
Online Appendix to:
Design Patterns for Multiphysics Modeling
in Fortran 2003 and C++

DAMIAN W. I. ROUSON and HELGI ADALSTEINSSON
Sandia National Laboratories
and
JIM XIA
IBM Corporation

APPENDIX A. FORTRAN 2003 IMPLEMENATION

A.1 Semidiscrete Example
main.f03

1 program main

2 use lorenz_module ,only : lorenz,integrate

3 implicit none ! Prevent implicit typing

4
5 ! This code integrates the Lorenz equations over time using abstractions that

6 ! follow the Semi-Discrete design pattern of Rouson, Adalsteinsson and Xia

7 ! (ACM TOMS 2010).

8
9 type(lorenz) :: attractor

10 integer :: step ! time step counter

11 integer ,parameter :: num_steps=2000,space_dimension=3 ! phase space dimension

12 real ,parameter :: sigma=10.,rho=28.,beta=8./3.,dt=0.01 ! Lorenz parameters and time step size

13 real ,parameter ,dimension(space_dimension) &

14 :: initial_condition=(/1.,1.,1./)

15
16 call attractor%construct(initial_condition,sigma,rho,beta)

17 print *,attractor%output()

18 do step=1,num_steps

19 call integrate(attractor,dt)

20 print *,attractor%output()

21 end do

22 end program

lorenz.f03

1 module lorenz_module

2 use integrable_model_module ,only : integrable_model,integrate

3 implicit none

4
5 private ! Hide everything by default

6 public :: integrate ! Expose time integration procedure

7
8 ! This type implements operators required for integration by the above procedure.

9 ! The time derivative function is defined to express the Lorenz equations.

10
11 type ,extends(integrable_model) ,public :: lorenz

12 private

13 real ,dimension(:) ,allocatable :: state ! solution vector

14 real :: sigma ,rho ,beta ! Lorenz parameters

15 contains

16 procedure ,public :: d_dt => dLorenz_dt ! time derivative

17 procedure ,public :: add => add_lorenz ! add two lorenz objects

18 procedure ,public :: multiply => multiply_lorenz ! multiply a lorenz object by a real scalar

19 procedure ,public :: assign => assign_lorenz ! assign one lorenz object to another

20 procedure ,public :: construct ! constructor

21 procedure ,public :: output ! accessor: return solution vector

22 end type lorenz

23
24 contains

25
26 subroutine construct(this,initial_state,s,r,b) ! constructor

C© 2010 ACM 0098-3500/2010/01-ART3 $10.00
DOI 10.1145/1644001.1644004 http://doi.acm.org/10.1145/1644001.1644004

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-2 • D. W. I. Rouson et al.

27 class(lorenz) ,intent(out) :: this

28 real ,dimension(:) ,intent(in) :: initial_state

29 real ,intent(in) :: s ,r ,b ! passed values for sigma, rho and beta

30 !allocate(this%state(size(initial_state)))

31 this%state=initial_state

32 this%sigma=s; this%rho=r; this%beta=b

33 end subroutine construct

34
35 function output(this) result(coordinates) ! accessor: return solution vector

36 class(lorenz) ,intent(in) :: this

37 real ,dimension(:) ,allocatable :: coordinates

38 !allocate(coordinates(size(this%state)))

39 coordinates = this%state

40 end function output

41
42 function dLorenz_dt(this) result(dState_dt) ! time derivative: encapsulates Lorenz equations

43 class(lorenz) ,intent(in) :: this

44 class(integrable_model) ,allocatable :: dState_dt

45 type(lorenz) ,allocatable :: delta

46
47 allocate(delta)

48 allocate(delta%state(size(this%state)))

49 delta%state(1)=this%sigma*(this%state(2) -this%state(1)) ! 1st lorenz equation

50 delta%state(2)=this%state(1)*(this%rho-this%state(3))-this%state(2) ! 2nd lorenz equation

51 delta%state(3)=this%state(1)*this%state(2)-this%beta*this%state(3) ! 3rd lorenz equation

52 delta%sigma=0. ! hold Lorenz parameters constant over time

53 delta%rho=0.

54 delta%beta=0.

55 call move_alloc (delta, dState_dt)

56 end function

57
58 function add_Lorenz(lhs,rhs) result(sum) ! add two Lorenz objects

59 class(lorenz) ,intent(in) :: lhs

60 class(integrable_model) ,intent(in) :: rhs

61 class(integrable_model) ,allocatable :: sum

62 type(lorenz) ,allocatable :: local_sum ! obviate need for ’select type(sum)’

63
64 allocate (lorenz :: local_sum)

65 !allocate(local_sum%state(size(lhs%state)))

66 select type(rhs)

67 class is (lorenz)

68 local_sum%state = lhs%state + rhs%state

69 local_sum%sigma = lhs%sigma + rhs%sigma

70 local_sum%rho = lhs%rho + rhs%rho

71 local_sum%beta = lhs%beta + rhs%beta

72 class default

73 stop ’add_Lorenz: rhs argument type not supported’

74 end select

75 call move_alloc(local_sum, sum)

76 end function

77
78 function multiply_Lorenz(lhs,rhs) result(product) ! multiply a Lorenz object by a real scalar

79 class(lorenz) ,intent(in) :: lhs

80 real ,intent(in) :: rhs

81 class(integrable_model) ,allocatable :: product

82 type(lorenz) ,allocatable :: local_product ! obviate need for ’select type(sum)’

83
84 allocate (local_product)

85 local_product%state = lhs%state*rhs

86 local_product%sigma = lhs%sigma*rhs

87 local_product%rho = lhs%rho *rhs

88 local_product%beta = lhs%beta *rhs

89 call move_alloc(local_product, product)

90 end function

91
92 subroutine assign_lorenz(lhs,rhs) ! assign one lorenz object to another

93 class(lorenz) ,intent(inout) :: lhs

94 class(integrable_model) ,intent(in) :: rhs

95 !if (.not. allocated(lhs%state)) allocate(lhs%state(size(rhs%state)))

96 select type(rhs)

97 class is (lorenz)

98 lhs%state = rhs%state

99 lhs%sigma = rhs%sigma

100 lhs%rho = rhs%rho

101 lhs%beta = rhs%beta

102 class default

103 stop ’assign_lorenz: rhs argument type not supported’

104 end select

105 end subroutine

106 end module lorenz_module

integrable model.f03

1 module integrable_model_module

2 implicit none ! Prevent implicit typing

3 private ! Hide everything by default

4 public :: integrate ! expose time integration procedure

5
6 ! This stateless type specifies the operators required to support Runge-Kutta time integration,

7 ! while deferring the actual implementation of those operators to extensions (children) of this type.

