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We present three new object-oriented software design patterns in Fortran 2003 and C++. These
patterns integrate coupled differential equations, facilitating the flexible swapping of physical and
numerical software abstractions at compile-time and runtime. The Semi-Discrete pattern supports
the time advancement of a dynamical system encapsulated in a single abstract data type (ADT).
The Puppeteer pattern combines ADTs into a multiphysics package, mediates interabstraction
communications, and enables implicit marching even when nonlinear terms couple separate ADTs
with private data. The Surrogate pattern emulates C++ forward references in Fortran 2003. Af-
ter code demonstrations using the Lorenz equations, we provide architectural descriptions of our
use of the new patterns in extending the Rouson et al. [2008a] Navier-Stokes solver to simulate
multiphysics phenomena. We also describe the relationships between the new patterns and two
previously developed architectural elements: the Strategy pattern of Gamma et al. [1995] and the
template emulation technique of Akin [2003]. This report demonstrates how these patterns man-
age complexity by providing logical separation between individual physics models and the control
logic that bridges between them. Additionally, it shows how language features such as operator
overloading and automated memory management enable a clear mathematical notation for model
bridging and system evolution.
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1. INTRODUCTION

Over the past decade, there appears to have emerged awareness that the soft-
ware crisis commonly spoken of in the software engineering community in the
1970s has entered the critical path of the scientific programming community. As
the steady march of progress in individual scientific disciplines continues, the
focus naturally turns toward leveraging successes in one domain to spawn new
capabilities for multidomain investigations. Such work falls under the rubric of
multiphysics modeling. As an application’s capabilities grow, the process of scal-
ing up to hundreds of program units (e.g., procedures, modules, components, or
classes) impacts project budgets and timelines at least as much as the process
of scaling up to hundreds of execution units (e.g., processors, processes, threads,
or cores).

That multidisciplinary scientific software engineering warrants greater
scrutiny has been noted at high levels. The 1999 Presidential Information
Technology Advisory Committee (PITAC) summarized the situation [Joy and
Kennedy 1999]:

Today it is altogether too difficult to develop computational science software
and applications. Environments and toolkits are inadequate to meet the needs
of software developers in addressing increasingly complex interdisciplinary. . . .
In addition, since there is no consistency in software engineering best practices,
many of the new applications are not robust and cannot easily be ported to new
hardware.

Regarding environments and toolkits, several developments suggest the situ-
ation has improved since the PITAC assessment. Notable successes in facilitat-
ing interdisciplinary software development include the Common Component
Architecture (CCA) [Bernholdt et al. 2006] and the Earth Systems Modeling
Framework (ESMF) [Hill et al. 2004]. CCA provides a standard that develop-
ers can use to construct frameworks for specific computing models such as dis-
tributed computing [Zhang et al. 2004] and metacomputing [Mawlawski 2005].
CCA frameworks provide a sophisticated runtime environment that couples in-
dependently developed components in a scalable fashion. These components can
wrap existing software and negate the need to write glue code that handles con-
flicts between language data formats and disparate programming paradigms.
Similarly, using the ESMF, one can connect and swap interchangeable com-
ponents that have standard interfaces into a multicomponent package with a
plethora of submodels while maintaining scalable performance.
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Regarding software engineering best practices, additional encouraging de-
velopments can be reported. For example, the recently published overview of
the Trilinos mathematical framework project demonstrates the successful de-
ployment of several of the software engineering community’s quality assurance
and distributed development tools in a high-performance scientific computing
setting [Heroux et al. 2005]. The Trilinos project aggregates the work of approx-
imately 16 developers on 20 packages into an integrated suite of numerically
intensive, parallel code. The quality assurance tools the Trilinos team uses in-
clude Web-based issue tracking via Bugzilla [The Mozilla Organization 2004a],
Web-based automatic fault identification using Bonsai [The Mozilla Organiza-
tion 2004b], and script-based automated daily regression tests. The distributed
development tools Trilinos employs include a Concurrent Versions System
(CVS) source code repository [Free Software Foundation 2004a] and package-
specific Mailman mailing lists [Free Software Foundation 2004b]. Other signif-
icant scientific programming projects are adopting similar tools such as subver-
sion (SVN) repositories [Collins-Sussman 2004] and configuration management
wikis hosted by the proprietary platform Google Code [McGrattan et al. 2008].

In one sense, component frameworks such as CCA and ESMF resemble an
exoskeleton. They establish the system architecture at the high abstraction
level of connecting otherwise standalone applications. By contrast, issue track-
ing and revision management toolkits such as Bugzilla and CVS resemble an
immune system. They assist in the extermination and prevention of bugs that
often relate to the very low abstraction level of individual program lines. In
contrast with the documented progress in scientific software engineering at
these two extremes, the scientific literature appears nearly devoid of publica-
tions on mesoscale architectural principles. While most developers would agree
that complex programs should be broken down into simpler ones in a modular
fashion, this precept provokes several questions, including the following:

(1) What are the best units in which to decompose a design, that is, what are
modules?

(2) What are the best practices for decomposing the design into these modules?

At least within the object-oriented programming (OOP) realm, answers exist.
The unit of decomposition is the abstract data type (ADT) that, in the strictest
sense, encapsulates private state and public behavior. The best practices for
decomposing designs into ADTs are design patterns, which represent templates
for the creation, structure, and behavior of ADTs or small collections thereof.

Gamma et al. [1995] first adapted the basic notion of design patterns from
building architecture to software architecture. Thereafter, patterns gained pop-
ularity rapidly in the software community due in part to their encouragement
of low coupling between ADTs and high cohesion within ADTs. As software
complexity grows, designs based on reusable pieces become critical, and de-
sign patterns’ ability to decouple design elements while keeping them highly
cohesive greatly increases code reusability and extensibility.

Gamma et al. [1995] collected general, non-domain-specific patterns. Their
book’s introduction states that it would be worthwhile for someone to catalog
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domain-specific patterns. Although several authors have demonstrated the util-
ity of the Gamma et al. patterns in scientific contexts [Decyk and Gardner 2007,
2008; Markus 2006; Gardner and Manduchi 2007], only a few have taken up the
challenge of proposing new patterns specifically tailored to scientific computing
[Blilie 2002; Mattson et al. 2004].

This article presents new patterns the authors have found useful across a
spectrum of multiphysics simulations. These simulations tracked interactions
between quantum vortices and classical fluids [Morris et al. 2008], between
particles and magnetohydrodynamic turbulence [Rouson et al. 2008a], and be-
tween aerosolized droplets and the earth’s atmospheric boundary layer [Rouson
and Handler 2007].

Section 2 of this article addresses the thorny issue of nomenclature and de-
scribes our approach to resolving inconsistencies between the way Fortran, C++,
and the broader OOP community name certain constructs. Section 2 also pro-
vides a working definition of the term design pattern and describes its essential
elements. Section 3 presents two new, domain-specific software design patterns
for solving coupled sets of partial differential equations: the Semi-Discrete pat-
tern and the Puppeteer pattern. Section 3 also presents two patterns that em-
ulate C++ capabilities. One circumvents the need for forward references in im-
plementing the Strategy pattern of Gamma et al. [1995]. The second emulates
template classes. Section 3 demonstrates how these emulations prove useful
in switching spatial discretization schemes at compile-time and dynamically
selecting time integration schemes at runtime. Section 4 compares Fortran and
C++ code examples. Section 5 concludes the article. Online Appendices A and
B1 provide complete Fortran 2003 and C++ code demonstrations of the four
primary design patterns presented in this article: the Semi-Discrete, Strategy,
Surrogate, and Puppeteer Paterns.

We compiled the examples in this article with IBM XL Fortran version 11.1,
which supports all of the features in the OOP chapter of Metcalf et al. [2004].
Likewise, we compiled the C++ examples with IBM XL C++ version 9.0.

