Получение и свойства катион-радикала H₂C₃O^{+•}: взгляд со стороны теории и матричной изоляции

Засимов П.В., Рязанцев С.В., Тюрин Д.А., Фельдман В.И.

Органические катион-радикалы

Масс-спектрометрия

Метод матричной изоляции

Химически-инертная среда (как правило, благородные газы: Ar, Kr, Xe)

Высокое разбавления (X:Ng – 1:1000 и более)

> Криогенные температуры (4 – 50 K)

Bally, in Reactive Intermediate Chemistry, 2004, 820

Методика эксперимента

Осаждение газовых смесей ¹²C₂H₂/CO/Ar и ¹³C₂H₂/CO/Ar (1:3:1000) на охлаждаемую подложку криостата

Х-rays ↓↓↓↓ рентгеновским излучением (вольфрамовый анод, 45 kВп) при 5 К

Мониторинг образцов комбинацией ИК и ЭПР-спектроскопии (и сравнение результатов с предсказаниями расчётов CCSD(T))

Криостаты

ИК

ЭПР

Теоретическое исследование^{*} изомеров катион-радикала H₂C₃O^{+•}

Продукты радиолиза комплекса С₂H₂…CO

Захват и стабилизация положительного заряда (дырки) в матрицах C₂H₂/CO/Ar

Это подразумевает захват и стабилизацию положительного заряда (дырки)

Эксперименты с акцептором электронов

Добавка акцептора электронов (SF₆) существенно увеличивает интенсивность сигнала A и вызывает задержку накопления H₂CCCO, HCCCHO, c-H₂C₃O и C₃O

Это указывает на то, что А, вероятнее всего, катион радикал H₂C₃O^{+•}

Herbst, Smith, Adams, A&A, 1984, **138**, L13 Holmes, Jobst, Terlouw, *Eur. J. Mass. Spectrom.*, 2009, **15**, 2, 261 и ссылки там же

Фотолиз матриц C₂H₂/CO/Ar излучением с длиной волны 400-445 нм

ЭПР-спектроскопия образцов C₂H₂/CO/Ar: эффект акцептора электронов

ЭПР-спектроскопия матриц C₂H₂/CO/Ar: эксперимент и моделирование

		•	Α
а(Н), м1л	IVa (E)	IVb (Z)	(мод.)
a(H₁)₁	4.85	3.33	6.16
a(H ₁) ₂	5.00	3.35	6.32
a(H ₁) ₃	5.37	3.98	6.59
a(H ₁) _{iso}	5.07	3.55	6.36
a(H ₂) ₁	-0.87	-1.17	0.93
a(H ₂) ₂	0.12	-0.11	0.42
a(H ₂) ₃	1.93	1.59	0.79
a(H ₂) _{iso}	0.39	0.10	0.71

ЭПР-спектроскопия матриц C₂H₂/CO/Ar: эффект фотолиза излучением с длиной волны 400-445 нм

o/U\ 475	3000	P (was)	
а(п), мтл	I	в (мод.)	
a(H ₁) ₁	4.44	4.68	
a(H ₁) ₂	4.48	5.10	
a(H ₁) ₃	4.93	5.34	
a(H ₁) _{iso}	4.62	5.04	
a(H ₂) ₁	4.44	4.68	
$a(H_2)_2$	4.48	5.10	
a(H ₂) ₃	4.93	5.34	
a(H ₂) _{iso}	4.62	5.04	

Zasimov, Ryazantsev, Tyurin, Feldman, Mon. Not. R. Astron. Soc., 2021, 506, 3, 3499

Zasimov, Tyurin, Ryazantsev, Feldman, J. Am. Chem. Soc., 2022, 144, 3, 8115

Основные результаты и выводы

- 1. Показано, что катион-радикал H₂C₃O⁺⁺ может быть важным интермедиатом радиационно-химических превращений комплекса C₂H₂···CO
- 2. В результате проведённого теоретического исследования получены данные об энергии, структуре, гармонических частотах, ЭПР-параметрах и реакционных путях ключевых изомеров катион-радикала H₂C₃O+•
- 3. Катион-радикалы Е-НССНСО⁺ и Н₂СССО⁺ стабилизированы и охарактеризованы в Ar матрице с помощью ИК и ЭПРспектроскопии, а также исследованы теоретически с помощью методов ab initio. Показано, что фотолиз катионрадикала Е-НССНСО* светом с длиной волны 400-445 нм приводит к его перегруппировке в изомер Н₂СССО⁺. Насколько нам известно, эта работа является первым сообщением радиационно-индуцированном 0 синтезе катион-радикала ИЗ межмолекулярного комплекса В условиях матричной изоляции

CS Publication

www.acs.org

СПАСИБО ЗА ВНИМАНИЕ!

Quantum-chemical calculations at the UCCSD(T)/Lna_3 level

Basis	C and O atoms contraction scheme	H atom contraction scheme
L2a_3	{5s,4p,3d,2f}/{17s,11p,6d,4f}	{4s,3p,2d}/{11s,6p,4d}
aug-cc-PVTZ	{5s,4p,3d,2f}/{11s,6p,3d,2f}	{4s,3p,2d}/{6s,3p,2d}
L3a_3	{6s,5p,4d,3f,2g}/{19s,12p,7d,5f,4g}	{5s,4p,3d,2f}/{12s,7p,5d,4f}
aug-cc-PVQZ	{6s,5p,4d,3f,2g}/{13s,7p,4d,3f,2g}	{5s,4p,3d,2f}/{7s,4p,3d,2f}
L4a_3	{7s,6p,5d,4f,3g,2h}/{20s,14p,8d,6f,5g,4h}	{6s,5p,4d,3f,2g}/{14s,8p,7d,5f,4g}
aug-cc-PV5Z	{7s,6p,5d,4f,3g,2h}/{15s,9p,5d,4f,3g,2h}	{6s,5p,4d,3f,2g}/{9s,5p,4d,3f,2g}

Laikov, Theor. Chem. Acc. 2019, 138, 40

$$E_{\infty}^{(CCSD)} = E_{x}^{(CCSD)} + \frac{\left(E_{x}^{(CCSD)} - E_{x-1}^{(CCSD)}\right)}{\left(1 + \frac{1}{x+1/2}\right)^{3} - 1}$$
$$E_{\infty}^{(T)} = E_{x}^{(T)} + \frac{\left(E_{x}^{(T)} - E_{x-1}^{(T)}\right)}{\left(1 + \frac{1}{x+1/2}\right)^{4} - 1}$$
$$E_{\infty}^{CCSD(T)} = E_{x}^{HF} + E_{\infty}^{(CCSD)} + E_{\infty}^{(T)}$$

The calculations were performed by Tyurin D.A.

H₂CCCO^{+•} (I)