8
9 type ,abstract ,public :: integrable_model

10 contains

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-3

11 procedure(time_derivative) ,deferred :: d_dt ! time derivative

12 procedure(symmetric_operator) ,deferred :: add ! add two integrable_model objects

13 procedure(symmetric_assignment) ,deferred :: assign ! assign one integrable_model to another

14 procedure(asymmetric_operator) ,deferred :: multiply ! multiply an integrable_model by a real scalar

15 generic :: operator(+) => add ! Map operators to corresponding proceures

16 generic :: operator(*) => multiply

17 generic :: assignment(=) => assign

18 end type integrable_model

19
20 abstract interface

21 function time_derivative(this) result(dState_dt)

22 import :: integrable_model

23 class(integrable_model) ,intent(in) :: this

24 class(integrable_model) ,allocatable :: dState_dt

25 end function time_derivative

26 function symmetric_operator(lhs,rhs) result(operator_result)

27 import :: integrable_model

28 class(integrable_model) ,intent(in) :: lhs,rhs

29 class(integrable_model) ,allocatable :: operator_result

30 end function symmetric_operator

31 function asymmetric_operator(lhs,rhs) result(operator_result)

32 import :: integrable_model

33 class(integrable_model) ,intent(in) :: lhs

34 class(integrable_model) ,allocatable :: operator_result

35 real ,intent(in) :: rhs

36 end function asymmetric_operator

37 subroutine symmetric_assignment(lhs,rhs)

38 import :: integrable_model

39 class(integrable_model) ,intent(in) :: rhs

40 class(integrable_model) ,intent(inout) :: lhs

41 end subroutine symmetric_assignment

42 end interface

43
44 contains

45
46 subroutine integrate(model,dt) ! Explicit Euler time integration

47 class(integrable_model) :: model

48 real ,intent(in) :: dt ! time step size (integration interval)

49 model = model + d_dt(model)*dt ! Explicit Euler formula

50 contains

51 function d_dt(this) result(dThis_dt) ! support d_dt(arg) time differentiation syntax

52 class(integrable_model) ,intent(in) :: this

53 class(integrable_model) ,allocatable :: dThis_dt

54 allocate(dThis_dt,source=this)

55 dThis_dt = this%d_dt()

56 end function

57 end subroutine

58 end module integrable_model_module

A.2 Strategy and Surrogate Example
main.f03

1 program main

2 use lorenz_module ,only : lorenz

3 use timed_lorenz_module ,only : timed_lorenz

4 use explicit_euler_module ,only : explicit_euler

5 use runge_kutta_2nd_module ,only : runge_kutta_2nd

6
7 ! This code uses the strategy and surrogate patterns described by Rouson, Adalsteinsson and

8 ! Xia (ACM TOMS 2010) to solve the Lorenz equations.

9
10 implicit none ! Prevent implicit typing

11
12 type(explicit_euler) :: lorenz_integrator ! Time integration strategy

13 type(runge_kutta_2nd) :: timed_lorenz_integrator ! Time integration strategy

14 type(lorenz) :: attractor ! Lorenz equation/state abstraction

15 type(timed_lorenz) :: timed_attractor ! Time-stamped Lorenz eq./state abstraction

16 integer :: step ! Time step counter

17 integer ,parameter :: num_steps=2000,space_dimension=3

18 real ,parameter :: sigma=10.,rho=28.,beta=8./3.,dt=0.01 ! Lorenz parameters and step size

19 real ,parameter ,dimension(space_dimension) &

20 :: initial_condition=(/1.,1.,1./)

21
22 call attractor%construct(initial_condition,sigma,rho,beta,lorenz_integrator) !Initialize and choose strategy

23 print *,’lorenz attractor:’

24 print *,attractor%output()

25 do step=1,4*num_steps ! run explicit Euler at increased resolution for comparison to RK2

26 call attractor%integrate(dt/4.)

27 print *,attractor%output()

28 end do

29
30 call timed_attractor%construct(initial_condition,sigma,rho,beta,timed_lorenz_integrator) !Re-initialize, choose new strategy

31 print *,’’

32 print *,’timed_lorenz attractor:’

33 print *,timed_attractor%output()

34 do step=1,num_steps

35 call timed_attractor%integrate(dt)

36 print *,timed_attractor%output()

37 end do

38 end program main

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-4 • D. W. I. Rouson et al.

lorenz.f03

1 module lorenz_module

2 use strategy_module ,only : strategy ! Abstract time integration strategy

3 use integrable_model_module ,only : integrable_model ! Abstract integrand

4
5 implicit none ! Prevent implicit typing

6 private ! Hide everything by default

7
8 public :: integrable_model ! Expose integrable_model

9
10 type ,extends(integrable_model) ,public :: lorenz

11 private

12 real ,dimension(:) ,allocatable :: state ! solution vector

13 real :: sigma ,rho ,beta ! Lorenz parameters

14 contains

15 procedure ,public :: construct ! Constructor: allocate and initialize

16 procedure ,public :: d_dt => dlorenz_dt ! Time derivative (specifies evolution equations)

17 procedure ,public :: add => add_lorenz ! Add two instances

18 procedure ,public :: multiply => multiply_lorenz ! Multiply an instance by a real scalar

19 procedure ,public :: assign => assign_lorenz ! Assign one instance to another

20 procedure ,public :: output ! Accessor: return state

21 end type

22
23 contains

24
25 subroutine construct(this,initial_state,s,r,b,this_strategy) ! Constructor: allocate and initialize

26 class(lorenz) ,intent(out) :: this

27 real ,dimension(:) ,intent(in) :: initial_state

28 real ,intent(in) :: s ,r ,b

29 class(strategy) ,intent(in) :: this_strategy

30 !allocate(this%state(size(initial_state)))

31 this%state=initial_state

32 this%sigma=s; this%rho=r; this%beta=b

33 allocate (this%quadrature, source=this_strategy)

34 end subroutine construct

35
36 function dLorenz_dt(this) result(dState_dt) ! Time derivative (specifies evolution equations)

37 class(lorenz) ,intent(in) :: this

38 class(integrable_model) ,allocatable :: dState_dt

39 type(lorenz) ,allocatable :: local_dState_dt ! obviates need for ’select type(dState_dt)’

40
41 allocate(local_dState_dt)

42 allocate(local_dState_dt%state(size(this%state)))

43 local_dState_dt%state(1) = this%sigma*(this%state(2) -this%state(1)) ! 1st Lorenz equation

44 local_dState_dt%state(2) = this%state(1)*(this%rho-this%state(3))-this%state(2) ! 2nd Lorenz equation

45 local_dState_dt%state(3) = this%state(1)*this%state(2)-this%beta*this%state(3) ! 3rd Lorenz equation

46 local_dState_dt%sigma = 0.

47 local_dState_dt%rho = 0.

48 local_dState_dt%beta = 0.

49 call move_alloc(local_dState_dt,dState_dt)

50 end function

51
52 function add_lorenz(lhs,rhs) result(sum) ! Add two instances

53 class(lorenz) ,intent(in) :: lhs

54 class(integrable_model) ,intent(in) :: rhs

55 class(integrable_model) ,allocatable :: sum

56 type(lorenz) ,allocatable :: local_sum ! obviates need for ’select type(sum)’

57
58 select type(rhs)

59 class is (lorenz)

60 allocate(local_sum)

61 !allocate(local_sum%state(size(lhs%state)))

62 local_sum%state = lhs%state + rhs%state

63 local_sum%sigma = lhs%sigma + rhs%sigma

64 local_sum%rho = lhs%rho + rhs%rho

65 local_sum%beta = lhs%beta + rhs%beta

66 class default

67 stop ’assig_lorenz: unsupported class’

68 end select

69 call move_alloc(local_sum,sum)

70 end function

71
72 function multiply_lorenz(lhs,rhs) result(product) ! Multiply an instance by a real scalar

73 class(lorenz) ,intent(in) :: lhs

74 real ,intent(in) :: rhs

75 class(integrable_model) ,allocatable :: product

76 type(lorenz) ,allocatable :: local_product ! obviates need for ’select type(product)’

77
78 allocate(local_product)

79 !allocate(local_product%state(size(lhs%state)))

80 local_product%state = lhs%state* rhs

81 local_product%sigma = lhs%sigma* rhs

82 local_product%rho = lhs%rho * rhs

83 local_product%beta = lhs%beta * rhs

84 call move_alloc(local_product,product)

85 end function

86
87 subroutine assign_lorenz(lhs,rhs) ! Assign one instance to another

88 class(lorenz) ,intent(inout) :: lhs

89 class(integrable_model) ,intent(in) :: rhs

90 select type(rhs)

91 class is (lorenz)