2. METHODOLOGY

2.1 Nomenclature

In any multilanguage discussion of OOP, one encounters a terminology conun-
drum. While terms such as abstract data type (ADT) have a universal mean-
ing, there also exist more commonly used language-specific synonyms. For ex-
ample, ADT corresponds closely to class in C++ and derived type in Fortran
2003. Similarly, what the language-neutral Unified Modeling Language (UML)
[Booch et al. 1999] diagrammatic description standard refers to as attributes
and methods are typically termed data members and member functions in C++
and components and type-bound procedures in Fortran 2003.

Yet other examples are the terms encapsulation and information hiding,
which in C++ imply protecting data members and member functions via the pri-
vate keyword in a class definition. Fortran likewise uses the keyword private for

1http://www.acm.org.
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Table I. Rosetta Stone

Fortran C++ General
Derived type Class Abstract data type (ADT)
Component Data member Attribute
class Dynamic polymorphism Dynamic polymorphism
Type-bound procedure Virtual member function Method, operationa

Parent type Base class Parent class
Extended type Subclass Child class
Module Namespace Package
Generic interface Function overloading Static polymorphism
Final procedure Destructor
Defined operator Overloaded operator
Defined assignment Overloaded “=” operator
Deferred procedure binding Pure virtual member function Abstract method
Procedure Interface Function signature Procedure signature
Intrinsic type/procedure Primitive type/procedure Primitive type/procedure
aSource: Booch et al. [1999].

hiding data and procedures, but employs modules as the encapsulation mech-
anism. Viewed globally for purposes of introducing scoping tools for data, data
types, and procedures, Fortran modules more closely match namespaces in C++.

Furthermore, not only does the name associated with a given concept often
differ among languages, but occasionally the reverse also holds: a name com-
mon to different languages may be associated with different concepts in those
languages. For example, the C++ term class denotes an ADT as already noted,
whereas the Fortran term class denotes a polymorphic entity whose dynamic
type may vary at runtime between the type named in the class construct and
any of its extended (child) types. In C++, such dynamic polymorphism is pro-
vided to references or pointers to base classes. An invocation of a type-bound
procedure (C++ virtual member function) on such an entity is bound to the
appropriate procedure based on the dynamic type of the entity at runtime.

Our resolution of the above conflicts follows: whenever possible, we adopt
language-neutral terminology such as ADT and object (an instance of a specific
ADT). When presenting design patterns, we default to Fortran terms since its
new standard motivates this article. On first usage, we follow each Fortran
term with a parenthetical note containing the italicized name of the closest
corresponding C++ term. Table I summarizes these correspondences.

Although our parenthetical phrases relate Fortran constructs to C++ ones,
the relationship is rarely one of exact equality. Often, both constructs could be
used in additional ways that do not correspond with the typical usage of the
other.2 For example, in suggesting that Fortran 2003 derived types correspond
to C++ classes, we are neglecting the fact that both Fortran derived types and
C++ classes can be parameterized. The reason for neglecting this is that the

2This is true even for many non-object-oriented constructs. For example, Fortran requires compilers
to store considerably more state in a pointer or an array than does C++. Fortran pointers can be
queried for their allocation status and Fortran arrays can be queried for their size and shape;
whereas C++ pointers are simply memory addresses and C++ arrays do not carry information
about their layout.
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approach to parameterization differs considerably in the two languages. In For-
tran, derived type parameters (DTP) are integers and can be used to define DTP
component (C++ data member) quantities such as numerical precision, charac-
ter length, or array bounds at the time of the object’s instantiation. By contrast,
the parameterization of C++ classes results in template classes, wherein the
types of data members are generic in the source and are not resolved to actual
types until objects are instantiated.

Similarities can be drawn between DTPs and template classes. They both
represent generic programming technologies. Nonetheless, their design philoso-
phies are quite distinct: DTP emphasizes parameterization of data size and
boundary, not data type, which is the primary focus of template classes. The
focus on parameterization of data type using template classes is further rein-
forced by another facility in C++, the function template, which provides func-
tion parameterization on various data types. These differences have substan-
tial consequences in real applications since many template programs in C++,
such as standard template library (STL), cannot be expressed via intrinsic For-
tran constructs. Nevertheless, one can emulate the simpler template capabil-
ities in Fortran. We use the template emulation technique of Akin [2003] in
Section 3.3.

To minimize confusion when we draw comparisons between Fortran and C++
constructs, we intend to convey only that the two largely correspond when used
in the manner described herein.

2.2 Definition and Essential Elements

In software engineering, a design pattern represents a proven, reusable solu-
tion to a recurring software design problem. Today, the words design patterns
and object-oriented design patterns are often interchangeable in the software
community. This interchangeability stems from the expressiveness of OOP lan-
guages in describing the relationships and interactions between ADTs. Appro-
priate use of patterns can improve the structure of the software, improve the
readability of the code, and reduce the programming costs due to the central
role reuse plays in pattern-based software architecture.

Traditionally, a design pattern comprises four essential elements [Gamma,
1995]:

(1) the pattern name: A handle that describes a design problem, its solution,
and consequences in a word or two;

(2) the problem: a description of when to apply the pattern and within what
context;

(3) the solution: the elements that constitute the design, the relationships be-
tween these elements, their responsibilities, and their collaborations;

(4) the consequences: the results and trade-offs of applying the pattern.

Although there have been suggestions to include additional information in iden-
tifying a pattern, for example, sample code and known uses to validate the
pattern as a proven solution [Gamma et al. 1995], it is generally agreed that
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items 2–4 enumerate the three critical factors in each pattern. These are often
termed collectively the three-part rule [Alexander et al. 1977].

In some instances, what constitutes a pattern depends on perspective. A re-
curring, programmer-constructed solution in one language might be an intrin-
sic language facility in another. For instance, as pointed out by Gamma et al.
[1995] and demonstrated in Fortran 90/95 by Decyk et al. [1997a; 1997b; 1998],
one might construct patterns for inheritance, encapsulation, or polymorphism
in a procedural language, whereas, by definition, these exist in object-oriented
languages. Although it is no longer necessary to emulate these features with
the advent of Fortran 2003, Fortran’s approach to supporting OOP is not well
known among C++ and Fortran 90/95 programmers. The next subsection sum-
marizes the process.

2.3 Building a Fortran 2003 ADT

Four basic technologies support OOP: encapsulation, information hiding, poly-
morphism, and inheritance. In Fortran, we accomplish encapsulation by defin-
ing a derived type (C++ class) with type-bound procedures (C++ virtual mem-
ber functions) and by providing the implementation of each derived type in a
Fortran module (C++ namespace).3,4 Modules provide scoping and type safety
benefits not available in Fortran before the Fortran 90 standard. Following
common OOP practice, we adopt a style wherein each module encapsulates
only one public derived type, though it might include other private ones.
The information-hiding philosophy dictates that the public derived type’s
components (C++ data members) each have the private attribute. Outside
the module, access to the components is provided only via public type-bound
procedures.

One way to implement static polymorphism in Fortran 2003 is via generic
procedure bindings (C++ function overloading), wherein the procedure to be
called is resolved at compile-time based on the declared types of the passed
arguments. One can implement dynamic (runtime) polymorphism in Fortran
2003 via deferred procedure bindings (C++ virtual member functions), wherein
the procedure to be called is resolved at runtime based on the dynamic type of
the passed argument. (Recall from Section 2.1 that one references the dynamic
types, or polymorphic entities, via the Fortran class keyword.)

