

ФРУМКИНСКИЕ ЧТЕНИЯ

24 октября 2017

(He)стабильность углеродных электродов в литий-кислородных аккумуляторах

Алина Белова

Факультет наук о материалах МГУ имени М.В.Ломоносова

Литий-кислородный ХИТ

теоретическое напряжение 2.96 V

current

 $\Lambda\Lambda\Lambda$

electrons

Апротонные электролиты: CH₃CN, DMSO, сульфоны, эфиры, ионные жидкости...

Требования для положительного электрода:

- низкий удельный вес
- высокая электронная проводимость
- высокая пористость
- (Электро)химическая стабильность

porous cathode

electrolyte $O_2 + 2Li^+ + 2e^- \rightleftharpoons Li_2O_2$

metallic anode

углерод?

$Li \rightleftharpoons Li^+ + e^-$

TBACIO4 + x LiCIO4 in DMSO

Belova et al. J. Phys. Chem. C 2017, 121 (3), 1569-1577

Рентгеновская фотоэлектронная спектроскопия (XPS) *in situ*

В чем причина деградации углерода?

 $Li_2O_2 + C + 1/2 O_2 \rightarrow Li_2CO_3$ $2Li_2O_2 + C \rightarrow Li_2O + Li_2CO_3 \qquad \Delta G = -533.6 \text{ kJ/mol}$

 $\Delta G = -542.4 \text{ kJ/mol}$

B. McCloskey et al. // J Phys Chem Lett 3 (2012)

В чем причина деградации углерода?

Graphene/Co (0001) Graphene/Ir (111) graphene/Ni (111)

Graphene/Cu

Альтернативы углероду?

J. Power Sources **2015**, 279(C), 707–712

Artem Sergeev

Требования для положительного электрода:

- низкий удельный вес
- высокая электронная проводимость
- высокая пористость
- (Электро)химическая стабильность

Dr. Michael Havecker

Dr. Virginia Pérez-Dieste

Dr. Carlos Escudero

Dr. Hikmet Sezen

Dr. Alexey Barinov

Dr. Lada Yashina

Moscow State University

Dr. Dmitrii Usachev

Prof. Yang Shao-Horn

University of Cologne

Prof. Alex Grueneis

Dr. Luca Gregoratti

HZB Helmholtz Zentrum Berlin

G-RISC

German-Russian Interdisciplinary

Science Center

daniil.itkis@gmail.com

The work was financially supported by Russian Ministry of Education and Science, BMBF and Skolkovo Institute of Science and Technology.

We acknowledge HZB for support within bilateral Russian-German Laboratory program and FM Lab llc. company for the equipment provided.

Traveling of PhD students was supported by **G-RISC** Centre of Excellence.