92 !if (.not. allocated(lhs%state)) allocate(lhs%state(size(rhs%state)))

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-5

93 lhs%state = rhs%state

94 lhs%sigma = rhs%sigma

95 lhs%rho = rhs%rho

96 lhs%beta = rhs%beta

97 class default

98 stop ’assig_lorenz: unsupported class’

99 end select

100 end subroutine

101
102 function output(this) result(coordinates) ! Accessor: return state

103 class(lorenz) ,intent(in) :: this

104 real ,dimension(:) ,allocatable :: coordinates

105 !allocate(coordinates(size(this%state)))

106 coordinates = this%state

107 end function output

108 end module lorenz_module

strategy.f03

1 module strategy_module

2 use surrogate_module ,only : surrogate ! Substitute for integrable_model (avoiding circular references)

3
4 implicit none ! Prevent implicit typing

5 private ! Hide everything by default

6
7 type, abstract ,public :: strategy ! Abstract time integration strategy

8 contains

9 procedure(integrator_interface), nopass, deferred :: integrate ! Abstract integration procedure

10 end type strategy

11
12 abstract interface

13 subroutine integrator_interface(this,dt)

14 import :: surrogate

15 class(surrogate) ,intent(inout) :: this ! integrand

16 real ,intent(in) :: dt ! time step size

17 end subroutine

18 end interface

19 end module

surrogate.f03

1 module surrogate_module

2 implicit none ! Prevent implicit typing

3 private ! Hide everything by default (superfluous in this case)

4
5 ! This stateless type serves only for purposes of extension by other types.

6 ! In such a role, it can serve as a substitute for the child type when that

7 ! type is inaccessible because of Fortran’s prohibition against circular references.

8
9 type ,abstract ,public :: surrogate

10 end type

11 end module

timed lorenz.f03

1 module timed_lorenz_module

2 use lorenz_module ,only : lorenz,integrable_model ! Parent and grandparent types

3 use strategy_module ,only : strategy ! Time integration strategy

4
5 implicit none ! Prevent implicit typing

6 private ! Hide everything by default

7 public :: integrable_model ! Expose abstract integrand and integrator

8
9 type ,extends(lorenz) ,public :: timed_lorenz

10 private

11 real :: time ! time stamp

12 contains

13 procedure ,public :: construct ! constructor: allocate and initialize state

14 procedure ,public :: d_dt => dTimed_lorenz_dt ! time derivative (expresses evolution equations)

15 procedure ,public :: add => add_timed_lorenz ! add two instances

16 procedure ,public :: multiply => multiply_timed_lorenz ! multiply one instance by a real scalar

17 procedure ,public :: assign => assign_timed_lorenz ! assign one instance to another

18 procedure ,public :: output ! accessor: return state

19 end type timed_lorenz

20
21 contains

22
23 subroutine construct(this,initial_state,s,r,b,this_strategy) ! constructor: allocate and initialize state

24 class(timed_lorenz) ,intent(out) :: this

25 real ,dimension(:) ,intent(in) :: initial_state

26 real ,intent(in) :: s ,r ,b ! Lorenz parameters: sigma, rho and beta

27 class(strategy) ,intent(in) :: this_strategy ! time integration algorithm

28 call this%lorenz%construct(initial_state,s,r,b,this_strategy)

29 this%time = 0.

30 end subroutine

31
32 function dTimed_lorenz_dt(this) result(dState_dt) ! time derivative (expresses evolution equations)

33 class(timed_lorenz) ,intent(in) :: this

34 class(integrable_model) ,allocatable :: dState_dt

35 type(timed_lorenz) ,allocatable :: local_dState_dt ! obviates need for ’select type(dState_dt)’

36 allocate(local_dState_dt)

37 local_dState_dt%time = 1. ! dt/dt = 1.

38 local_dState_dt%lorenz = this%lorenz%d_dt() ! delegate to parent lorenz component

39 call move_alloc(local_dState_dt,dState_dt)

40 end function

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-6 • D. W. I. Rouson et al.

41
42 function add_timed_lorenz(lhs,rhs) result(sum) ! add two instances

43 class(timed_lorenz) ,intent(in) :: lhs

44 class(integrable_model) ,intent(in) :: rhs

45 class(integrable_model) ,allocatable :: sum

46 type(timed_lorenz) ,allocatable :: local_sum ! obviate need for ’select type(sum)’

47
48 select type(rhs)

49 class is (timed_lorenz)

50 allocate(local_sum)

51 local_sum%time = lhs%time + rhs%time

52 local_sum%lorenz = lhs%lorenz + rhs%lorenz

53 class default

54 stop ’add_timed_lorenz: type not supported’

55 end select

56 call move_alloc(local_sum,sum)

57 end function

58
59 function multiply_timed_lorenz(lhs,rhs) result(product) ! multiply one instance by a real scalar

60 class(timed_lorenz) ,intent(in) :: lhs

61 real ,intent(in) :: rhs

62 class(integrable_model) ,allocatable :: product

63 type(timed_lorenz) ,allocatable :: local_product ! obviate need for ’select type(product)’

64
65 allocate(local_product)

66 local_product%time = lhs%time * rhs

67 local_product%lorenz = lhs%lorenz* rhs

68 call move_alloc(local_product,product)

69 end function

70
71 subroutine assign_timed_lorenz(lhs,rhs) ! assign one instance to another

72 class(timed_lorenz) ,intent(inout) :: lhs

73 class(integrable_model) ,intent(in) :: rhs

74 select type(rhs)

75 class is (timed_lorenz)

76 lhs%time = rhs%time

77 lhs%lorenz = rhs%lorenz

78 class default

79 stop ’assign_timed_lorenz: type not supported’

80 end select

81 end subroutine

82
83 function output(this) result(coordinates) ! return state

84 class(timed_lorenz) ,intent(in) :: this

85 real ,dimension(:) ,allocatable :: coordinates

86 coordinates = [this%time, this%lorenz%output()]

87 end function

88 end module timed_lorenz_module

explicit euler.f03

1 module explicit_euler_module

2 use surrogate_module ,only : surrogate ! integrable_model parent

3 use strategy_module ,only : strategy ! time integration strategy

4 use integrable_model_module ,only : integrable_model ! abstract integrand

5
6 implicit none ! Prevent implicit typing

7 private ! Hide everything by default

8
9 type, extends(strategy) ,public :: explicit_euler ! 1st-order explicit time integrator

10 contains

11 procedure, nopass :: integrate

12 end type

13
14 contains

15
16 subroutine integrate(this,dt) ! Time integrator

17 class(surrogate) ,intent(inout) :: this ! integrand

18 real ,intent(in) :: dt ! time step size

19 select type (this)

20 class is (integrable_model)

21 this = this + this%d_dt()*dt ! Explicit Euler formula

22 class default

23 stop ’integrate: unsupported class.’

24 end select

25 end subroutine

26 end module

runge kutta 2nd.f03

1 module runge_kutta_2nd_module

2 use surrogate_module ,only : surrogate ! integrable_model parent

3 use strategy_module ,only : strategy ! parent time integration strategy

4 use integrable_model_module ,only : integrable_model ! abstract integrand

5
6 implicit none ! Prevent implicit typing

7 private ! Hide everything by default

8
9 type, extends(strategy) ,public :: runge_kutta_2nd ! 2nd-order Runge-Kutta time integration

10 contains

11 procedure, nopass :: integrate ! integration procedure

12 end type

13
14 contains

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-7

15
16 subroutine integrate(this,dt) ! Time integrator

17 class(surrogate) ,intent(inout) :: this ! integrand

18 real ,intent(in) :: dt ! time step size

19 class(integrable_model) ,allocatable :: this_half ! function evaluation at interval t+dt/2.