Finally, inheritance occurs in Fortran via type extension in syntax similar
to Java. Since the developer can bind procedures to types, all of the expected
properties of an ADT inheritance hierarchy apply: the extended type (C++ sub-
class) inherits all type-bound procedures from its parent type (C++ base class)
by default except those procedures the extended type explicitly overrides and
except its final procedure (C++ destructor). Fortran prohibits multiple inher-
itance, so each extended type must have only one parent type. In the interest

3In Fortran 2008, it will be possible to move the implementation of the type-bound procedures to a
separate submodule, leaving only their interfaces in the module that defines the type. This allows
complete documentation of the interface details needed by users of the module without exposing
details of how the services described in the interface are implemented.
4Henceforth, we use the Courier New font for language keywords and code excerpts.
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of brevity, we defer the Fortran ADT code examples to Section 3 and refer the
reader to Metcalf et al. [2004] for additional information.

3. MULTIPHYSICS DESIGN PATTERNS

3.1 The Semi-Discrete Pattern

3.1.1 The Problem. One can describe a broad swath of multiphysics phe-
nomena with equations of the form

∂

∂t
�U (�x, t) = ��( �U (�x, t)), �x ∈ �, t ∈ (0, T ], (1)

where �U ≡ {U1, U2, . . . , Un}T is the problem state vector; �x and t are coordinates
in the space-time domain � × (0, T ]; and �� ≡ {�1, �2, . . . , �n}T is a vector-
valued operator that couples the state vector components via a set of governing
ordinary-, partial-, or integrodifferential equations. Closing the equation set
requires specifying appropriate boundary and initial conditions

�B( �U ) = �C(�x, t), �x ∈ �, (2)
�U (�x, 0) = �U0(�x), �x ∈ �, (3)

where � bounds �, �B( �U ) typically represents linear or nonlinear combinations
of �U and its derivatives, and �C specifies the values of those combinations on �.

A common step in solving Equation (1) involves rendering its right-hand side
discrete by projecting the solution onto a finite set of trial basis functions or by
replacing all spatial differential operators in �� by finite difference operators
and all spatial integral operators in �� by numerical quadratures. Often, one
also integrates Equation (1) against a finite set of test functions. Either pro-
cess can render the spatial variation of the solution discrete, while retaining
its continuous dependence on time. One commonly refers to such schema as
semidiscrete approaches. The resulting equations take the form

d
dt

�V = ��( �V ), (4)

where the right-hand side vector function �� contains linear and nonlinear dis-
crete operators and where �V ≡ {V1, V2, . . . , Vq}T might represent q ≡ np sam-
ples of the n elements of �U on a p-point grid laid over � ∪ � and. Alternatively,
�V could represent expansion coefficients, for example, Fourier coefficients, ob-
tained from projecting the solution onto the aforementioned space of trial func-
tions, for example, complex exponentials. In any case, we can now assume that
the boundary conditions have been incorporated into Equation (4) and no longer
need to be specified separately as in Equation (2). This allows us to focus on
Equation (4) as a self-contained, continuous dynamical system. In Sections
3.1–3.3, we ignore the original spatial dependence in Equation (1) and use a
specific dynamical system, the Lorenz system [Lorenz 1963], as our prototypical
multiphysics model. We return to the issue of spatial dependence in Section 3.4.

From a software standpoint, the most fundamental problem regards how to
encapsulate the state of our dynamical system. Complexity estimates suggest
the following:
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(1) Encapsulation and information hiding attack problems that scale
quadratically with program size, whereas polymorphism and inheritance
attack problems that scale linearly with program size [Rouson and Xiong
2004],

(2) By adopting an encapsulation strategy wherein one decomposes the design
into mathematical or physical ADTs for which one can write overloaded
expressions, one renders the quadratic complexity metric constant [Rouson
et al. 2008a].

Additional complexity considerations arise regarding the granularity of the
chosen ADTs, that is, whether the ADTs represent small objects such as grid
points or larger objects such as collections of dependent variables sampled
across the entire domain. In complex problems requiring adaptive reconfig-
uration, for example, remeshing, fine-grained collections of ADTs can increase
design complexity [Rouson and Xiong 2004].

Another important design problem regards achieving high execution speed.
Speed considerations often encourage coarse-grained abstractions. Consider,
for example, a discrete solution representing a concatenation of column vectors
{�u, �p, �b}, where �u, �p, and �b might contain the velocity, pressure, and magnetic
field vector, respectively, of a flowing plasma at each grid point in the spatial
domain. A fine-grained partition of the data obtained by slicing horizontally
through these column vectors and collecting each row into a grid point ADT
would reduce cache hit rates due to a lack of spatial locality in long loops over
the grid. One can increase the spatial locality with a coarse-grained abstraction
that slices vertically between the columns, storing each column vector in a
separate abstraction.

One important design problem relates to how one limits interabstraction
couplings. While some physical coupling between abstractions is inherent in
multiphysics modeling, additional software couplings can arise from the choice
of ADTs. This concern ties back into the need for operator overloading. By using
overloaded expressions to accomplish processes such as time advancement, one
can write an advancement algorithm that requires no access to the data it
advances. All such data can remain private within the objects appearing in
the expressions. This severs data dependencies between the abstractions that
supply time advancement algorithms by evaluating Equation (5) and those that
supply the physics by defining the right-hand side (RHS) of Equation (4).

3.1.2 The Solution. The Semi-Discrete pattern employs a stateless Fortran
abstract derived type (C++ abstract class) with deferred type-bound procedure
bindings (C++ pure virtual member functions). This abstract type, referred to
as an integrable model, defines the abstract interface (C++ function signature)
that concrete extended types (C++ concrete subclasses) must implement in or-
der to be integrated over time. The actual time integration occurs inside the
polymorphic procedure integrate() defined in the same module as the abstract
type and interface. The deferred bindings point to overloaded operators that
can be chosen at runtime based on the dynamic type of the argument passed to
integrate().
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Fig. 1. Semidiscrete pattern class model: abstract type integrable model and extended type
dynamical system.

Figure 1 depicts a UML class model for the Semi-Discrete pattern. The
italic bold typeface used for the integrable model ADT name indicates that
it is abstract. We refer to the concrete extended type generically as a
dynamical system. As stipulated by the abstract interface it implements, the ex-
tended type defines a function d dt() that takes a dynamical system argument
with state {V1, V2, . . . , Vm}T and uses the governing Equations (4) to calculate
and return a dynamical system with state {d V1/dt, d V2/dt, . . . , d Vm/dt}T .
One can use the return object in time marching algorithms of the form

�V n+1 = �V n +
∫ tn+1

tn

d �V
dt ′ dt ′, (5)

where tn denotes nth time step, tn+1 ≡ tn + �t and �t is the time step.
Online Appendices A.1 and B.1 provide Fortran 2003 and C++ code, respec-

tively, employing the Semi-Discrete pattern to integrate the Lorenz system,
a reduced-dimension model for weather with parametric dependence on the
constants σ , ρ, and β [Lorenz 1963]:

d
dt

⎧⎨
⎩

v1
v2
v3

⎫⎬
⎭ =

⎧⎨
⎩

σ (v2 − v1)
v1(ρ − v3) − v2

v1v2 − βv3

⎫⎬
⎭ . (6)

The code uses the explicit Euler algorithm, which approximates the integral
in Equation (5) as f ( �V n)�t. This function evaluation and product occur via
overloaded arithmetic on instances of a lorenz ADT that plays the role of
dynamical system in extending integrable model. Equation (5) thus takes the
form
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class(integrable model) :: this
. . .

this = this + this%d dt()∗dt

where “%” is the Fortran component selector analogous to “.” in C++. To guar-
antee execution, the integrable model ADT mandates that its extended types
define assignment, addition, and multiplication operators in addition to a type-
bound time derivative function d dt(). The end result is program syntax mir-
roring the original mathematical syntax in Equation (5). Objects replace differ-
ential and algebraic operator results as well as all operands except the RHS in
the multiplication operation. The resulting call tree is determined at runtime
based on the dynamic type passed to integrate(). This one procedure can be
employed for any concrete extended type.

