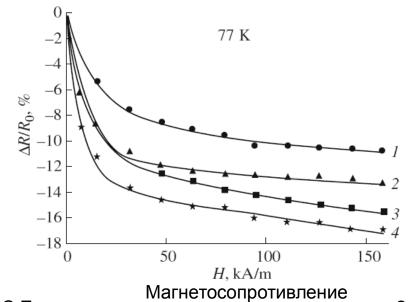

# Доклад в связи с прохождением конкурсного отбора на должность научного сотрудника (0.5 ставки)

к.х.н. Кушнир Сергей Евгеньевич


# Опыт научной работы

- Магнеторезистивные стеклокерамические композиты на основе (La,Sr)MnO<sub>3</sub>
- 1. Кушнир С.Е., Зайцев Д.Д., Казин П.Е. и др. Синтез магнеторезистивных стеклокерамических композитов на основе (La,Sr)MnO<sub>3</sub> в системе La<sub>2</sub>O<sub>3</sub>-SrO-MnO<sub>x</sub>-SiO<sub>2</sub>-B<sub>2</sub>O<sub>3</sub>. // **Журнал неорганической химии**. 2009. Т. 54. № 10. С. 1587-1590.
- 2. Кушнир С.Е., Васильев А.В., Зайцев Д.Д. и др. Синтез магнеторезистивных стеклокерамических композитов в системе SrO-MnO<sub>x</sub>-SiO<sub>2</sub>-La<sub>2</sub>O<sub>3</sub>. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2008. № 1. С. 38-41.
- 3. Зайцев Д.Д., Васильев А.В., Кушнир С.Е. и др. Получение магнеторезистивного композита на основе (La, Sr)MnO<sub>3-х</sub> из боратного стекла. // **Доклады Академии наук**. 2007. Т. 412. № 4. С. 498-499.

• Бакалаврская дипломная работа «Синтез магнеторезистивных стеклокерамических



Микроструктура с туннельными контактами



Кушнир С.Е.

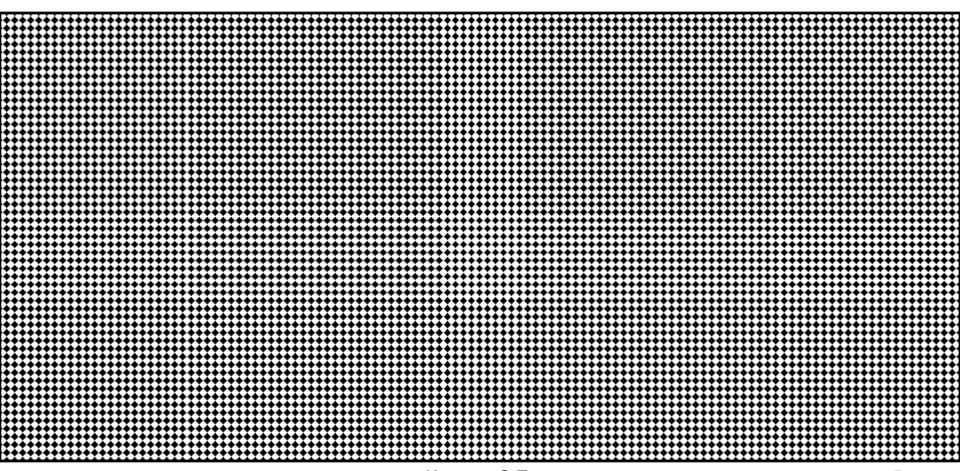
# Опыт научной работы

• Магнитные материалы на основе гексаферрита стронция

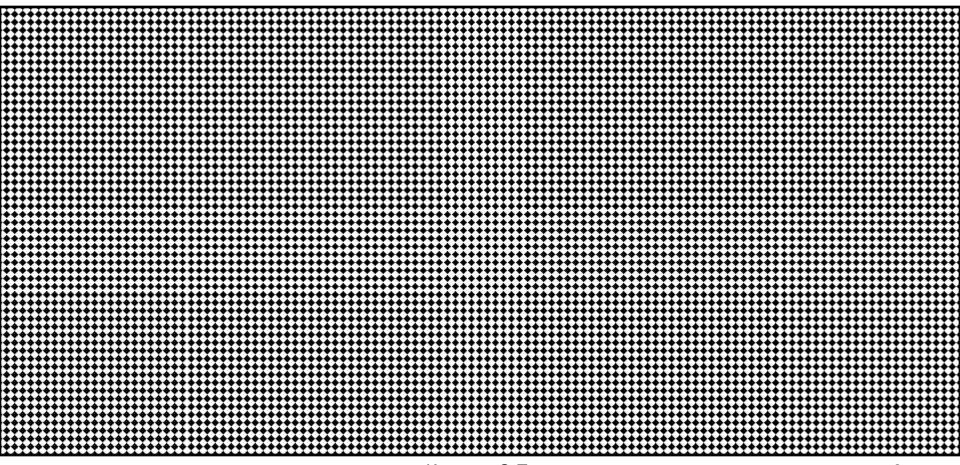
#### 11 научных статей включая:

коллоидный раствор

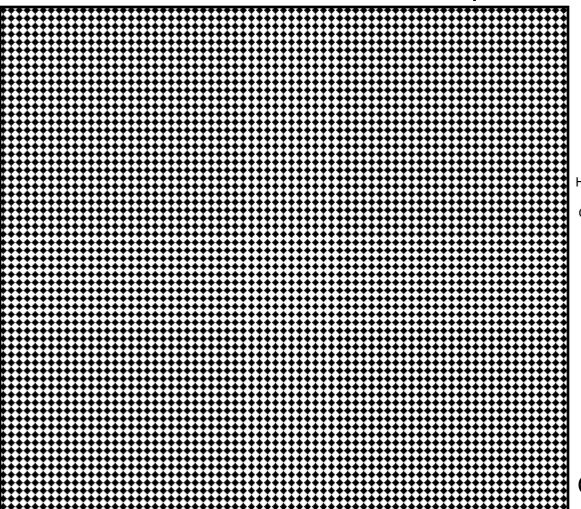
- 1. Kushnir S.E., Koshkodaev D.S., Kazin P.E. et al, Rapid formation of a monolayer of oriented hard-magnetic strontium hexaferrite nanoparticles on a solid substrate // **Advanced Engineering Materials**, 2014. T. 16. №7. C. 884-888.
- 2. Kushnir S.E., Gavrilov A.I., Kazin P.E. et al, Synthesis of colloidal solutions of SrFe12O19 plate-like nanoparticles featuring extraordinary magnetic-field-dependent optical transmission. // **Journal of Materials Chemistry**. 2012. T. 22. № 36. C. 18893-18901.
- 3. Кушнир С.Е., Казин П.Е., Трусов Л.А., Третьяков Ю.Д. Процессы самоорганизации микро- и наночастиц в феррожидкостях. // **Успехи химии**. 2012. Т. 81. № 6. С. 560-570.
- Кандидатская диссертация, Синтез и свойства ансамблей магнитотвёрдых наночастиц гексаферрита стронция и коллоидных растворов на их основе, 2012

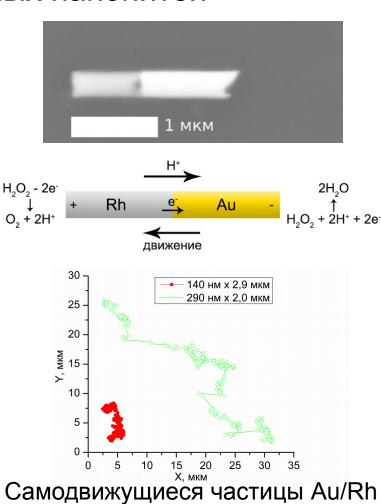

Магистерская диссертация, Синтез наночастиц гексаферрита стронция с высокой КОЭРЦИТИВ 📆 HIJE Пропускание, <sup>о</sup> SrFe<sub>12</sub>O<sub>19</sub> nanoparticles Magnetic liquid Магнит **с**-ориентированный 500 600 700 800 Длина волны, нм монослой Переключение оптического пропускания Кушнир С.Е.

-10 -8 -6 -4 -2 0 2 4


# Опыт научной работы в зарубежных лабораториях

- Стажировка в компании Saint-Gobain Recherche (Аубервиль, Франция), «Окислительновосстановительные равновесия железа и серы в стёклах и электрохимия стекла», 12.02.2008-30.04.2008, 15.07.2008-31.08.2008.
- Научный сотрудник в Samsung Advanced Institute of Technology (Samsung Electronics, Кихын, Республика Корея), 1 статья, 1 заявка на патент, 02.2013-10.2013
- Старший инженер в Corporate R&D Institute (Samsung-Electro Mechanics, Сувон, Республика Корея), 1 статья, 1 ноу-хау, 11.2013-02.2016