20 select type (this)

21 class is (integrable_model)

22 allocate(this_half,source=this)

23 this_half = this + this%d_dt()*(0.5*dt) ! predictor step

24 this = this + this_half%d_dt()*dt ! corrector step

25 class default

26 stop ’integrate: unsupported class’

27 end select

28 end subroutine

29 end module

A.3 Puppeteer Example
main.f03

1 program main

2 use air_module ,only : air

3 use cloud_module ,only :cloud

4 use ground_module ,only : ground

5 use atmosphere_module ,only : atmosphere,integrate

6 use global_parameters_module ,only : debugging ! print call tree if true

7
8 implicit none ! Prevent implicit typing

9
10 ! This code integrates the Lorenz equations over time using separate abstractions for

11 ! equation and hiding the coupling of those abstractions inside an abstraction that

12 ! follows the Puppeteer design pattern of Rouson, Adalsteinsson and Xia (ACM TOMS 2010).

13
14 type(air) ,allocatable :: sky ! puppet for 1st Lorenz equation

15 type(cloud) ,allocatable :: puff ! puppet for 2nd Lorenz equation

16 type(ground) ,allocatable :: earth ! puppet for 3rd Lorenz equation

17 type(atmosphere) :: boundary_layer ! Puppeteer

18 integer :: step ! time step

19 integer ,parameter :: num_steps=1000 ! total time steps

20 real ,parameter :: x=1.,y=1.,z=1. ! initial conditions

21 real :: t ! time coordinate

22 real ,parameter :: sigma=10.,rho=28.,beta=8./3.,dt=.02 ! Lorenz parameters

23
24 if (debugging) print *,’main: start’

25 allocate (sky, puff, earth)

26 call sky%construct(x,sigma)

27 call puff%construct(y,rho)

28 call earth%construct(z,beta)

29 call boundary_layer%construct(sky,puff,earth) ! transfer allocations into puppeteer

30 t = 0. ! (all puppets are now deallocated)

31 write(*,’(f10.4)’,advance=’no’) t; print *,boundary_layer%state_vector()

32 do step=1,num_steps

33 call integrate(boundary_layer,dt)

34 t = t + dt

35 write(*,’(f10.4)’,advance=’no’) t; print *,boundary_layer%state_vector()

36 end do

37 if (debugging) print *,’main: end’

38 end program main

atmosphere.f03

1 module atmosphere_module

2 use air_module ,only : air ! puppet for 1st Lorenz eq. and corresonding state variable

3 use cloud_module ,only : cloud ! puppet for 2nd Lorenz eq. and corresonding state variable

4 use ground_module ,only : ground ! puppet for 3rd Lorenz eq. and corresonding state variable

5 use integrable_model_module ,only : integrable_model ,integrate ! parent type and polymorphic time integrator

6 use global_parameters_module ,only : debugging ! print call tree if true

7
8 implicit none ! Prevent implicit typing

9 private ! Hide everything by default

10 public :: integrate ! Expose integration procedure from integrable_model_module

11
12 type ,extends(integrable_model) ,public :: atmosphere ! Puppeteer

13 private

14 type(air) ,allocatable :: air_puppet

15 type(cloud) ,allocatable :: cloud_puppet

16 type(ground) ,allocatable :: ground_puppet

17 contains

18 procedure ,public :: d_dt => dAtmosphere_dt ! time derivative

19 procedure ,public :: dRHS_dV => dAtmosphereRHS_dState ! Jacobian contribution (dR/dV)

20 procedure ,public :: state_vector => atmosphere_state ! return atmosphere solution vector

21 procedure ,public :: add => add_atmosphere ! add two atmospheres

22 procedure ,public :: subtract => subtract_atmospheres ! subtract one atmosphere from another

23 procedure ,public :: multiply => multiply_atmosphere ! multiply an atmosphere by a real scalar

24 procedure ,public, pass(rhs) :: inverseTimes => inverseTimesAtmosphere ! abstract Gaussian elimination

25 procedure ,public :: assign => assign_atmosphere ! assign one atmosphere to another

26 procedure ,public :: empty_instance => null_instance ! create empty atmosphere

27 procedure ,public :: construct ! constructor

28 end type atmosphere

29
30 contains

31

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-8 • D. W. I. Rouson et al.

32 function null_instance(this) result(blank_slate) ! create empty atmosphere

33 class(atmosphere) ,intent(in) :: this

34 class(integrable_model) ,allocatable :: blank_slate

35 allocate(atmosphere :: blank_slate)

36 end function

37
38 subroutine construct(this,air_target,cloud_target,ground_target) ! constructor

39 class(atmosphere) ,intent(out) :: this

40 type(air) ,allocatable ,intent(inout) :: air_target

41 type(cloud) ,allocatable ,intent(inout) :: cloud_target

42 type(ground) ,allocatable ,intent(inout) :: ground_target

43 if (debugging) print *,’ atmosphere%construct(): start’

44 call move_alloc(air_target, this%air_puppet) ! transfer allocations from puppets to Puppeteer

45 call move_alloc(ground_target, this%ground_puppet)

46 call move_alloc(cloud_target, this%cloud_puppet)

47 if (debugging) print *,’ atmosphere%construct(): end’

48 end subroutine

49
50 function dAtmosphere_dt(this) result(dState_dt) ! time derivative (evolution equations)

51 class(atmosphere) ,intent(in) :: this

52 class(integrable_model) ,allocatable :: dState_dt

53 type(atmosphere) ,allocatable :: delta ! obviates the use of ’select type(this)’

54
55 if (debugging) print *,’ atmosphere%dAtmosphere_dt(): start’

56 allocate(delta)

57 delta%air_puppet = this%air_puppet%d_dt(this%cloud_puppet%coordinate())

58 delta%cloud_puppet = this%cloud_puppet%d_dt(this%air_puppet%coordinate(),this%ground_puppet%coordinate())

59 delta%ground_puppet = this%ground_puppet%d_dt(this%air_puppet%coordinate(),this%cloud_puppet%coordinate())

60 call move_alloc(delta, dState_dt)

61 if (debugging) print *,’ atmosphere%dAtmosphere_dt(): end’

62 end function

63
64 function dAtmosphereRHS_dState(this) result(dRHS_dState) ! atmosphere contribution to Jacobian

65 class(atmosphere) ,intent(in) :: this

66 real ,dimension(:,:) ,allocatable :: dAir_dAir , dAir_dCloud , dAir_dGround ! Sub-blocks

67 real ,dimension(:,:) ,allocatable :: dCloud_dAir , dCloud_dCloud , dCloud_dGround ! of dR/dV

68 real ,dimension(:,:) ,allocatable :: dGround_dAir ,dGround_dCloud ,dGround_dGround ! array.

69 real ,dimension(:,:) ,allocatable :: dRHS_dState

70 real ,dimension(:) ,allocatable :: air_coordinate, cloud_coordinate, ground_coordinate

71 integer :: air_eqs,air_vars,cloud_eqs,cloud_vars,ground_eqs,ground_vars,i,j,rows,cols

72 if (debugging) print *,’ atmosphere%dAtmosphereRHS_dState(): start’

73 select type(this)

74 type is (atmosphere) ! Calculate matrices holding partial derivative of puppet evolution equation right-hand

75 ! sides with respect to the dependent variables of each puppet.