3.1.3 The Consequences. Any design pattern involves tradeoffs between
its benefits and its drawbacks. In the Semi-Discrete pattern, obvious benefits
accrue from the simplicity, clarity, and generality of the interface. Only a few op-
erators must be defined to construct any new dynamical system. Their purpose
very closely mirrors the corresponding operators in the mathematical state-
ment of the system and the time marching algorithm. Often, the internals of
each operator relies on sufficiently simple calculations that they can delegate
their work to highly optimized versions of linear algebra libraries such as BLAS
[Blackford et al. 2002] and LAPACK [Barker et al. 2001] or scalable parallel
libraries such as SCALAPACK [Blackford et al. 1997], Trilinos [Heroux et al.
2005], or PETSc [Balay et al. 2007].

A common thread running through many design patterns is their fostering
of loose couplings between abstractions. Unlike procedural time integration
libraries and even many object-oriented ones, integrate()never gets its grubby
hands around the data it integrates. It therefore relies upon no assumptions
about the data’s layout in memory, its type, or its precision. The programmer
retains the freedom to restructure the data or change its type or precision with
absolutely no impact on the time integration code.

Sometimes, one developer’s benefit is another’s drawback. For example, if
implemented naively, one potential drawback of the Semi-Discrete pattern lies
in making it more challenging for the compiler to optimize performance on
processor architectures that can combine operations, such as scalar additions
and multiplications, in a single clock cycle. In C++, the programmer can ensure
that such calculations resolve to combined operations via expression templates.
However, this advanced feature does not yet have universal compiler support.
Nor does it have universal acceptance within the developer community. In both
Fortran and C++, judicious runtime profiling can obviate the need for such
features. Armed with empirical evidence (or a priori operation counts), one can
define combined operators that replace particularly slow collections of operators
at the cost of hardwiring these combinations together in the calling procedure
integrate().

Another possible drawback relates to effective use of memory hierarchies
as first pointed out by Grant et al. [2000]. The relevant scenario involves long
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loops over rows of the aforementioned solution
{ �u, �p, �b }

. Unless operations
are combined as discussed in the previous paragraph, the results of the sim-
pler operations will be written back to memory before later being retrieved for
additional operations. This reduces temporal locality and can result in excessive
paging. Even so, judicious data layout can mitigate this effect by engendering
high spatial locality and thereby increasing the cache hit rate. On very large
problems, the correct approach is likely to be platform dependent.

3.2 The Strategy and Surrogate Patterns

3.2.1 The Problem. Multiphysics modeling typically implies multinumer-
ics modeling. As the physics changes, so must the numerical methods. A problem
arises when the software does not separate its expression of the physics, as em-
bodied in the governing Equations (1)–(3), from its expression of the discrete
algorithms as embodied in Equations (4)–(5). Consider a concrete type that ex-
tends the integrable model type of Section 3.1 but requires a different time
integration algorithm from that described in Section 3.1.2. The extended type
must overload the name integrate. This would be a simple task when chang-
ing one algorithm in one particular ADT. However, when numerous algorithms
exist, one faces the dilemma of either putting all possible algorithms in the
parent type or leaving to extended types the task of each implementing their
own algorithms. Section 4.5 explains the adverse impact the first option has on
code maintainability. The second option could lead to redundant (and possibly
inconsistent) implementations.

The Lorenz equation solver described in Section 3.1 used explicit Euler time
advancement. That solver updates the solution vector at each time step without
explicitly storing its time coordinate. Such a strategy might be appropriate
when one requires only a representative set of points in the problem phase space
to calculate geometrical features of the solution such as the fractal dimension of
its strange attractor. By contrast, if one desires temporal details of the solution
trajectory, then it might be useful to create an extended type that stores a
time stamp and uses a marching algorithm with higher-order accuracy in time
such as second-order Runge-Kutta (RK2). RK2 approximates the integral in
Equation (5) as f ( �V n + f ( �V n)�t/2)�t.

Time-advancing the resulting objects via overloaded arithmetic makes sense
if each component satisfies a differential equation. We therefore augment the
governing Equations (6) with a fourth equation:

dτ

dt
= 1, (7)

where τ is the object’s time stamp. The challenge is to extend the lorenz type
by adding the new component τ , adding its governing Equation (7), and adding
the ability to select an integration strategy dynamically at runtime.

3.2.2 The Solution. Gamma et al. [1995] resolved this problem with the
Strategy pattern. They stated the essence of this pattern as follows: “Define a
family of algorithms, encapsulate each one, and make them interchangeable.
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Fig. 2. Class model for applying the strategy and surrogate patterns to extend the Lorenz model.

Strategy lets the algorithm vary independently from clients that use it (page
315).”

The Strategy pattern severs the link between algorithms and data. Data ob-
jects delegate operations to strategy classes that apply appropriate algorithms
to the data.

Our Strategy pattern implementation defines a timed lorenz type that
extends the lorenz type. As before, the lorenz concrete type extends the
integrable model abstract type. In addition to the deferred bindings that
integrable model stipulates must be implemented by its extended types,
it now contains a reference to an abstract derived type, strategy, to
which integrable model delegates the responsibility to provide a type-bound
integrate() procedure. The strategy defines only the interface (via deferred
binding) for the time integration method, leaving its own extended types to
provide actual quadrature schemes. In applying the strategy pattern, one
passes a reference to a lorenz dynamical system as an actual argument to the
integrate() method of the strategy object. Again, the program syntax mirrors
the mathematical syntax:

class(surrogate), intent(inout) :: this
real , intent(in) :: dt
. . .

this half = this + this%d dt()∗(0.5∗dt)
this = this + this half%d dt()∗dt

We explain the role of the new type surrogate next.
Figure 2 depicts a UML class model of our Fortran Strategy pattern imple-

mentation, including an empty surrogate type, instances of which substitute for
all references to integrable model objects and their extended types inside the
strategy module. Declaring all such instances with the Fortran class keyword
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defers to runtime the resolution of their ultimate dynamic type, which can be
any descendant of the surrogate type. The role played by the surrogate pro-
vides an example of a Fortran-specific design pattern: the Surrogate pattern.
It circumvents Fortran’s prohibition against circular references, wherein one
module’s reference to a second module via a use statement precludes refer-
encing the first module in the second via a reciprocal use. In C++, one avoids
such circular references by using forward references. Forward references allow
one ADT to declare another and then to manipulate references to the declared
ADT without knowing its definition. Online Appendices A.2 and B.2 provide our
Strategy pattern code in Fortran 2003 and C++, respectively. The A.2 imple-
mentation relies upon the Surrogate pattern in lieu of the forward references
available to the C++ code in Appendix B.2.

3.2.3 The Consequences. Since the Strategy pattern uses composition in-
stead of inheritance, it allows better decoupling of the classes that focus on
data (the context) from those that focus on algorithms (behaviors). One ob-
vious advantage is that strategies can provide varying implementations (or
algorithms) for the same behavior, thus giving users more freedom to choose
at runtime based on the problem at hand. Compared to patterns that employ
inheritance as the means for maintaining algorithms (e.g., the Interpreter pat-
tern of Gamma et al. [1995]), the Strategy pattern is much easier to understand
and extend. Since each concrete strategy class implements one particular al-
gorithm for the context, the use of this pattern also encourages programmers
to avoid lumping many different algorithms into one class that often lead to
unmanageable code.

This pattern is commonly used in applications where a family of related al-
gorithms or behaviors exists for the context (data). Examples given by Gamma
et al. [1995] included the register allocation schemes and instruction schedul-
ing policies used in the compiler optimization code in the Register Transfer
Language (RTL) systems. The application of strategy patterns yields great flex-
ibility for the optimizer in targeting different machine architectures.

