ОТЧЕТ с.н.с. Максимова Ю.М.

Тема:

Гальваническое вытеснение как метод формирования катализаторов с малыми количествами платиновых металлов. Особенности их электрокаталитического поведения

Цель:

Установление кинетики и механизма процессов гальванического вытеснения; выявление оптимальных условий получения высокоактивных электрокатализаторов (катализаторов) $M_1 + (n/z) M_2^{z+} \rightarrow M_1^{n+} + (n/z) M_2.$

М₁ – неблагородный металл, М₂ – металл-катализатор

Выделим два вида гальванического вытеснения как метода синтеза и модификации катализаторов.

<u>1.Вытеснение адатомов М₁(М_{1ад}) на чужеродной подложке атомами М₂.</u>

Схема процесса на плимере замешения Си в растворе PtCl 2-

2. Вытеснение М₁, образующего слои или частицы на инертной подложке.

Схемы начальной стадии вытеснения меди в виде частиц на углеродной подложке:

Транзиенты бестокового потенциала, наблюдаемые при введении (a) Bi/CNW- и (b) Cu/CNW-электродов в контакт с раствором 2*10⁻³M PtCl₄²⁻ + 0.5M H₂SO₄.

TEM images of $Pt(Cu)_{st}$ /CNW corresponding to the displacement of Cu_{ed} for (a) particles with the core–shell structure, (b) particles with the homogenous structure.

Pt(Bi)/YHC(60 µg /cm ²⁻)

Ві /УНС(60 µg /cm ^{2 -}) С

Pt(Bi)/YHC(260 µg /cm 2-)

d

Bi/УНС(260 µg /cm ²)

Stationary polarization curves in 1M HCOOH + $0.5M H_2SO_4$ solution: (a) Pt^o(Bi)/CNW, (b) e.d. Pt/CNW.

Transients of open-circuit potential upon the introduction of (1) e.d.Ag/Au and (2) e.d.Pd/Au into contact with 0.5^{-} 10⁻³ M PdSO₄ + 0.5 M H₂SO₄ solution.

ЦВА для PdAg_{цикл} /СУ-электрода (1) до – и (2) после потенциостатирования (75 мин) при *E*= 0.6 В. *V*= 20 мВ/с

Объемный и поверхностный состав исследованных структур, полученных гальваническим вытеснением

Образец	Тип	М ₂ , ат.%	М ₁ , ат.%	M ₂ :M ₁	Крист. решетка	
	анализа				M ₁	M ₂
Pt ^o (Cu)/C (PtCl ₄ ²⁻)	МЗА	Pt, 77	Cu, 23	3.3	ГЦК	Рt ГЦК а=0.3920 нм
	РФЭС		Cu, ~1	~100	— а=0.305 нм	
Ptº(Bi)/YHC	АЭС-ИСП	Pt, 91	Bi, 9	10.1	Ромбоэдр.	
	РФЭС	Pt, 95	Bi, 5	17		
Pt ^o (Pb)/CY	МЗА	Pt, 60	Pb, 34	1.76	ГЦК	
	РФЭС	Pt, 87	Pb, 13	6.7	a-0.475 HM	
Ptº(Pb)/СУ _{цикл}	РФЭС	Pt, 92	Pb, 8	11.5		
PdAg/СУ _{цикл}	M3A	Pd, 60	Ag, 40	1.5	ГЦК	Рd ГЦК а=0.3890 нм
	РФЭС	Pd, 83.5	Ag, 11.5	5.1	a-0.4000 HM	

ЦВА $Pt_x^{0}Au$, полученных вытеснением (1) 1MLCu_{ad}, (2) 0.75MLCu_{ad}, (3) 0.5MLCu_{ad} и (4) 0.25 MLCu_{ad}. 0.5M H₂SO₄, v = 50 мB/c.

Адсорбционные параметры Рt⁰Au электродов

$E_{ m ads}^{ m Cu}$ мВ	$\square_{Cu} (\pm 0.05)$	$Q_{{\scriptscriptstyle \mathrm{Au}}}{}^{{\scriptscriptstyle \mathrm{Cu}}}$, мКл	$Q_{\mathrm{PtAu},\mathrm{H}}$ mC	$2Q_{\mathrm{PtAu}}^{\mathrm{H}}/Q_{\mathrm{Au}}^{\mathrm{Cu}}$
290	1	1.9	0.55	0.63
340	0.75	1.9	0.47	0.52
450	0.5	1.9	0.35	0.42
500	0.25	2.0	0.27	0.25

Анодные потенциодинамические кривые в растворе 0.5M $CH_3OH + 0.5M H_2SO_4$ на (1) пк Pt и Pt_x⁰Au электродах при х: (2) 1.0, (3) 0.75, (4) 0.5, (5). 0.25 v = 50 мB/c.

Анодные потенциодинамические кривые в растворе 0.5М HCOOH + 0.5М H_2SO_4 на (1) Pt и Pt⁰Au электродах: (2) Pt⁰₁, (3) Pt⁰_{0.75}, (4) Pt⁰_{0.5}, (5) Pt⁰_{0.25}. v = 50 мB/c. На врезке: 1 – Pt_{0.5}Au, 2 - пк Pt.