76 air_coordinate = this%air_puppet%coordinate()

77 cloud_coordinate= this%cloud_puppet%coordinate()

78 ground_coordinate=this%ground_puppet%coordinate()

79
80 dAir_dAir = this%air_puppet%d_dAir(cloud_coordinate) ! Diagonal block submatrix

81 dCloud_dCloud = this%cloud_puppet%d_dCloud(air_coordinate,ground_coordinate) ! Diagonal block submatrix

82 dGround_dGround = this%ground_puppet%d_dGround(air_coordinate,cloud_coordinate) ! Diagonal block submatrix

83 air_eqs = size(dAir_dAir,1) ! submatrix rows

84 air_vars = size(dAir_dAir,2) ! submatrix columns

85 cloud_eqs = size(dCloud_dCloud,1) ! submatrix rows

86 cloud_vars = size(dCloud_dCloud,2) ! submatrix columns

87 ground_eqs = size(dGround_dGround,1) ! submatrix rows

88 ground_vars = size(dGround_dGround,2) ! submatrix columns

89 dAir_dCloud = this%air_puppet%d_dy(cloud_coordinate) ! Off-diagonal

90 dAir_dGround = reshape(source=(/(0.,i=1,air_eqs*ground_vars)/),shape=(/air_eqs,ground_vars/)) ! Off-diagonal

91 dCloud_dAir = this%cloud_puppet%d_dx(air_coordinate,ground_coordinate) ! Off-diagonal

92 dCloud_dGround = this%cloud_puppet%d_dz(air_coordinate,ground_coordinate) ! Off-diagonal

93 dGround_dAir = this%ground_puppet%d_dx(air_coordinate,cloud_coordinate) ! Off-diagonal

94 dGround_dCloud = this%ground_puppet%d_dy(air_coordinate,cloud_coordinate) ! Off-diagonal

95
96 rows=air_eqs+cloud_eqs+ground_eqs

97 cols=air_vars+cloud_vars+ground_vars

98 allocate(dRHS_dState(rows,cols))

99 dRHS_dState(1:air_eqs, 1:air_vars) = dAir_dAir ! Begin result assembly

100 dRHS_dState(1:air_eqs, air_vars+1:air_vars+cloud_vars) = dAir_dCloud

101 dRHS_dState(1:air_eqs, air_vars+cloud_vars+1:cols) = dAir_dGround

102
103 dRHS_dState(air_eqs+1:air_eqs+cloud_eqs, 1:air_vars) = dCloud_dAir

104 dRHS_dState(air_eqs+1:air_eqs+cloud_eqs, air_vars+1:air_vars+cloud_vars) = dCloud_dCloud

105 dRHS_dState(air_eqs+1:air_eqs+cloud_eqs, air_vars+cloud_vars+1:cols) = dCloud_dGround

106
107 dRHS_dState(air_eqs+cloud_eqs+1:rows, 1:air_vars) = dGround_dAir

108 dRHS_dState(air_eqs+cloud_eqs+1:rows, air_vars+1:air_vars+cloud_vars) = dGround_dCloud

109 dRHS_dState(air_eqs+cloud_eqs+1:rows, air_vars+cloud_vars+1:cols) = dGround_dGround ! Finish result assembly

110 end select

111 if (debugging) print *,’ atmosphere%dAtmosphereRHS_dState(): end’

112 end function dAtmosphereRHS_dState

113
114 function atmosphere_state(this) result(phase_space) ! assemble and return solution vector

115 class(atmosphere) ,intent(in) :: this

116 real ,dimension(:) ,allocatable :: state

117 real ,dimension(:) ,allocatable :: x,y,z,phase_space

118 integer :: x_start,y_start,z_start

119 integer :: x_end ,y_end ,z_end

120 !if (debugging) print *,’ atmosphere%atmosphere_state(): start’ (commented to avoid I/O recursion)

121 x = this%air_puppet%coordinate() ; x_start=1 ; x_end=x_start+size(x)-1

122 y = this%cloud_puppet%coordinate() ; y_start=x_end+1; y_end=y_start+size(y)-1

123 z = this%ground_puppet%coordinate(); z_start=y_end+1; z_end=z_start+size(z)-1

124 allocate(phase_space(size(x)+size(y)+size(z)))

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-9

125 phase_space(x_start:x_end) = x

126 phase_space(y_start:y_end) = y

127 phase_space(z_start:z_end) = z

128 !if (debugging) print *,’ atmosphere%atmosphere_state(): end’ (commented to avoid I/O recursion)

129 end function

130
131 function add_atmosphere(lhs,rhs) result(sum)

132 class(atmosphere) ,intent(in) :: lhs

133 class(integrable_model) ,intent(in) :: rhs

134 class(integrable_model) ,allocatable :: sum

135 type (atmosphere), allocatable :: local_sum ! used to avoid ’select type(sum)’

136
137 if (debugging) print *,’ atmosphere%add_atmosphere(): start’

138 allocate (local_sum)

139 select type(rhs)

140 type is (atmosphere)

141 !allocate(local_sum%air_puppet,local_sum%ground_puppet,local_sum%cloud_puppet)

142 local_sum%air_puppet = lhs%air_puppet + rhs%air_puppet

143 local_sum%cloud_puppet = lhs%cloud_puppet + rhs%cloud_puppet

144 local_sum%ground_puppet = lhs%ground_puppet + rhs%ground_puppet

145 class default

146 stop ’add_atmosphere: rhs argument type not supported’

147 end select

148 call move_alloc(local_sum, sum)

149 if (debugging) print *,’ atmosphere%add_atmosphere(): end’

150 end function

151
152 function subtract_atmospheres(lhs,rhs) result(difference)

153 class(atmosphere) ,intent(in) :: lhs

154 class(integrable_model) ,intent(in) :: rhs

155 class(integrable_model) ,allocatable :: difference

156 type(atmosphere) ,allocatable :: local_difference

157
158 if (debugging) print *,’ atmosphere%subtract_atmospheres(): start’

159 allocate(local_difference)

160 select type(rhs)

161 type is (atmosphere)

162 !allocate(local_difference%air_puppet,local_difference%ground_puppet,local_difference%cloud_puppet)

163 local_difference%air_puppet = lhs%air_puppet - rhs%air_puppet

164 local_difference%cloud_puppet = lhs%cloud_puppet - rhs%cloud_puppet

165 local_difference%ground_puppet = lhs%ground_puppet - rhs%ground_puppet

166 class default

167 stop ’add_atmosphere: rhs argument type not supported’

168 end select

169 call move_alloc(local_difference, difference)

170 if (debugging) print *,’ atmosphere%subtract_atmospheres(): end’

171 end function

172
173 function inverseTimesAtmosphere(lhs,rhs) result(product) ! Solve linear system Ax=b by Gaussian elimination

174 class(atmosphere) ,intent(in) :: rhs

175 class(integrable_model) ,allocatable :: product

176 real ,dimension(:,:) ,allocatable ,intent(in) :: lhs

177 type(atmosphere) ,allocatable :: local_product

178 real ,dimension(:) ,allocatable :: x,b

179 real ,dimension(:,:) ,allocatable :: A

180 real :: factor

181 integer :: row,col,n,p ! p=pivot row/col

182 real ,parameter :: pivot_tolerance=1.0E-02

183
184 n=size(lhs,1)

185 b = rhs%state_vector()

186 if (n /= size(lhs,2) .or. n /= size(b)) stop ’integrable_model.f03: ill-posed matrix problem in inverseTimes()’

187 !allocate(A(n,n),b(n))

188 allocate(x(n))

189 A = lhs

190 do p=1,n-1 ! Forward elimination

191 if (abs(A(p,p))<pivot_tolerance) stop ’invert: use an algorithm with pivoting’

192 do row=p+1,n

193 factor=A(row,p)/A(p,p)

194 forall(col=p:n)

195 A(row,col) = A(row,col) - A(p,col)*factor

196 end forall

197 b(row) = b(row) - b(p)*factor

198 end do

199 end do

200 x(n) = b(n)/A(n,n) ! Back substitution

201 do row=n-1,1,-1

202 x(row) = (b(row) - sum(A(row,row+1:n)*x(row+1:n)))/A(row,row)

203 end do

204 allocate(local_product,source=rhs)

205 call local_product%air_puppet%construct(x(1),x(2))

206 call local_product%cloud_puppet%construct(x(3))

207 call local_product%ground_puppet%construct(x(4))

208 call move_alloc(local_product, product)

209 end function

210
211 function multiply_Atmosphere(lhs,rhs) result(product) ! multiply atmosphere object by a real scalar

212 class(atmosphere) ,intent(in) :: lhs

213 real ,intent(in) :: rhs

214 class(integrable_model) ,allocatable :: product

215 type(atmosphere) ,allocatable :: local_product ! used to avoid ’select type(product)’

216
217 if (debugging) print *,’ atmosphere%multiply_Atmosphere(): start’

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-10 • D. W. I. Rouson et al.