As with every design pattern, the Strategy pattern also has drawbacks. One
potential disadvantage is that, in applying the pattern, a user must be aware
of the differences among algorithms in order to select the appropriate one.
This sometimes becomes a burden as programmers must acquire knowledge
about various algorithms. Another potential shortcoming of strategies lies in
the possible communication overhead between data objects and algorithm ob-
jects. Although this overhead can normally be minimized by careful design of
the strategy interfaces, a naı̈ve implementer of the strategy pattern may nev-
ertheless attempt to design the interfaces with many unnecessary parameters
to pass between data and algorithms. Thus achieving a balance between data-
algorithm coupling and communication overhead should always be one of the
goals for designing a good Strategy pattern.

3.3 The Puppeteer Pattern

3.3.1 The Problem. While the Semi-Discrete and Strategy patterns apply
to the integration of a single physics abstraction, our chief concern lies in linking
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Fig. 3. Associations in the mediator pattern.

multiple abstractions. This poses two problems. The first involves how to facili-
tate inter-abstraction communication. Gamma et al. [1995] addressed interab-
straction communication with the Mediator pattern. When N objects interact,
a software architect can reduce the N (N −1) associations between the objects to
2N associations by employing a Mediator. The Mediator association count stems
from the requirements that the Mediator know each communicating party and
those parties know the Mediator. For example, in a Mediator implementation
presented by Gamma et al. [1995], the sender passes a reference to itself to the
Mediator. The sender must be aware of the Mediator in order to know where
to send the message. Likewise, the Mediator must be aware of the sender in
order to invoke methods on the sender via the passed reference. Figure 3 illus-
trates the associations in an atmospheric boundary layer model, wherein the
air, ground, and cloud ADTs might solve equation sets for the airflow, ground
transpiration, and discrete droplet motion, respectively.

The second and conceptually more challenging problem concerns whether
one can use the Semi-Discrete pattern to implement implicit time advancement
algorithms for systems in which nonlinear coupling terms connect state vari-
ables hidden behind separate interfaces. 5 Of particular concern is the desire to
calculate cross-coupling terms without violating abstractions by exposing their
data. Consider marching the dynamical system defined by Equation (4) forward
in time according to the trapezoidal rule:

�V n+1 = �V n + �t
2

[
��

(
�V n

)
+ ��

(
�V n+1

)]
, (8)

where the presence of �V n+1 on the RHS makes iteration necessary when ��
contains nonlinearities. One generally poses the problem in terms of finding
the roots of a residual vector such as

f
(

�V n+1
)

= �V n+1 −
{

�V n + �t
2

[
��

(
�V n

)
+ ��

(
�V n+1

)]}
, (9)

where �V n is known.
The difficulty arises in finding the roots of �f using Jacobian-based itera-

tion methods. Consider Newton’s method. Defining �ym as the mth iterative

5In the first author’s experience with presenting these patterns, this is the most common question
posed by the audience.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



3:16 • D. W. I. Rouson et al.

approximation to �V n+1, Newton’s method can be expressed as

J� �ym ≡ − �f ( �ym), (10)

�ym+1 ≡ �ym + � �ym, (11)

Jij ≡ ∂ fi

∂ y j

∣∣∣∣
�y=�ym

= ∂ fi

∂V n+1
j

∣∣∣∣∣ �V n+1=�ym

= δi j − �t
2

⎡
⎣∂�i

(
�V n+1

)

∂V n+1
j

⎤
⎦

�V n+1=�ym

, (12)

where J is the Jacobian, �i is the RHS of the ith governing equation, and δi j is
the Kronecker delta. Equation (10) represents a linear algebraic system. Equa-
tion (11) represents vector addition. In both equations, �f and �y are abstract
in the sense that the associated storage is hidden behind the interfaces to the
ADTs employed in the simulation. Hence, equations (10)–(12) define an ab-
stract calculus that is most naturally implemented via overloaded operations
on ADTs.

Since the form of the Jacobian in Equation (12) depends on the choice of
numerical integration, the natural place to construct J is inside integrate(),
but that procedure maintains a blissful ignorance of the governing equations
inside the dynamical system. The most perplexing dilemma concerns how and
where to construct the elements of ∂ ��/∂ �V n+1 when �� and �V n+1 are distributed
across multiple ADTs with private state.

3.3.2 The Solution. A Puppeteer encapsulates references to each dynami-
cal system involved in the simulation. When integrate()receives a Puppeteer
argument, that Puppeteer controls the behavior of all other dynamical systems
in the simulation. It does so by delegating operations and serving as an in-
termediary for communications. Furthermore, by requiring that each datum
communicated between abstractions be of a type intrinsic to the language, the
Puppeteer obviates the need to expose information about the data structures
employed inside each ADT.

A Puppeteer exploits the regularity and predictability of the interabstrac-
tion communications defined formally in the terms that couple the governing
equations. The developer of each ADT requests the requisite coupling terms by
placing them in the argument lists of the procedures that define each dynami-
cal system. The Puppeteer developer fulfills these requests by calling accessors
made public by the other dynamical systems in the simulation.

As depicted in Figure 4, the Puppeteer uses object aggregation to reduce the
aforementioned number of inter-abstraction associations from 2N to N : the
Puppeteer knows a datum’s sender and recipient, but they need not know the
Puppeteer. In OOP parlance, aggregation is often described as a containment
relationship. Containment implies the objects encapsulated within another ob-
ject might exist and be useful before the container’s construction. It also implies
they might exist and be useful after the container’s destruction.

To address the problem of implementing Jacobian-based nonlinear solvers,
let us partition �� such that �� ≡ { �a, �c, �g }T , where the partitions separate
the RHS vector elements corresponding to the air, cloud, and ground ADTs,
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Fig. 4. Aggregation associations in the Puppeteer pattern.

respectively. For present purposes, each partition can be thought of as a one-
dimensional (1D) vector containing the RHS of one of the component equations
from Equation (6). With this notation, the Jacobian in Equation (10) can be
rewritten as6

J ≡ I − �t
∂

(
�a, ⇀c, �g

)
∂(�α, �χ , �γ )

, (13)

where �α, �χ , and �γ are the air, cloud, and ground state vectors, respectively, so
�y ≡ { �α, �χ , �γ }, and where I is the identity matrix. The dilemma stated at the
end of Section 3.3.1 presents itself in the need to calculate cross-terms such as
∂ �a/∂ �χ . The question is, “How does the air ADT differentiate its components of
�� with respect to the state vector partition �χ when that partition lies hidden
inside the cloud abstraction?”

The solution lies in recognizing that the Puppeteer must satisfy information
requests from each ADT by passing values obtained from other ADTs. As a
corollary, any derivatives of �a with respect to partitions of �y that are not passed
by the Puppeteer must vanish. Furthermore, since all such passing of data
happens via intrinsic types, the Puppeteer need not violate the data privacy
of the ground and air abstractions in requesting ∂ �a/∂ �χ . The dialogue can be
paraphrased as follows:

Puppeteer to air: Please pass me a vector containing the partial derivatives
of each of your governing equations’ RHS with respect to each element in
your state vector.
Air to Puppeteer: Here is the requested vector (∂ �a/∂ �α). You can tell the
dimension of my state by the size of this vector.
Puppeteer to air: I also know that your governing equations depend on
the cloud state vector because your interface requests information that I
retrieved from a cloud. Please pass me a vector analogous to the previous
one but differentiated with respect to the cloud state information I passed
to you.
Puppeteer note to self: Since I did not pass any information to the air object
from the ground object, I will set the cross-terms corresponding to ∂ �a/∂ �g to

6In eqution (11) and elsewhere, we abbreviate a common notation for Jacobians in which the list of
�f components appears in the numerator and the list of �y components appears in the denominator.
We do not mean for the arrows to connote vectors that transform as first-order tensors.
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zero. I’ll determine the number of zero elements by multiplying the size of
∂ �a/∂ �α by the size of ∂ �g/∂ �γ after I receive the latter from my ground puppet.