The high specific mass activities (mA/mg Pt) of Pt_n^0Au composites were observed not only in FAOR, but also in MOR, which was associated with the high degree of dispersion of these Pt deposits (~ 90-170 m² EASA/g Pt for $Pt_3^0Au \rightarrow$ Pt_1^0Au).

• ПЛАН

- На ближайшие два-три года:
- 1.Продолжить исследование синтеза и свойств электрокатализаторов Pt-Pb с использование гальванического вытеснения и электрохимического выщелачивания.
- 2. Развитие представления о роли адатомов в формировании поверхностных слоев в процессах гальванического вытеснения на примере систем Pd-Cu , Pt-Ag и Pd-Pb.
- 3.Полученные композиты тестировать в реакциях окисления метанола и муравьиной кислоты в кислых растворах.
- 4.Изучить электрокаталитическое поведение палладия, нанесенного на углеродные наностенки магнетронным напылением (Pd/УHC). Совместная работа с НИИЯФ МГУ.
- 5. Исследовать возможность получения совместных катализаторов Pd-Pt на основе композита Pd/УHC.
- 6. Опубликовать не менее трех статей.
- 7.Участвовать в педагогическом процессе.
- Дальнейшее направление исследований:
- Электрохимический синтез и изучение электрокаталитических свойств смешанных катализаторов благородный металл/неблагородный(ые) металл(ы), представляющих интерес в связи с проблемой топливного элемента. Выделить наиболее активные катализаторы и провести фундаментальный анализ причин их более высокой активности по сравнению с монокомпонентными катализаторами. Задача исследований – снижение доли благородных металлов в электрокатализаторах.

Максимов Юрий Михайлович

Результаты деятельности 2017 год

•Статьи в журналах

2017 Galvanic Displacement and Electrochemical Leaching for Synthesizing Pd-Ag Catalysts Highly Active in FAOR Podlovchenko B.I., Maksimov Yu M., Maslakov K.I., Volkov D.S., Evlashin S.A.

в журнале Journal of Electroanalytical Chemistry, издательство Elsevier Sequoia (Switzerland), том 788, с. 217-224 2017 Use of silver adatoms for the determination of the electrochemically active surface area of polycrystalline gold Maksimov Yurii M., Podlovchenko Boris I.

в журнале Mendeleev Communications, издательство Elsevier BV (Netherlands), том 27, № 2, с. 64-66

2017 Galvanic displacement of silver deposited on carbon nanowalls by palladium and the electrocatalytic behavior of the resulting composite Yurii M. Maksimiv. Stanislav A. Evlashin, Boris I. Podlovchenko, El'dar M. Gallyamov, Sarkis A. Dagesian, Vasiliy V. Sen в журнале *Mendeleev Communications*, издательство *Elsevier BV (Netherlands)*, том 27, № 4, принята в печать

∘ниры

•**1 января 2015 - 31 декабря 2017** Сопоставление и совместное использование гальванического вытеснения и электрохимического выщелачивания для синтеза электрокатализаторов со структурой ядро-оболочка. •Кафедра электрохимии

∘Руководитель: Подловченко Б.И. Ответственный исполнитель: Максимов Ю.М. Участники НИР: Балашова Н.Н., Балашова Н.Н., Волков Д.С., Гладышева Т.Д., Евлашин С.А., Кривченко В.А., Маслаков К.И., Попов А.С., Попов А., Уткин А.Г.

•1 января 2016 - 31 декабря 2020 Электрохимические и радиационно-химические процессы: кинетика и механизм, основы получения новых соединений и оптимизации функциональных материалов

•Кафедра электрохимии

•Руководитель: Антипов Е.В. Участники НИР: Абакумов А.М., Баранова И.А., Белопушкин С.И., Борзенко М.И., Васильев С.Ю., Воротынцев М.А., Выходцева Л.Н., Гладышева Т.Д., Данченко А.В., Дрожжин О.А., Зезина Е.А., Казаков С.М., Каменева С.В., Лайков Д.Н., Лауринавичюте В.К., Левин Э.Е., Максимов Ю.М., Милинчук А.В., Нестеров С.В., Никитина В.А., Петрий О.А., Подловченко Б.И., Пуголовкин Л.В., Рязанцев С.В., Саенко Е.В., Сафонов В.А., Свиридова Л.Н., Стенина Е.В., Сухов Ф.Ф., Тюрин Д.А., Фельдман В.И., Филатов А.Ю., Хохлов А.А., Цирлина Г.А., Чоба М.А., Чугреев А.Л., Ширяева Е.С., Шлыкова Ю.В.

•1 января 2017 - 31 декабря 2019 Влияния модификации поверхности углеродных материалов на их электрохимические характеристики

○Отдел микроэлектроники

Руководитель: Суетин Н.В. Ответственный исполнитель: Евлашин С.А. Участники НИР: Дагесян С.А., Дьяконов П.В., Зырянов С.М., Кондратенко М.С., Максимов Ю.М., Миронович К.В., Хмельницк