218 allocate(local_product)

219 !allocate(local_product%air_puppet,local_product%ground_puppet,local_product%cloud_puppet)

220 local_product%air_puppet = lhs%air_puppet * rhs

221 local_product%cloud_puppet = lhs%cloud_puppet * rhs

222 local_product%ground_puppet = lhs%ground_puppet * rhs

223 call move_alloc(local_product, product)

224 if (debugging) print *,’ atmosphere%multiply_Atmosphere(): end’

225 end function

226
227 subroutine assign_atmosphere(lhs,rhs) ! assign one atmosphere object to another

228 class(atmosphere) ,intent(inout) :: lhs

229 class(integrable_model) ,intent(in) :: rhs

230 if (debugging) print *,’ atmosphere%assign_atmosphere(): start’

231 select type(rhs)

232 type is (atmosphere)

233 !allocate(lhs%air_puppet,lhs%cloud_puppet,lhs%ground_puppet)

234 lhs%air_puppet = rhs%air_puppet

235 lhs%cloud_puppet = rhs%cloud_puppet

236 lhs%ground_puppet = rhs%ground_puppet

237 class default

238 stop ’assign_atmosphere: rhs argument type not supported’

239 end select

240 if (debugging) print *,’ atmosphere%assign_atmosphere(): end’

241 end subroutine

242 end module atmosphere_module

air.f03

1 module air_module

2 use global_parameters_module ,only : debugging ! print call tree information if true

3
4 implicit none ! Prevent implicit typing

5 private ! Hide everything by default

6
7 ! Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):

8 integer ,parameter :: num_eqs=2,num_vars=2

9
10 ! This type tracks the evolution of the first state variable in the Lorenz system

11 ! according to the first Lorenz equation. It also tracks the corresponding paramater (sigma)

12 ! according to the differential equation d(sigma)/dt=0. For illustrative purposes,

13 ! this implementation exposes the number of state variables (2) to the puppeteer without

14 ! providing direct access to them or exposing anything about their layout, storage location

15 ! or identifiers (x and sigma). Their existence is apparent in the rank (2) of the matrix

16 ! d_dAir() returns as its diagonal Jacobian element contribution.

17
18 type ,public :: air

19 private

20 real :: x,sigma ! 1st Lorenz equation solution variable and parameter

21 contains

22 procedure ,public :: construct => construct_air ! constructor: allocate and initialize components

23 procedure ,public :: coordinate=> coordinate_air ! accessor (returns phase-space coordinate)

24 procedure ,public :: d_dt ! time derivative (evolution equations)

25 procedure ,public :: d_dAir ! contribution to diagonal Jacobian element

26 procedure ,public :: d_dy ! contribution to off-diagonal Jacobian element

27 procedure ,private :: add_air ! add two instances

28 procedure ,private :: subtract_air ! subtract one instance from another

29 procedure ,private :: multiply_air ! multiply an instance by a real scalar

30 generic ,public :: operator(+) => add_air ! map defined operators to corresponding procedures

31 generic ,public :: operator(-) => subtract_air

32 generic ,public :: operator(*) => multiply_air

33 end type air

34
35 contains

36
37 subroutine construct_air(this,x_initial,s) ! constructor: allocate and initialize components

38 class(air) ,intent(out) :: this

39 real ,intent(in) :: x_initial

40 real ,intent(in) :: s

41
42 if (debugging) print *,’ air%construct_air: start’

43 this%x = x_initial

44 this%sigma = s

45 if (debugging) print *,’ air%construct_air: end’

46 end subroutine

47
48 function coordinate_air(this) result(return_x) ! accessor (returns phase-space coordinate)

49 class(air) ,intent(in) :: this

50 real ,dimension(:) ,allocatable :: return_x

51
52 !if (debugging) print *,’ air%coordinate_air: start’ (commented to avoid I/O recursion)

53 !allocate(return_x(num_vars))

54 return_x = [this%x ,this%sigma]

55 !if (debugging) print *,’ air%coordinate_air: end’ (commented to avoid I/O recursion)

56 end function

57
58 function d_dt(this,y) result(dx_dt) ! time derivative (evolution equations)

59 class(air) ,intent(in) :: this

60 real ,dimension(:) ,intent(in) :: y

61 type(air) :: dx_dt

62
63 if (debugging) print *,’ air%d_dt: start’

64 dx_dt%x=this%sigma*(y(1)-this%x)

65 dx_dt%sigma=0.

66 if (debugging) print *,’ air%d_dt: end’

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-11

67 end function

68
69 function d_dAir(this,y) result(dRHS_dx) ! contribution to diagonal Jacobian element

70 class(air) ,intent(in) :: this

71 real ,dimension(:,:) ,allocatable :: dRHS_dx

72 real ,dimension(:) ,allocatable :: y

73
74 if (debugging) print *,’ air%d_dAir: start’

75 !allocate(dRHS_dx(num_eqs,num_vars))

76 !dRHS_dx = [d{sigma*(y-x)}/dx d{sigma*(y-x)}/dsigma]

77 ! [d{0}/dx d{0}/dsigma]

78 if (size(y) /= 1) stop ’d_dAir: invalid y size’

79 dRHS_dx = reshape(source=(/-this%sigma,0.,y(1)-this%x,0./),shape=(/num_eqs,num_vars/))

80 if (debugging) print *,’ air%d_dAir: end’

81 end function

82
83 function d_dy(this,y) result(dRHS_dy) ! contribution to off-diagonal Jacobian element

84 class(air) ,intent(in) :: this

85 real ,dimension(:,:) ,allocatable :: dRHS_dy

86 real ,dimension(:) ,allocatable :: y

87
88 if (debugging) print *,’ air%d_dy: start’

89 allocate(dRHS_dy(num_eqs,size(y)))

90 !dRHS_dy = [d{sigma*(y(1)-x(1))}/dy(1) 0 ... 0]

91 ! [d{0}/dy(1) 0 ... 0]

92 dRHS_dy = 0.

93 dRHS_dy(1,1) = this%sigma

94 if (debugging) print *,’ air%d_dy: end’

95 end function

96
97 function add_air(lhs,rhs) result(sum) ! add two instances

98 class(air) ,intent(in) :: lhs,rhs

99 type(air) :: sum

100
101 if (debugging) print *,’ air%add_air: start’

102 sum%x = lhs%x + rhs%x

103 sum%sigma = lhs%sigma + rhs%sigma

104 if (debugging) print *,’ air%add_air: end’

105 end function

106
107 function subtract_air(lhs,rhs) result(difference) ! subtract one instance from another

108 class(air) ,intent(in) :: lhs,rhs

109 type(air) :: difference

110
111 if (debugging) print *,’ air%subtract_air: start’

112 difference%x = lhs%x - rhs%x

113 difference%sigma = lhs%sigma - rhs%sigma

114 if (debugging) print *,’ air%subtract_air: end’

115 end function

116
117 function multiply_air(lhs,rhs) result(product) ! multiply an instance by a real scalar

118 class(air) ,intent(in) :: lhs

119 real ,intent(in) :: rhs

120 type(air) :: product

121
122 if (debugging) print *,’ air%multiply_air: start’

123 product%x = lhs%x *rhs

124 product%sigma = lhs%sigma*rhs

125 if (debugging) print *,’ air%multiply_air: end’

126 end function

127 end module air_module

cloud.f03

1 module cloud_module

2 use global_parameters_module ,only : debugging ! print call tree if .true.