The Puppeteer then holds analogous dialogues with its cloud and ground
puppets, after which the Puppeteer passes an array containing ∂ ��/∂ �V to
integrate(). The latter procedure uses the passed array to form J, which it
then passes to a Puppeteer for use in inverting the matrix system (10). Most
importantly, integrate() does so without violating the Puppeteer’s data pri-
vacy, and the Puppeteer responds without violating the privacy of its puppets.
The Puppeteer’s construction is based solely on information from the public
interfaces of each puppet. Figure 5 details the construction of ∂ ��/∂ �V in a UML
sequence diagram. Online Appendices A.3 and B.3 illustrate this process.

3.3.3 The Consequences. The chief consequence of the Puppeteer pattern
derives from its separation of concerns. Domain experts can construct ADTs
that encapsulate widely disparate physics without knowing the implementa-
tion details of the other ADTs. In the atmospheric modeling example, a fluid
dynamicist might build an air abstraction that solves the Navier-Stokes equa-
tions for wind velocities and pressures, while a chemist might build a cloud
abstraction that predicts acid rain by modeling chemical species adsorption
at droplet surfaces. The Puppeteer would first request droplet locations from
the cloud instance, then request species concentrations at the droplet location
from the air instance, and finally pass these concentrations to the cloud in the
process of constructing �� and ∂ ��/∂ �V .

A second important consequence derives from the aforementioned contain-
ment relationships. Since the Puppeteer holds only references (implemented
as pointers) to its puppets, their lifetimes extend before and after that of the
Puppeteer (see main.f03 in online Appendices A.3 and B.3). This opens the
possibility of varying the physical models dynamically midsimulation. In the
atmospheric boundary layer model, the cloud model would not have to be in-
cluded until the atmospheric conditions became ripe for cloud formation. Of
course, when an absent object would otherwise supply information required
by another object, the Puppeteer must substitute default values. Whether this
substitution happens inside the Puppeteer or inside each ADT (via optional
arguments) is implementation dependent.

The cost of separating concerns and varying the physics at runtime lies in the
conceptual work of discerning who does what, where they do it, and in which
format. Consider the following lines from the Fortran 2003 implementation of
the trapezoidal time integration algorithm. This algorithm is implemented in
the integrate() procedure of Appendix online Appendix A.3:

dRHS dState = this estimate%dRHS dV()
. . .

jacobian = identity − 0.5∗dt∗dRHS dState

residual = this estimate − (this + (this%d dt() + &
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Fig. 5. A UML sequence diagram for the Puppeteer’s Jacobian contribution. The coordinate()

method calls return solution variables. The next three calls return diagonal blocks of �̄/∂V̄ . The
subsequent six calls return off-diagonal blocks. The final two steps allocate and fill �̄/∂V̄ .
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this estimate%d dt())∗(0.5∗dt))
. . .

this estimate = this estimate − (jacobian.inverseTimes.residual)

where the ellipses indicate deleted lines.7 The first line represents an abstract
calculation of ∂ ��/∂ �V . All calculations, including the assignment, happen inside
the Puppeteer. This design decision stems from the fact that the details of the
Puppeteer (and the objects it contains) determine ��, so the information hiding
philosophy of OOP precludes exposing these to integrate(). By contrast, the
formula for calculating the Jacobian in the next line depends on the chosen time
integration algorithm, so while dt∗dRHS dState represents an overloaded oper-
ation implemented inside the Puppeteer, that operation returns a Fortran array
of intrinsic type (C++ primitive type) and the remainder of the line represents
arithmetic on intrinsic entities. Thus, the identity matrix and the Jacobian are
simple floating-point arrays. Finally, the subsequent two lines would be the
same for any algorithm that employs implicit advancement of nonlinear equa-
tions, so those lines represent overloaded arithmetic carried out wholly inside
the Puppeteer.

Ultimately, we believe the forethought that goes into deciding what gets cal-
culated where and by whom pays off in keeping the code flexible. There is no
hardwiring of algorithm-specific details of the Jacobian calculation into individ-
ual physics abstractions. Nor is there any hardwiring of physics-specific details
of the residual calculation into the time integrator or the nonlinear solver. Each
can be reused if the implementation of the other changes in fundamental ways.

The Puppeteer provides an elegant solution to a common problem in man-
aging complexity in multiscale, multiphysics applications. For efficiency and
numerical stability, individual model components often run in nonidentical di-
mensions (e.g., when coupling two- and three-dimensional simulation models)
or incompatible (e.g., reduced) units. All such considerations can be delegated
to the Puppeteer, greatly easing the reuse of existing simulation software for
the individual single-physics models.

3.4 The Template Class Pattern

3.4.1 The Problem. Most multiphysics models involve equations in which
the RHS operators �� and �C in Equations (1)–(2) contain partial derivatives and
integrals of the solution vector �U . Writing discrete approximations of these
terms inside the ADTs that abstract the physics limits those abstractions’
reusability. Consider a version of the air ADT that employs a discrete Fourier
basis to approximate solutions to the Navier-Stokes equations. One would have
to rewrite such an ADT for every application that requires other basis sets.

As a first step toward increasing code reusability, Rouson et al. [2008a] de-
veloped a grid-free Fluid ADT that encapsulates the continuous Navier-Stokes
equations. Inside their Fluid module, they wrote �� in terms of an ADT calculus

7The name inverseTimes is intended to be suggestive of the ultimate result. The sample code in
online Appendix A.3 employs Gaussian elimination rather than computing and premultiplying the
inverse Jacobian.
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defined by overloaded algebraic and differential operators acting on instances
of a Field ADT. Field objects represented functions of three-dimensional (3D)
space and provided discrete Fourier approximations to such operations as differ-
entiation and multiplication. While their Fluid abstraction remained agnostic
with respect to the discrete basis set employed inside each Field object, chang-
ing basis sets would still require a rewrite of the Field ADT.

3.4.2 The Solution. The solution lies in making the Field references in-
side Fluid generic. One way to accomplish this is for the Fluid source code to
reference a generic type in place of all references to Field types. It must fur-
ther be possible to switch the generic type to any desired actual Field type at
compile-time. In C++, this can be accomplished with template classes. Since
the Fortran facilities for generic programming do not include template classes,
there is some utility in emulating these.

Akin [2003] outlined a Fortran programming technique that we refer to as
the Template Class pattern. Here we outline how it enables the creation of a
general multiphysics software architecture when employed in conjunction with
the other patterns described in this paper. The technique involves referring to
all occurrences of the generic type with the text Template$. Since the Fortran
character set does not contain the “$ ” symbol, one can safely perform a text
search, replacing each occurrence of Template$ with the desired actual type
without fear of changing any executable code. By incorporating this procedure
into the automatic process of building executable files, one can emulate delaying
the choice of spatial discretizations to compile-time.

Figure 6 depicts a UML class model for a multiphysics software package:
the Multiphysics Object-oriented Reconfigurable Fluid Environment for Uni-
fied Simulations (Morfeus) under development at Sandia National Laboratories
and the City University of New York.8 Morfeus currently uses Fortran 95 aug-
mented by a Fortran 2003 feature subset we have found to be widely available—
specifically those features common to the g95, gfortran, and Intel compilers at
the time of this writing. The limitations of this feature subset require emulating
runtime polymorphism, inheritance, and templates.

Morfeus employs two template classes: Grid and Field. Switching the
Template$ type in Field to an actual derived type selects basis sets. Currently,
Morfeus supports three basis sets:

(1) A 3D discrete Fourier expansion used for statistically isotropic turbulence
as first employed by Orszag and Patterson (1972),

(2) A hybrid 2D-Fourier/1D-Chebyshev polynomial expansion for flows with
one direction of statistical inhomogeneity as first employed by Kim et al.
(1987),

(3) A time-varying Fourier basis for statistically homogeneous shear flows as
developed by Brucker et al. (2007).