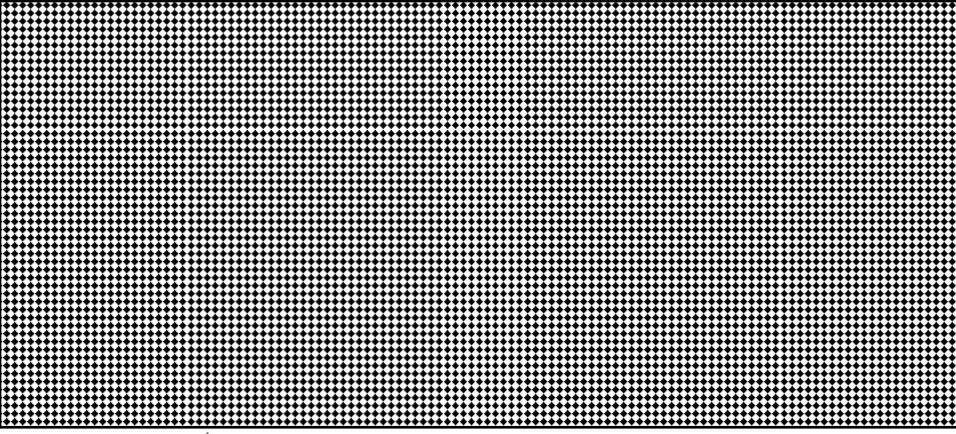

 Выполнение работ по проекту «Анодирование новых высокопрочных экономнолегированных сплавов системы Al-Zn-Mg-Fe в деформируемом состоянии в сравнении с известным алюминиевым сплавом 7075»

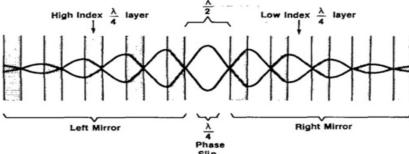



Выполнение работ по проекту «Анодирование новых высокопрочных экономнолегированных сплавов системы Al-Zn-Mg-Fe в деформируемом состоянии в сравнении с известным алюминиевым сплавом 7075»



• Выполнение работ по проекту «Активные коллоидные частицы на основе сегментированных нанонитей»




Кушнир С.Е.

7

• Одномерные фотонно-кристаллические структуры на основе пористых плёнок анодного оксида алюминия





Кушнир С.Е.

#### Планы на предстоящий период

Пористые плёнки анодного оксида алюминия с прецизионной модуляцией показателя преломления

#### Проблемы

- Параметры пористой структуры анодного оксида алюминия известны для стационарных режимов анодирования (U = const или j = const), для нестационарных режимов анодирования данных очень мало
- Неизвестны параметры нестационарных режимов анодирования (температура, напряжение/плотность тока, скорость изменения напряжения/плотности тока), при которых сохраняется планарность роста оксидной плёнки
- Слабая зависимость показателя преломления пористой плёнки анодного оксида алюминия от напряжения анодирования
- Относительно низкое значение показателя преломления оксида алюминия (1,77 при 550 нм) по сравнению с оксидом титана (2,65 при 550 нм)

#### Планы на предстоящий период

#### 1. Научная деятельность

Поиск электрохимических подходов к формированию плёнок одномерных фотонно-кристаллических гетероструктур на основе пористых плёнок анодных оксидов алюминия и титана с прецизионной модуляцией пористости по толщине. Определение круга нестационарных режимов анодирования, при которых сохраняется планарность роста оксидной плёнки, с целью выявления условий быстрого формирования оксидной плёнки с заданной модуляцией пористости.

#### 2. Педагогическая нагрузка

Руководство курсовыми и дипломными работами студентов химического факультета и факультета наук о материалах.

## Данные из системы ИСТИНА

Учитываются работы за период: 2012-2016

| Публикационная активность                               | количество работ |       |
|---------------------------------------------------------|------------------|-------|
|                                                         | за период        | всего |
| Всего статей в научных журналах                         | 8                | 20    |
| В том числе:                                            |                  |       |
| в российских журналах из списка ВАК                     | 2                | 7     |
| в журналах из списка RSCI Web of Science                | 1                | 5     |
| в зарубежных журналах из списка ВАК                     | 6                | 14    |
| в журналах из top25                                     | 2                | 2     |
| Статьи в сборниках                                      | 0                | 0     |
| Глав в коллективных монографиях                         | 0                | 0     |
| Монографий                                              | 0                | 0     |
| Учебно-методические работы                              | 0                | 1     |
| Библиометрические показатели (по данным Web of Science) |                  |       |
| Н-индекс                                                | 4                |       |
| Общее число ссылок                                      | 57               |       |
| Число ссылок на статьи, опубликованные за период        | 15               |       |

Под научным руководством защищено 1 дипломных работ, 0 кандидатских и 0 докторских диссертаций.

Результаты расчёта по формуле «**Химический факультет 2011-2015**» с диапазоном дат 2011–2015 **Кушнир Сергей Евгеньевич**, общая сумма баллов: **414,724** 

Медиана для должности «научный сотрудник» составляет **315** баллов (15 декабря 2016) Кушнир С.Е.