3
4 implicit none ! Prevent implicit typing

5 private ! Hide everything by default

6
7 ! This type tracks the evolution of the second state variable in the Lorenz system

8 ! according to the second Lorenz equation. It also tracks the corresponding paramater (rho)

9 ! according to the differential equation d(rho)/dt=0. For illustrative purposes,

10 ! this implementation does not expose the number of state variables (2) to the puppeteer

11 ! because no iteration is required and the need for arithmetic operations on rho is therefore

12 ! an internal concern. The rank of the matrix d_dCloud() returns is thus 1 to reflect the

13 ! only variable on which the puppeteer needs to iterate when handling nonlinear couplings in

14 ! implicit solvers.

15
16 ! Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):

17 integer ,parameter :: num_eqs=1,num_vars=1

18
19 type ,public :: cloud

20 private

21 real :: y,rho ! 2nd Lorenz equation solution variable and parameter

22 contains

23 procedure ,public :: construct => construct_cloud ! constructor: allocate and initialize components

24 procedure ,public :: coordinate=> coordinate_cloud ! accessor (returns phase-space coordinate)

25 procedure ,public :: d_dt ! time derivative (evolution equations)

26 procedure ,public :: d_dCloud ! contribution to diagonal Jacobian element

27 procedure ,public :: d_dx ! contribution to off-diagonal Jacobian element

28 procedure ,public :: d_dz ! contribution to off-diagonal Jacobian element

29 procedure ,private :: add_cloud ! add two instances

30 procedure ,private :: subtract_cloud ! subtract one instance from another

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-12 • D. W. I. Rouson et al.

31 procedure ,private :: multiply_cloud ! multiply an instance by a real scalar

32 generic ,public :: operator(+) => add_cloud ! map defined operators to corresponding procedures

33 generic ,public :: operator(-) => subtract_cloud

34 generic ,public :: operator(*) => multiply_cloud

35 end type cloud

36
37 contains

38
39 subroutine construct_cloud(this,y_initial,r) ! constructor: allocate and initialize components

40 class(cloud) ,intent(out) :: this

41 real ,intent(in) :: y_initial

42 real ,optional ,intent(in) :: r

43 if (debugging) print *,’ cloud%construct_cloud: start’

44 this%y = y_initial

45 if (present(r)) this%rho = r

46 if (debugging) print *,’ cloud%construct_cloud: end’

47 end subroutine

48
49 function coordinate_cloud(this) result(return_y) ! accessor (returns phase-space coordinate)

50 class(cloud) ,intent(in) :: this

51 real ,dimension(:) ,allocatable :: return_y

52 !if (debugging) print *,’ cloud%coordinate_cloud: start’ (commented to prevent I/O recursion)

53 !allocate(return_y(num_vars))

54 return_y = [this%y]

55 !if (debugging) print *,’ cloud%coordinate_cloud: end’ (commented to prevent I/O recursion)

56 end function

57
58 function d_dCloud(this,x_ignored,z_ignored) result(dRHS_dy) ! contribution to diagonal Jacobian element

59 class(cloud) ,intent(in) :: this

60 real ,dimension(:) ,allocatable ,intent(in) :: x_ignored,z_ignored

61 real ,dimension(:,:) ,allocatable :: dRHS_dy

62 if (debugging) print *,’ cloud%d_dCloud: start’

63 allocate(dRHS_dy(num_eqs,num_vars))

64 !dRHS_dy(1) = [d{x(1)*(rho-z(1))-y(1)}/dy(1)]

65 dRHS_dy(1,1) = -1.

66 if (debugging) print *,’ cloud%d_dCloud: end’

67 end function

68
69 function d_dx(this,x,z) result(dRHS_dx) ! contribution to off-diagonal Jacobian element

70 class(cloud) ,intent(in) :: this

71 real ,dimension(:) ,allocatable ,intent(in) :: x,z

72 real ,dimension(:,:) ,allocatable :: dRHS_dx

73 if (debugging) print *,’ cloud%d_dx: start’

74 allocate(dRHS_dx(num_eqs,size(x)))

75 !dRHS_dx = [d{x(1)*(rho-z(1))-y}/dx(1) 0 ... 0]

76 dRHS_dx = 0.

77 dRHS_dx(1,1) = this%rho-z(1)

78 if (debugging) print *,’ cloud%d_dx: end’

79 end function

80
81 function d_dz(this,x,z) result(dRHS_dz) ! contribution to off-diagonal Jacobian element

82 class(cloud) ,intent(in) :: this

83 real ,dimension(:) ,allocatable ,intent(in) :: x,z

84 real ,dimension(:,:) ,allocatable :: dRHS_dz

85 if (debugging) print *,’ cloud%d_dz: start’

86 allocate(dRHS_dz(num_eqs,size(z)))

87 !dRHS_dz = [d{x(1)*(rho-z(1))-y(1)}/dz(1) 0 ... 0]

88 dRHS_dz = 0.

89 dRHS_dz(1,1) = -x(1)

90 if (debugging) print *,’ cloud%d_dz: end’

91 end function

92
93 function d_dt(this,x,z) result(dy_dt) ! time derivative (evolution equations)

94 class(cloud) ,intent(in) :: this

95 real ,dimension(:) ,intent(in) :: x,z

96 type(cloud) :: dy_dt

97 if (debugging) print *,’ cloud%d_dt_cloud: start’

98 dy_dt%y = x(1)*(this%rho-z(1))-this%y

99 dy_dt%rho = 0.

100 if (debugging) print *,’ cloud%d_dt_cloud: end’

101 end function

102
103 function add_cloud(lhs,rhs) result(sum) ! add two instances

104 class(cloud) ,intent(in) :: lhs,rhs

105 type(cloud) :: sum

106 if (debugging) print *,’ cloud%add_cloud: start’

107 sum%y = lhs%y + rhs%y

108 sum%rho = lhs%rho + rhs%rho

109 if (debugging) print *,’ cloud%add_cloud: end’

110 end function

111
112 function subtract_cloud(lhs,rhs) result(difference) ! subtract one instance from another

113 class(cloud) ,intent(in) :: lhs,rhs

114 type(cloud) :: difference

115 if (debugging) print *,’ cloud%subtract_cloud: start’

116 difference%y = lhs%y - rhs%y

117 difference%rho = lhs%rho - rhs%rho

118 if (debugging) print *,’ cloud%subtract_cloud: end’

119 end function

120
121 function multiply_cloud(lhs,rhs) result(product) ! multiply an instance by a real scalar

122 class(cloud) ,intent(in) :: lhs

123 real ,intent(in) :: rhs

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-13

124 type(cloud) :: product

125 if (debugging) print *,’ cloud%multiply_cloud: start’

126 product%y = lhs%y* rhs

127 product%rho = lhs%rho* rhs

128 if (debugging) print *,’ cloud%multiply_cloud: end’

129 end function

130 end module cloud_module

ground.f03

1 module ground_module

2 use global_parameters_module ,only : debugging ! print call tree if true

3
4 implicit none ! Prevent implicit typing

5 private ! Hide everything by default

6
7 ! This type tracks the evolution of the third state variable in the Lorenz system

8 ! according to the third Lorenz equation. It also tracks the corresponding paramater (beta)

9 ! according to the differential equation d(beta)/dt=0. For illustrative purposes,

10 ! this implementation does not expose the number of state variables (2) to the puppeteer

11 ! because no iteration is required and the need for arithmetic operations on beta is therefore

12 ! an internal concern. The rank of the matrix d_dGround() returned is thus 1 to reflect the

13 ! only variable on which the puppeteer needs to iterate when handling nonlinear couplings in

14 ! implicit solvers.

