

Радиационно-индуцированные превращения молекул метанола в низкотемпературных матрицах

Е.В. Саенко, В.И. Фельдман

наиболее распространенная органическая
молекула в космическом пространстве

присутствует в межзвездной среде

• может играть важную роль в пребиотической эволюции материи

Конференция кафедры электрохимии, 25 января 2017 г.

высокие поглощенные дозы (> 1 МГр) => первичные процессы?

монооксид углерода (СО) диоксид углерода (CO_2) метан (CH_{4}) формальдегид (H₂CO) формильный радикал (НСО•) молекулярный водород (H₂) гидроксиметильный радикал (СН₂ОН•) метилформиат (НСООСН₃) этиленгликоль $((CH_2OH)_2)$

льдах $(CH_3OH, CH_3OH/H_2O, CH_3OH/CO, ...)$

метанола в астрохимических

индуцированных превращений

Моделирование радиационно-

Радиационная химия

жидкого и стеклообразного

метанола при умеренных дозах

этиленгликоль $((CH_2OH)_2)$ формальдегид (H₂CO) молекулярный водород (H₂) другие продукты <5%

> <u>Первичные процессы в жидком и</u> стеклообразном метаноле

 $CH_3OH \rightarrow CH_3OH^{+\bullet}$, e⁻, CH_3OH^* $CH_3OH^{+\bullet} + CH_3OH \rightarrow CH_3O^{\bullet} + CH_3OH_2^{+}$ $CH_3OH^{+\bullet} + CH_3OH \rightarrow CH_2OH^{\bullet} + CH_3OH_2^{+\bullet}$ $e^{-} \rightarrow e^{-}$ $CH_{3}OH^{*} \rightarrow H_{2}CO + H_{2}$ $CH_3OH^* \rightarrow CH_3O^{\bullet} + H^{\bullet}$ $CH_3OH^* \rightarrow CH_2OH^* + H^*$

Литературные данные

 CH_2OH^{\bullet}

e⁻tr

HCO[•]

схема радиационно-индуцированных превращений изолированных молекул метанола в матрицах твердых благородных газов

метанол: CH₃OH, CD₃OH, CD₃OD, ¹³CH₃OH

Ng: Ne, Ar, Kr, Xe

* Вед. инж. И.В. Тюльпина

Облучение образцов метанол/Ng

Irradiation time, min

Конференция кафедры электрохимии, 25 января 2017 г.

Продукты радиолиза метанола

М⁺• → продукты

М* → продукты

 $e^- + M^{+ \bullet} \rightarrow M^*$

 $Ng^* + M \rightarrow Ng + M^*$

 $Ng^{+} + M \rightarrow Ng + M^{+}$

Ng ~ Ng⁺', e⁻, Ng*

Схема образования продуктов

Conversion degree of CD_OH, %

Образование CH₂OH[•] и/или CH₃O[•] ⁹

Образование H₂CO, HCO[•] и CO

другой – от атома О

10 из 16

НСО• и СО. Первичные или вторичные каналы?

$$CH_3OH^* \rightarrow [H_2CO^*] \rightarrow H_2 + CO$$

↓
 $H^* + HCO^*$

Образование CH₃• и CH₄

выход CH₃• и CH₄ на порядок меньше, чем выход основных продуктов

$CH_3OH^* \rightarrow CH_3^{\bullet} + OH^{\bullet}$

наблюдалась в качестве первичного процесса при фотолизе метанола

$CH_3OH^* \rightarrow CH_4 + O$

не наблюдалась непосредственно при газофазном фотолизе метанола; с другой стороны, была обнаружена линейная зависимость выхода метана от времени облучения прямой механизм?

11 из 16

$CH_{3}OH^{--}H_{2}O \rightarrow [CO^{--}H_{2}O](+2H_{2}) \rightarrow CO_{2} + H_{2}$

Образование СО,

Схема превращений

Пострадиационные процессы

Конференция кафедры электрохимии, 25 января 2017 г.

Результаты и выводы

Предложен возможный механизм радиационно-индуцированных превращений метанола в твердой инертной среде

Обнаружено, что молекула метанола претерпевает «глубокое дегидрирование» под действием рентгеновского излучения в матрицах инертных газов даже при небольших поглощенных дозах: наблюдаются заметные полосы поглощения НСО и СО

Слабосвязанные димеры и комплексы играют важную роль при радиолизе в матрицах, даже при большом разбавлении: молекула CO₂ образуется из комплексов метанол...вода (или димеров метанола) непосредственно после радиолиза образцов метанол/Ng

Работа была выполнена при поддержке гранта РНФ № 14-13-01266.

Saenko E.V., Feldman V.I. Radiation-induced transformations of methanol molecules in lowtemperature solids: a matrix isolation study // Phys. Chem. Chem. Phys. 2016. V. 18. P. 32503-32513. DOI: <u>10.1039/c6cp06082j</u>

16 из 16

Спасибо за внимание!

метанол/аргон

