Открытые вопросы и источники ошибок в изучении кинетики интеркаляционных процессов

Виктория Никитина

кафедра электрохимии, химический ф-т МГУ

Фрумкинские чтения 24.10.2017

- I. Введение
- II. Источники ошибок при определении диффузионных

параметров интеркаляционных процессов

III. Кинетика переноса заряда: открытые вопросы

Кинетика интеркаляционных процессов

Влияние природы растворителя, интеркалируемого иона, структуры материала, структуры границы раздела электрод/раствор, концентрации иона, строения сольватной оболочки иона...

E. Peled et al., *J. Electrochem. Soc.*, 164 (2017) A1703

D. Aurbach et al., *J. Electrochem. Soc.* 147 (2000) 1322 S. Verdier et al., *J. Electrochem. Soc.* 154 (2007) A1088

Состав, структура и барьерные свойства поверхностных слоев находятся в прямой зависимости от концентрации соли, природы растворителя, структуры материала и т.д.

Сложность объекта

- Порошки или пленки оксидных материалов

LiCoO₂, 1 M LiPF₆, EC/DEC, 0.1 mV/s

S. Takeuchi et al., Appl. Mater. Interfaces 7 (2015) 7901

LiCoO₂, 1 M LiPF₆, EC/DEC, 0.1 mV/s

Источники ошибок: 1) полидисперсность

• PITT

! только в однофазных областях $I_d(t)_{st} = -\frac{FA\sqrt{D}\Delta c}{\sqrt{\pi t}}$! малые ΔE

Из уравнения Коттрелла, полубесконечная линейная диффузия

0.25

 $1/\sqrt{t/\tau_{\rm d}}$

2

- Ограниченная диффузия
- Ненулевое значение R_{Ω}
- Барьерные слои на поверхности
- Влияние замедленной кинетики
- C. Montella, J. Electroanal. Chem. 518 (2002) 61 C. Montella, J. Electrochim. Acta 50 (2005) 3746

-1

0.25

0.5

 $t/\tau_{\rm d}$

$$I(t) = 2\frac{\Delta Q}{\tau} \sum_{n=1}^{\infty} \frac{\Lambda^2}{\Lambda^2 + \Lambda + b_n^2} \exp\left(-\frac{b_n^2 t}{\tau}\right)$$

$$b \cdot \tan b - \Lambda = 0$$

• Выбор геометрии диффузии

А) Высокая скорость переноса заряда – диффузионный контроль (Л ~ 4)

Geometry	Model parameters			D/D _{calc}			
	<i>D</i> , cm²/s	Λ	R _{ct} , Ohm	Cottrell	Planar	Cylinder	Sphere
Planar	2.0•10 ⁻¹¹	4.08	62.6	1.2	1.0	3.8	9.3
Cylinder	2.0•10 ⁻¹¹	4.08	31.3	0.5	0.3	1.0	2.2
Sphere	2.0•10 ⁻¹¹	4.08	20.9	0.3	0.1	0.5	1.0

• Выбор геометрии диффузии

Б) Низкая скорость переноса заряда – смешанный контроль (Л ~ 0.2)

Качество аппроксимации не позволяет сделать вывод о вероятной геометрии диффузии

Geometry	Model parameter				D/	́D _{calc}	
	<i>D</i> , cm²/s	Λ	R _{ct} , Ohm	Cottrell	Planar	Cylinder	Sphere
Planar	1.0•10 ⁻¹⁰	0.16	170	10.9	1.0	2.6	4.9
Cylinder	1.0•10 ⁻¹⁰	0.16	85.0	5.5	0.4	1.0	1.9
Sphere	1.0•10 ⁻¹⁰	0.16	56.7	3.6	0.2	0.6	1.0

• Ширина размерного распределения

LiCoO₂, Potential step 3.94 -> 3.95 V

Model parameter			D_{calo} cm ² /s	Error %	Ret cale Ohm	Error %
D, cm²/s	Λ	R _{ct}				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.79•10 ⁻¹⁰	0.26	66.6	1.30•10 ⁻¹⁰	27	64.4	3.3

Sample	Model pa	rameter	Estimated	Error, %	Estimated	Error, %
	D, cm²/s	R _{ct} , Ohm	D, cm²/s		<i>R</i> _{ct} , Ohm	
monodisperse	1.79•10 ⁻¹⁰	60.0	1.65•10 ⁻¹⁰	7.8	59.0	1.7
polydisperse	1.79•10 ⁻¹⁰	65.4	2.90•10 ⁻¹⁰	62	63.8	2.4

• Пористые структуры / неоднородность электрода

• Кинетика переноса заряда

Уравнение Батлера-Фольмера для интеркаляционного процесса

изотерма интеркаляции

• Кинетика переноса заряда

Уравнение Батлера-Фольмера для интеркаляционного процесса

Выявление природы медленной стадии реакции интеркаляции

- Эффект растворителя:
 - энергия (де)сольватации катиона
- динамический
 эффект

- Строение границы раздела электрод/раствор:
- работа подвода - двойнослойные эффекты п.н.з.?

- Природа катиона
- энергия десольватации
- работа подвода

- Природа материала
- энергия адсорбции катиона
- барьер при внедрении катиона в структуру материала

 Скорость реакции в широком интервале потенциалов

Форма зависимости
 константы скорости от
 потенциала, определение
 природы медленной стадии

«узкие» однофазные области

Перенос электрона или перенос иона?

Для некоторых реакций интеркаляции – зависимость от растворителя и структуры поверхностных слоев – Перенос иона

Soc. 151 (2004) A1120

Перенос электрона или перенос иона?

