Конференция кафедры электрохимии

Спектромикроскопические исследования электровосстановления кислорода на графеновых электродах

Белова Алина Игоревна

Научные руководители: проф., д.х.н. Антипов Е. В. д.х.н. Яшина Л. В.

22 января 2016

Восстановление кислорода на легированном графене

Структура диссертационной работы

• исследование морфологии продуктов восстановления кислорода на графеновом электроде

Спектромикроскопия в режиме динамического высокого давления (DHP)

Time [ms]

Графен на Си фольге

C1s

295

540

01s

290

535

285

530

Энергия связи, эВ

Энергия связи, эВ

280

525

Графен на Си фольге (после обработки атомарным О)

Исследованы образцы:

- 1L-графен
- 2L-графен
- 2L-графен, обработанный атомарным О

Ячейка для спектроэлектрохимических исследований

2L-графен

разомкнутая цепь

Карты О 1s

разряд

1L-Gr

2L-Gr

Энергия связи, эВ

Результаты и выводы

- Отработана методика переноса графена на твердый электролит без потери целостности и метод его очистки;
- Оптимизирована конструкция и процесс сборки электрохимической ячейки с твердым электролитом;
- Исследована морфология продуктов восстановления кислорода на графеновых электродах различной слойности, и графена, окисленного атомарным кислородом.

Нерешенные проблемы

- Разработка метода анализа кинетики образования продуктов восстановления;
- Влияние давления O₂ на химический состав продуктов восстановления.

Публикации

- Участие в научной школе "Углеродные нанотрубки и графен: новые горизонты" 1-6 декабря 2015 г. (постерный доклад)
- Подготовка публикации по теме магистерской диссертации "The role of carbon defects in electrochemical steps of Li-ORR/OER"

Дальнейшие планы

- Синтез N-легированного графена путем обработки эпитаксиального графена N-плазмой;
- Отработка синтеза S-графена, подбор прекурсора и условий;
- Исследование реакций восстановления кислорода на твердотельных ячейках с легированным графеном при давлениях O₂ 0.1 - 1 мбар.
- Перенос графена на дисковые электроды, исследование реакций восстановления кислорода на вращающемся дисковом электроде;
- Тестирование установки для DEMS.

Спасибо за внимание!

Дополнительные слайды

Участие в конференциях

30 ноября - 4 декабря 2015 Научная школа "Углеродные нанотрубки и графен новые горизонты" Москва

15 - 17 июня 2016

6th Baltic Electrochemistry Conference: Electrochemistry of functional interfaces and materials Helsinki

Учебная нагрузка

- Прослушивание курсов по философии науки и английскому языку, сдача экзаменов кандидатского минимума (весенний семестр);
- Прослушивание спецкурсов (3 зачетные единицы, весенний семестр);
- Прослушивание курсов по педагогике (весенний семестр).

Li₂O₂ и Li₂O

Механизмы электрокатализа

1. Ускорение лимитирующей стадии $(O_{2(адс)} + e^- \Rightarrow O_2^-)$

Электронная структура электрода:

Suntivich et al // Nature Chemistry 3 2011.

Stamenkovic et al // Angew Chem 118 2006

Реакции восстановления кислорода

Механизмы электрокатализа

2. Диссоциативная адсорбция кислорода

Zheng et al. // Chem Phys Lett 586 2013

3. Катализатор диспропорционирования пероксида/супероксида

Wiggins-Camacho et al. // J Phys Chem C 115 2011

Maldonado et al. // J Phys Chem B 109 2005

Синтез графена

Herranz et al // J. Phys. Chem. C 116 2012

Исследование химических процессов

- ЛИНИЯ RGBL
- разработаны методики изучения реакционной способности графена к О₂, Li₂O₂ и KO₂

Спектроэлектрохимические исследования: системы с жидким электролитом

 проведены первичные тесты проточной и статической спектроэлектрохимических ячеек

Спектроэлектрохимические исследования: системы с твердым электролитом

Itkis et al // Nano Lett 13 2013

Модельная система: графен

- плоская 2D поверхность
- возможность контроля хим. состава и электронной конфигурации примесных атомов (РФЭС), электронной структуры (ФЭС, NEXAFS, в т.ч. с угловым разрешением).

РФЭС 100.0 sp² C1s 83.6 Intensity / kcps 67.2 50.8 дефекты 34.4 18.0 295 291 285 283 281 279 277 293 289 287 Binding Energy / eV

Incident photon energy (eV)

Cheng et al. // Chem Soc Rev 2012

Катодный процесс:

 $O_2 + 2e^- + 2Li^+ \Rightarrow Li_2O_2$

Особенности:

Перезаряжаемость

Может протекать на углероде без катализатора

Электрод пассивируется в ходе разряда

Формируются побочные продукты

Іая электрохимическая стадия

0.1 М ТВА СІО₄ + LiClO₄ в ДМСО 100 мВ/с

Пая электрохимическая стадия

^{ая} электрохимическая стадия

$$i = FAk^0 \left[C_0(0, t)e^{-\alpha f(E - E^{0'})} - C_R(0, t)e^{(1-\alpha)f(E - E^{0'})} \right]$$

Стеклоуглерод

Процессы заряда

1 $\text{LiO}_2 - e^- \Rightarrow \text{Li}^+ + \text{O}_2$ **2** $\text{Li}_2\text{O}_2 - 2e^- \Rightarrow 2\text{Li}^+ + \text{O}_2$

D.Itkis et al. // Nano letters 13 (2013)