Switching the Template$ type in Grid to an actual type provides ADTs that
store the mesh information for the chosen basis set.

8http://public.ca.sandia.gov/csit/research/scalable/morfeus.php.
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Fig. 6. Morfeus class model for simulating of turbulent flow in superfluids (using the
Quantum Fluid and classical fluid classes), semisolid metals (using the Magnetofluid and Cloud
classes), and atmospheric boundary layers (using the Classical Fluid, Scalar, and Cloud classes).
The Template parameters$ are switched to actual types in a precompilation phase.

The Mixture ADT in Figure 6 plays the role of the Puppeteer. At runtime,
the code constructs a Mixture object by associating that object’s pointer compo-
nents with any combination of Tangle, Fluid, Magnetofluid, Scalar, and Cloud
instances. The Tangle component simulates the integrodifferential equations
governing quantum vortex dynamics in superfluid liquid helium [Morris et al.
2008]. The Fluid component solves the incompressible Navier-Stokes equa-
tions for momentum transport and mass conservation in fluid flows. The Mag-
netofluid inherits this behavior from its parent Fluid and couples it to the mag-
netic induction equation, which derives from Maxwell’s equations and governs
the advection and diffusion of magnetic field lines in electrically conducting flu-
ids and plasmas [Knaepen et al. 2004]. The Scalar component solves the scalar
advection/diffusion equation [Rouson et al. 2006]. The Cloud component solves
a drag law for the motion of aerosolized droplets and solid particles [Rouson
et al. 2008b]. In atmospheric simulations, the Mixture ADT aggregates a Fluid,
a Cloud, and a Scalar temperature field [Rouson and Handler 2007].

Since the chosen Fortran subset does not support abstract types and inheri-
tance, Morfeus’s integrand ADT uses aggregation to emulate the runtime poly-
morphism of the integrable model from Section 3.1 in the manner described by
Rouson et al. [2005]. The current integrand code allows for choosing at runtime
among several adaptive Runge-Kutta marching algorithms, including one that
uses implicit integration on linear terms.
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3.4.3 The Consequences. Since template classes and their emulation in
Fortran have been discussed elsewhere, we focus here on their use in conjunc-
tion with the other patterns proposed in this article. The chief advantage in
this setting lies in the ease with which spatial discretizations can be inter-
changed. We routinely switch between the Fourier and Fourier/Chebyshev ba-
sis sets in a matter of seconds using a textual search and replace just before
compiling.

Such interchangeability comes at the cost of requiring the two basis set ADTs
to support identical interfaces. In some cases, superfluous arguments must be
passed. For example, in querying the Grid for its nodal locations, an argument
must be passed to indicate the coordinate direction along which the nodal loca-
tions are desired. While this information proves useful when the template class
aggregates a grid for which the spacing along one coordinate direction differs
from that along other directions (as is the case with the grid points used with
our Fourier/Chebyshev basis functions), but it is superfluous when the grid
spacing is the same in all directions (as is the case with the grids we typically
employ with our 3D Fourier basis functions).

An additional cost comes from adding a new module layer. While the new
logic this generates causes negligible overhead, the increased number of files
and procedures increases the complexity of a compiler’s interprocedural opti-
mizations. Determining how to reduce this complexity provides an avenue for
future research.

4. DISCUSSION

Having covered the consequences of the new patterns in Section 3, this
section turns to the similarities and differences between their expression
in Fortran and C++. In particular, it addresses some of the implementation
differences necessitated by language constructs and design aspects of the two
programming languages.

4.1 Dynamic Memory Management

The much reviled memory leak serves as the bane of every programmer whose
project requires considerable use of dynamic memory allocation. Fortran’s ap-
proach to dynamic memory management relieves the programmer from think-
ing about leaks in a large fraction of the cases where they could occur in C++
by using the allocatable construct described below. C++ has a long-standing
reputation of difficult memory management relating to exposing low-level en-
tities directly to the programmer—specifically, exposing machine addresses via
pointers. While many partial solutions exist (standard container classes, man-
agement via lifetime of stack allocated objects, reference counting, garbage
collectors, etc.), the current language standard does not provide any general,
portable, or efficient solution to the problem of managing object lifetimes. In
the example C++ code, we use a simple, invasive reference counting scheme,
but in the absence of a language-provided solution, this approach will almost
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certainly prevent a compiler from eliminating temporaries and a host of other
optimizations.

Online Appendix A.1 demonstrates the advantage Fortran 2003 provides by
separating the need to allocate and free memory from the need for aliases.
Fortran allocatable entities satisfy the former needs but not the latter one.
The Fortran line

real, dimension(:), allocatable :: state

ensures state can be used only to allocate or access the elements of the array
state. Second, the language standard obligates the compiler to free any memory
subsequently allocated to state. The compiler must do so after state goes out of
scope even if the programmer does not write a final procedure (C++ destructor).
Third, even the initial allocation of state can be automatic if its first assignment
contains a RHS expression that yields an array of the desired size, in which case
the compiler allocates the amount of memory required to store the result. For
illustrative purposes, the online Appendix A code contains many of the implicit
allocations in comments to demonstrate where a C++ or Fortran 95 programmer
would be required to insert such allocations. Finally, Fortran 2003 allocatable
entities can also be scalars and objects. For the objects in online Appendix
A, the programs explicitly perform all allocations. The compiler handles all
deallocations in online Appendices A.1 and A.2. We discuss online Appendix
A.3 next

Despite at least 75 implicit and explicit memory allocations in roughly 1100
lines of Fortran (discounting blanks), no explicit deallocations occur in all of
online Appendix A. In addition to the automatic deallocations performed by
the compiler, careful use of the Fortran 2003 move alloc intrinsic procedure
facilitates the elimination of temporary objects for storing results and the at-
tendant deallocations such temporaries necessitate. As stated by Metcalf et al.
[2004]:

[move alloc] provides what is essentially the allocatable array equivalent of
pointer assignment: allocation transfer. However, unlike pointer assignment,
the allocatable array semantics of having a one-to-one mapping between the
variable and the allocation are maintained; therefore the original variable be-
comes unallocated (page 299).

Besides eliminating the potential for confusion associated with allowing
many-to-one mappings from pointers to allocations, move alloc also reduces
the runtime penalty associated with excess copying.

Fortran’s automatic deallocations resemble Java’s garbage collection but
with well-defined collection times. Although Fortran’s automatic allocations
for 1D arrays resemble C++ STL vector template class behavior, C++ has no
equivalent construct for Fortran’s automatic multidimensional array alloca-
tion capability. Fortran’s support for allocatable objects with allocatable ar-
ray components can be emulated in C++ by defining a class that encapsulates
pointer data members and guarantees the replication of their targets via a
deep copy whenever necessary along with guaranteeing their garbage collec-
tion whenever they go out of scope.
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4.2 Array Descriptors and Semantics

A key technology that eases the compilers’ automatic memory management
burden is the language standard’s provisions for intrinsic functions that re-
turn array layout information. Nearly all Fortran compilers encapsulate this
information internally by a structure commonly known as a descriptor. De-
scriptors facilitate the aforementioned automatic allocations. They also prove
useful to programmers, for example, in determining loop delimiters for travers-
ing arrays. Fortran also provides extensive semantics for array manipulation
[Metcalf et al. 2004]. The online Appendix A code contains numerous examples
of single-line whole-array and subarray assignments.

