nikitina V.A., Kislenko S.A., Nazmutdinov R.R., Bronshtein M.D., Tsirlina G.A. A Ferrocene/Ferrocenium Redox Couple at Au(111)/Ionic Liquid and Au(111)/Acetonitrile Interfaces: a Molecular Level View at the Elementary Act // J. Phys. Chem. C. — 2014. — V. 118. — P. 6151-6164.

5. V.A. Nikitina, A.V. Rudnev, G.A. Tsirlina, Th. Wandlowski. Long distance electron transfer at the metal/alkanethiol/ionic liquid interface // J. Phys. Chem. C. — 2014. — V. 118. — P. 15970-15977.

6. S.A. Kislenko, V.A. Nikitina, R.R. Nazmutdinov. Molecular dynamics study of the ionic and molecular permeability of alkanethiol monolayers on the gold electrode surface // High Energy Chemistry. — 2015. — V. 49. — P. 341–346.

7. S.A. Kislenko, V.A. Nikitina, R.R. Nazmutdinov. When do defectless alkanethiol SAMs in ionic liquids become penetrable? A molecular dynamics study // Phys. Chem. Chem. Phys. — 2015. — V. 17. — P. 31947-31955.

8. S.Yu. Vassiliev, E.E. Levin, V.A. Nikitina. Kinetic analysis of lithium intercalating systems: cyclic voltammetry // Electrochim. Acta. — 2016. — V. 190. — P. 1087-1099.

9. E.E. Levin, S.Yu. Vassiliev, V.A. Nikitina. Solvent effect on the kinetics of lithium ion intercalation into LiCoO2 // Electrochim. Acta. — 2017. — V. 28. — P. 114-124.

10. V.A. Nikitina, S.F. Fedotov, S.Yu. Vassiliev, A.Sh. Samarin, N.R. Khasanova, E.V. Antipov. Transport and Kinetic Aspects of Alkali Metal Ions Intercalation into AVPO4F Framework // J. Electrochem. Soc. — 2017. — V. 164. — P. A6373-A6380.

11. V.A. Nikitina, M.V. Zakharkin, S.Yu. Vassiliev, L.V. Yashina, E.V. Antipov, K.J. Stevenson. Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn2O4 Cathode Materials // Langmuir — 2017. — V. 33. — P. 9378–9389.

12. V.A. Nikitina, A.V Rudnev, R.R. Nazmutdinov, G.A. Tsirlina, Th. Wandlowski. Solvent effect on electron transfer through alkanethiols // J. Electroanal. Chem. — 2017. — V. 819. — P. 58–64.

13. V.A. Nikitina, S.M. Kuzovchikov, S.S. Fedotov, N.R. Khasanova, A.M. Abakumov, E.V. Antipov. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: towards a high voltage potassium-ion battery // J. Electrochim. Acta — 2017. — V. 258 — P. 814–824.