Itkis et al. // Nano Lett 2013

Role of defects in carbon materials in carbonate formation

Possible side reaction pathways

Danen W. C., Warner R. J. & Arudi R. L. in ACS Symposium Series 69, 244–257 (AMERICAN CHEMICAL SOCIETY, 1978)

Another possible reasons for carbonate formation

 $Li_2O_2 + C + 1/2 O_2 \rightarrow Li_2CO_3$ $2Li_2O_2 + C \rightarrow Li_2O + Li_2CO_3$

$\Delta G = -542.4 \text{ kJ/mol}$ $\Delta G = -533.6 \text{ kJ/mol}$

B. McCloskey et al. // J Phys Chem Lett 3 (2012)

Superoxide attacks carbon materials

Li@graphene

K@graphene

Восстановление кислорода в водных средах

Анодный процесс: $H_2 - 2e^- \Rightarrow 2H^+$ Катодный процесс (восстановление O_2):

Pt, Pd,... $O_2 + 4e^2 + 2H_2O \Rightarrow 4OH^2$

углерод $O_2 + 2e^- + 2OH^- \Rightarrow 2HO_2^-$

на графите:

 $O_2 \Rightarrow O_{2 (адс)}$

 $O_{2 (адс)}$ + HOH + **e**⁻ ⇒ **HO_{2 (адс)}** + OH⁻ 2HO_{2 (адс)} + OH⁻ ⇒ O₂ + HO₂⁻ + HOH

<u>на стеклоуглероде:</u> $O_{2 (адс)} + e^{-} \Rightarrow O_{2^{-}(адc)}$ $O_{2^{-}(адc)} + HOH \Rightarrow HO_{2 (адc)} + OH^{-}$ $HO_{2 (адc)} + e^{-} \Rightarrow HO_{2^{-}(адc)}$

Активные центры адсорбции?

Влияние электрода на реакцию диспропорционирования?

. . . .

$Na^+ + e^- + O_2 \rightarrow NaO_2$

Hartmann P. et al. A rechargeable room-temperature sodium superoxide (NaO₂) battery. *Nature Materials* **12**, 228–232 (2012)

Peng Z. et al. Oxygen Reactions in a Non-Aqueous Li⁺ Electrolyte. Angew Chem Int Edit 50, 6351–6355 (2011)

Usachov et al. // Nano Lett 11 2011

Термодинамические данные

Formula	Standard state	$\Delta G^{\circ},$ kJ/mol	$\Delta H^{\circ},$ kJ/mol	S°, J/mol/K
02	Gas, 1 atm	0	0	205.3
H ₂ O	Pure liquid	-237.18	-285.83	69.91
OH^-	1 <i>M</i> , aq.	-157.29	-230.00	-10.75
H_2O_2	1 <i>M</i> , aq. undisc.	-134.1	-191.2	143.9
HO_2^{-}	1 <i>M</i> , aq.	-67.36	-160.3	23.8
O_2^{-}	1 <i>M</i> , aq.	$27.4^{b,c}$	n.a. ^d	n.a. ^d
HO_2	1 <i>M</i> , aq.	$5.09^{b,c}$	n.a. ^d	n.a. ^d
OH	Gas, 1 atm	34.23	38.95	183.6

Selected Thermodynamic Data of Oxygen Species^a at 25°C

Standard Electrode Potentials of Selected Oxygen Reactions

Formula	Standard potential vs. SHE, V
$O_2 + 4H^+ + 4e^- = 2H_2O$	1.229
$O_2 + 2H_2O + 4e^- = 4OH^-$	0.401
$O_2 + 2H^+ + 2e^- = H_2O_2$ $O_2 + 2H_2O + 2e^- = H_2O_2 + 2OH^-$ $O_2 + H_2O + 2e^- = HO_2^- + OH^-$	$0.695 \\ -0.133 \\ -0.065$
$H_2O_2 + 2H^+ + 2e^- = 2H_2O$	1.763
$H_2O_2 + 2e^- = 2OH^-$	0.935
$HO_2^- + H_2O + 2e^- = 3OH^-$	0.867
$O_2 + e^- = O_2^-$	-0.284
$O_2 + H^+ + e^- = HO_2$	-0.053
$HO_2 + e^- = HO_2^-$	0.751
$HO_2 + H^+ + e^- = H_2O_2$	1.443
$O_2^- + H_2O + e^- = HO_2^- + OH^-$	0.155
$O_2^- + 2H_2O + 3e^- = 4OH^-$	0.629
$HO_2 + 3H^+ + 3e^- = 2H_2O$	1.656

Работа выхода

Металл/вакуум

$$\lambda = \overline{\mu}_{e}^{(0)} - \overline{\mu}_{e}^{(M)} = -Q^{0}\psi_{ex} - (\mu_{e}^{(M)} - Q^{0}\psi_{in}) = -\mu_{e}^{(M)} + Q^{0}\chi^{(M)}$$

- объемные свойства
- состав и структура поверхности
- адсорбция

Металл/электролит

$$\lambda^{\mathrm{E}} = \overline{\mu}_{e}^{(\mathrm{E})} - \overline{\mu}_{e}^{(\mathrm{M})} = [\mu_{e}^{(\mathrm{E})} - \mu_{e}^{(\mathrm{M})}] + Q^{0} \varphi_{\mathrm{G}}^{(\mathrm{M},\mathrm{E})}$$
$$\lambda^{\mathrm{E}} = A + Q^{0} E$$

 не зависит от природы металла при постоянном потенциале электрода