By contrast, when passing C++ arrays, the programmer must pass the ar-
ray layout via arguments or data members in a class that encapsulates the
arrays. Communicating these data (implicitly in Fortran or explicitly in C++)
frees the developers of physics abstractions to change the layout of those ab-
stractions’ internal state vectors without breaking the Puppeteer code. The
availability of descriptors therefore impacts not just line-by-line syntax but
also high-level, modular architecture by determining the feasibility and util-
ity of writing a Puppeteer. The C++ STL vector class provides some of For-
tran’s array facilities, such as dynamic memory management, but not oth-
ers, such as the ability for pointers to reference noncontiguous memory in
subarrays.

4.3 Dynamic Type Safety

One unique OOP feature in Fortran 2003 is the select type construct, within
which a constituent block of code is selected at runtime for execution. The se-
lection criterion is the dynamic type of an expression. This language construct
provides dynamic type conversions using a syntax similar to that of case con-
struct but requires the expression to be polymorphic by having a dynamic type
that is evaluated at runtime. A type checking statement called a type-guard
statement guards each constituent block. Upon entering the block, the declared
type of the expression is then implicitly converted to the type that is declared
in the corresponding type-guard statement [Metcalf et al. 2004].

The select type construct provides the only means for declared type con-
versions for a polymorphic entity as there is no type casting in Fortran 2003. In
C++, dynamic type conversion is performed using the dynamic cast operator
[Stroustrup 1997]. However, select type is safer than dynamic cast, in that
the Fortran 2003 standard guarantees that, at most, one of the constituent
blocks executes. Similar to a case construct, if none of the blocks is selected and
no default class statement is provided, the program simply exits the construct
and continues to subsequent lines. By contrast, a dynamic cast in C++ either
returns NULL (for casts involving a pointer) or throws an exception (for casts
involving a reference) if the ultimate type proves incompatible with the type
being cast. Therefore, a conditional test (if statement) or a try-catch block is
required to handle the cases where the programmer supplies an incorrect object
type.
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4.4 Scoping

Fortran’s module construct encapsulates each ADT in online Appendix A. Mod-
ules separate sundry entities—including variables, named constants, derived
type definitions, procedures, and procedure interfaces—into a scope apart from
other like entities outside the module. This capability most closely resembles
the C++ namespace. Since Fortran has no concept of file scope, modules pro-
vide the means to make entities available across multiple program units. (The
venerable old common block widely used in Fortran 77 supplies another means
but only for data and even that use has been deprecated in favor of the newer
module construct [Metcalf et al. 2004].)

Modules also have characteristics that distinguish them from namespaces.
For example, modules are closed to extension via multiple declarations. More
significantly, modules provide data protections in that the Fortran keyword
private can be applied only to entities inside a module. Doing so only affects code
outside the module in which private appears, whereas the entities declared
private remain available to all procedures inside the module, not just type-
bound procedures. C++ achieves similar data protection at the class level,
but only the member functions and friends can access private data. Thus, the
Fortran module provides protection in a more coarse-grained scope (as if at the
level of a namespace) than a C++ class.

4.5 Complexity

As mentioned, design patterns aim to produced loosely coupled yet cohesive
ADTs. Cohesion connotes a commonality of purpose among an individual ADT’s
procedures. In their seminal treatment of the subject, Stevens et al. [1974]
ranked “coincidental” cohesion as the weakest form and “functional” cohesion
as the strongest form. Coincidental cohesion implies no significant relation-
ship between the procedures. Functional cohesion implies that each procedure
contributes to a single task. Rouson [2008] pointed out that the Semi-Discrete
pattern proposed in this article imposes functional cohesion on any types that
extended the integrable model type at least when these extended types im-
plement only the abstract interfaces referenced in the deferred bindings of the
integrable model. In that case, each procedure contributes to the time advance-
ment expression evaluation and assignment. Furthermore, multiphysics mod-
els of the type described in Figure 6 propagate this functional cohesion down
the ADT hierarchy as the Mixture puppeteer delegates the defined operations
and assignment in integrable model to its puppets. In a similar manner, each
puppet that uses the Field class in Figure 6 imposes a high degree of functional
cohesion on it by writing various field expressions (e.g., scalar field products
and vector field divergences) that necessitate the implementation of defined
operators and assignments in the Field template and the basis-function ADTs
it employs.

Many traditional, procedural mathematical libraries, while very useful, lack
functional cohesion. A similar situation would result if we included all desired
integration procedures in the integrable model parent type rather than sep-
arating them into a strategy class hierarchy. Each procedure would be used
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separately and, most likely, independently from the others. In such situations,
greater clarity results from separating the implementations.

While cohesion is essentially qualitative, coupling is more easily quantified.
Following Martin [2002], we define an ADT’s afferent couplings (Ca) as the
number of other ADTs that depend on it, while its efferent couplings (Ce) are
the number of ADTs on which it depends. Its instability

I ≡ Ce
Ce + Ca

(14)

vanishes when changes to other parts of the software do not impact the ADT in
question (a completely stable situation) and approaches unity when changes to
any other ADT can potentially affect the one in question (a completely unstable
situation). In any multiphysics package employing the Semi-Discrete pattern,
the integrable model abstract type would be highly stable because it depends
on no other ADTs (Ce = 0) and the associated integrate procedure depends
only on the dynamical system being integrated, which will typically be a single
Puppeteer in a multiphysics simulation.

Examining Figure 6 suggests that the Puppeteer (Mixture) depends on the
integrable model type (it must implement the defined assignments and oper-
ators specified by the integrable model) along with each of the single-physics
ADTs. Thus, Ce = 6 in the case shown. Importantly, no ADTs depend on the
Puppeteer, although the integrate procedure accepts it as an argument, so Ca
= 1 and I = 6/7. This highlights one of the strongest arguments for the Pup-
peteer design pattern: it takes what in many scientific software projects proves
to be the least stable activity (the process of coupling separately developed
single-physics packages into a multiphysics whole) and turns it into the most
stable part of the entire enterprise. Similar observations can be made about
the rest of Figure 6. Few classes depend on more than one other class and some
depend on none (e.g., Tangle and Cloud). This leads to a highly stable design in
which I approaches 1 throughout most of the software.

5. CONCLUSIONS

We have presented UML class models for three new object-oriented software
design patterns. We further expressed the patterns in Fortran and C++ imple-
mentations. The new patterns integrate coupled sets of differential equations
and facilitate the flexible swapping of physical and numerical software abstrac-
tions at compile-time and runtime. The Semi-Discrete pattern supports the
time advancement of a dynamical system encapsulated in a single abstract data
type. The Puppeteer pattern combines multiple abstractions into a multiphysics
package, mediates interabstraction communications, and enables implicit time
integration even when nonlinear terms couple separate abstractions contain-
ing private data. The Surrogate pattern emulates C++ forward references in
Fortran 2003. Online Appendices A and B provide code demonstrations corre-
sponding to each pattern applied to the Lorenz dynamical system.

We provided architectural descriptions of how we have used the new de-
sign patterns in extending the Navier-Stokes solver of Rouson et al. [2008a]
to simulate three multiphysics problems: quantum vortices interacting with
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normal fluid, electromagnetic fields interacting with conducting fluids and plas-
mas, and droplets interacting with the atmospheric boundary layer. We also
described the relationships between the new patterns and two previously de-
veloped architectural elements: the Strategy pattern of Gamma et al. [1995]
and the template class emulation technique of Akin [2003].

The patterns and resulting software abstractions presented in this article
greatly ease the development of multiphysics applications by reducing and man-
aging the associated complexity. Most of the patterns are language agnostic—
provided that the target language provides basic facilities for memory man-
agement and dynamic typing—and can easily be tailored to leverage advanced
language features for automatic memory management and expression seman-
tics. This article has focused primarily on a simple demonstration problem,
but the real strength of the patterns lies in their managing the design, de-
velopment, and maintenance of complex multiphysics or multiscale simulation
systems.
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