26.5 kJ / mol

25.0 kJ / mol

HOPG

DMSO

Для некоторых реакций интеркаляции – зависимость от растворителя и структуры поверхностных слоев – Перенос иона

(2009) 12766

Soc. 151 (2004) A1120

1000 / T (K⁻¹)

- Образование барьерных слоев на поверхности ٠ частиц материала повышает энергию активации реакции
- Интеркаляция сольватированных ионов снижает ٠ активационный барьер реакции

Table 1. Activation Energy E, for Interfacial Charge Transfer between NiFe-PBA/ITO and Various Electrolytes

	electrolyte	$E_{\rm a}$ (kJ/mol)
organic	1 M LiClO ₄ /PC	52 ± 7
	1 M NaClO ₄ /PC	51 ± 4
	1 M Mg(ClO ₄) ₂ /PC	no charge transfer
aqueous	1 M LiNO ₃ (aq)	24.1 ± 0.8
	1 M NaNO ₃ (aq)	5.1 ± 0.4
	$1 \text{ M Mg(NO}_3)_2(aq)$	35.7 ± 0.8
		20

• Как определить константу скорости (де)интеркаляционного процесса?

- А) Моделирование циклических вольтамперограмм
- форма изотермы из эксперимента
- произвольный выбор механизма

• Как определить константу скорости (де)интеркаляционного процесса?

А) Моделирование циклических вольтамперограмм

- форма изотермы из эксперимента
- произвольный выбор механизма

Б) Моделирование хроноамперометрического отклика системы

- форма изотермы из эксперимента
- произвольный выбор механизма
- R_Ω, R_{SEI} из независимых измерений импеданса

$$\Lambda = \frac{R_{diff}}{R_{ct} + R_{\Omega}} \quad I_0 = \frac{RT}{nFR_{ct}}$$

$$I_0 = i_0 S = nFSk_s c_R^{\alpha} c_O^{1-\alpha} = nFSk_s \frac{\rho \cdot n_{Li}}{M_r} \theta^{\alpha} (1-\theta)^{1-\alpha}$$

• Как определить константу скорости (де)интеркаляционного процесса?

А) Моделирование циклических вольтамперограмм

- форма изотермы из эксперимента
- произвольный выбор механизма

Б) Моделирование хроноамперометрического отклика системы

- форма изотермы из эксперимента
- произвольный выбор механизма
- R_Ω, R_{SEI} из независимых измерений импеданса

$$\Lambda = \frac{R_{diff}}{R_{ct} + R_{\Omega}} \quad I_0 = \frac{RT}{nFR_{ct}}$$

$$I_0 = i_0 S = nFSk_s c_R^{\alpha} c_O^{1-\alpha} = nFSk_s \frac{\rho \cdot n_{Li}}{M_r} \theta^{\alpha} (1-\theta)^{1-\alpha}$$

В) Моделирование спектров импеданса

- форма изотермы из эксперимента
- произвольный выбор механизма
- произвольный выбор эквивалентной цепи

M. Thomas et al., J. Electrochem. Soc. 132 (1985) 1521

• Сходимость результатов, полученных с помощью трех методов

- В EC/DEC медленная стадия перенос иона (SEI/электрод)
- В воде медленная стадия ? (десольватация, адсорбция, etc)

E.E. Levin et al. / Electrochimica Acta 228 (2017) 114-124

S. S. Fedotov et al., Chem. Mater., 28 (2016) 411 V. A. Nikitina et al., J. Electrochem. Soc. 164 (2017) A6373

Перенос иона через менее резистивные поверхностные слои: (де)интеркаляция К⁺ и Na⁺ в ацетонитриле

- При переходе AN -> ЕС скорость реакции замедляется в 4 раза для К⁺ и в 10 раз для Na⁺
 - В **AN** скорость реакции интеркаляции <mark>К</mark>⁺ выше, чем для Na⁺
- В **ЕС** скорость интеркаляции **Na**+ **выше,** чем для К+

Присутствие барьерных поверхностных слоев уменьшает скорость реакции (де)интеркаляции для ионов большего размера

• Факторы контроля кинетики интеркаляционных процессов

При наличии резистивных слоев на поверхности материала (LiCoO₂, графит в EC):
 наиболее вероятна реализация медленной стадии переноса иона через границу поверхностный слой/материал электрода (k_s < 10⁻⁷ – 10⁻⁸ cm/s)

• Факторы контроля кинетики интеркаляционных процессов

При наличии резистивных слоев на поверхности материала (LiCoO₂, графит в ЕС):
 наиболее вероятна реализация медленной стадии переноса иона через границу поверхностный слой/материал электрода (k_s < 10⁻⁷ − 10⁻⁸ cm/s)

II. **В случае отсутствия плотных барьерных слоев** (LMO, PB, KVP) медленная стадия реакции связана с другим процессом (десольватация, адсорбция...) (k_s > 10⁻⁶ cm/s)

III. **При протекании медленных фазовых переходов** информация о скорости переноса заряда недоступна (V₂O₅, LiFePO₄, Li₄Ti₅O₁₂)

III. При протекании медленных фазовых переходов информация о скорости переноса заряда недоступна (V_2O_5 , LiFePO₄, Li₄Ti₅O₁₂)

34

Коллектив

Э.Е. Левин С.Ю. Васильев С.С. Федотов С.В. Сентюрин А.И. Бойчук С.М. Кузовчиков А.Ш. Самарин

Спасибо за внимание!