15
16 ! Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):

17 integer ,parameter :: num_eqs=1,num_vars=1

18
19 type ,public :: ground

20 private

21 real :: z,beta ! 3rd Lorenz equation solution variable and parameter

22 contains

23 procedure ,public :: construct => construct_ground ! constructor: allocate and initialize components

24 procedure ,public :: coordinate=> coordinate_ground ! accessor (returns phase-space coordinate)

25 procedure ,public :: d_dt ! time derivative (evolution equations)

26 procedure ,public :: d_dGround ! contribution to diagonal Jacobian element

27 procedure ,public :: d_dx ! contribution to off-diagonal Jacobian element

28 procedure ,public :: d_dy ! contribution to off-diagonal Jacobian element

29 procedure ,private :: add_ground ! add two instances

30 procedure ,private :: subtract_ground ! subtract one instance from another

31 procedure ,private :: multiply_ground ! multiply an instance by a real scalar

32 generic ,public :: operator(+) => add_ground ! map defined operators to corresponding procedures

33 generic ,public :: operator(-) => subtract_ground

34 generic ,public :: operator(*) => multiply_ground

35 end type ground

36
37 contains

38
39 subroutine construct_ground(this,z_initial,b) ! constructor: allocate and initialize components

40 class(ground) ,intent(out) :: this

41 real ,intent(in) :: z_initial

42 real ,optional ,intent(in) :: b

43 if (debugging) print *,’ ground%construct_ground: start’

44 this%z = z_initial

45 if (present(b)) this%beta = b

46 if (debugging) print *,’ ground%construct_ground: end’

47 end subroutine

48
49 function coordinate_ground(this) result(return_z) ! accessor (returns phase-space coordinate)

50 class(ground) ,intent(in) :: this

51 real ,dimension(:) ,allocatable :: return_z

52 !if (debugging) print *,’ ground%coordinate_ground: start’ (can cause I/O recursion error)

53 !allocate(return_z(num_vars))

54 return_z = [this%z]

55 !if (debugging) print *,’ ground%coordinate_ground: end’ (can cause I/O recursion error)

56 end function

57
58 function d_dt(this,x,y) result(dz_dt) ! time derivative (evolution equations)

59 class(ground) ,intent(in) :: this

60 real ,dimension(:) ,intent(in) :: x,y

61 type(ground) :: dz_dt

62 if (debugging) print *,’ ground%d_dt: start’

63 dz_dt%z = x(1)*y(1) - this%beta*this%z

64 dz_dt%beta = 0.

65 if (debugging) print *,’ ground%d_dt: end’

66 end function

67
68 function d_dGround(this,x_ignored,y_ignored) result(dRHS_dz) ! contribution to diagonal Jacobian element

69 class(ground) ,intent(in) :: this

70 real ,dimension(:) ,allocatable ,intent(in) :: x_ignored,y_ignored

71 real ,dimension(:,:) ,allocatable :: dRHS_dz

72 if (debugging) print *,’ ground%d_dGround: start’

73 !dRHS_dz = [d{x(1)*y(1) - beta*z}/dz(1)]

74 allocate(dRHS_dz(num_eqs,num_vars))

75 dRHS_dz(1,1) = -this%beta

76 if (debugging) print *,’ ground%d_dGround: end’

77 end function

78
79 function d_dx(this,x,y) result(dRHS_dx) ! contribution to off-diagonal Jacobian element

80 class(ground) ,intent(in) :: this

81 real ,dimension(:) ,allocatable ,intent(in) :: x,y

82 real ,dimension(:,:) ,allocatable :: dRHS_dx

83 if (debugging) print *,’ ground%d_dx: start’

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-14 • D. W. I. Rouson et al.

84 allocate(dRHS_dx(num_eqs,size(x)))

85 !dRHS_dz = [d{x(1)*y(1) - beta*z(1)}/dx(1) 0 ... 0]

86 dRHS_dx=0.

87 dRHS_dx(1,1) = y(1)

88 if (debugging) print *,’ ground%d_dx: end’

89 end function

90
91 function d_dy(this,x,y) result(dRHS_dy) ! contribution to off-diagonal Jacobian element

92 class(ground) ,intent(in) :: this

93 real ,dimension(:) ,allocatable ,intent(in) :: x,y

94 real ,dimension(:,:) ,allocatable :: dRHS_dy

95 if (debugging) print *,’ ground%d_dy: start’

96 allocate(dRHS_dy(num_eqs,size(y)))

97 !dRHS_dz = [d{x(1)*y(1) - beta*z(1)}/dy(1) 0 ... 0]

98 dRHS_dy = 0.

99 dRHS_dy(1,1) = x(1)

100 if (debugging) print *,’ ground%d_dy: end’

101 end function

102
103 function add_ground(lhs,rhs) result(sum) ! add two instances

104 class(ground) ,intent(in) :: lhs,rhs

105 type(ground) :: sum

106 if (debugging) print *,’ ground%add_ground: start’

107 sum%z = lhs%z + rhs%z

108 sum%beta = lhs%beta + rhs%beta

109 if (debugging) print *,’ ground%add_ground: end’

110 end function

111
112 function subtract_ground(lhs,rhs) result(difference) ! subtract one instance from another

113 class(ground) ,intent(in) :: lhs,rhs

114 type(ground) :: difference

115 if (debugging) print *,’ ground%subtract_ground: start’

116 difference%z = lhs%z - rhs%z

117 difference%beta = lhs%beta - rhs%beta

118 if (debugging) print *,’ ground%subtract_ground: end’

119 end function

120
121 function multiply_ground(lhs,rhs) result(product) ! multiply an instance by a real scalar

122 class(ground) ,intent(in) :: lhs

123 real ,intent(in) :: rhs

124 type(ground) :: product

125 if (debugging) print *,’ ground%multiply_ground: start’

126 product%z = lhs%z * rhs

127 product%beta = lhs%beta* rhs

128 if (debugging) print *,’ ground%multiply_ground: end’

129 end function

130 end module ground_module

APPENDIX B. C++ IMPLEMENATION
Ref.h

1 #ifndef REF_H_

2 #define REF_H_

3
4 /**

5 * A very simple invasive reference counted pointer.

6 * In future C++, this should be replaced with shared-ptr

7 */

8
9 #include <iostream>

10 #include <unistd.h>

11
12 template <typename T>

13 class Ref {

14 public:

15 typedef Ref<T> Self_t;

16
17 Ref() : ptr_(NULL) {}

18 Ref(const Self_t &other) : ptr_(other.ptr_) {

19 if(ptr_) ptr_->grab();

20 }

21 template <typename Other>

22 Ref(Ref<Other> other) : ptr_(other.ptr()) {

23 if(ptr_) ptr_->grab();

24 }

25 template <typename Other>

26 Ref(Other *other) : ptr_(other) {

27 if(ptr_) ptr_->grab();

28 }

29 ~Ref() {

30 if(ptr_) ptr_->release();

31 }

32 template <typename Other>

33 Self_t& operator=(const Ref<Other> &other) {

34 if(other.ptr() != ptr_) {

35 if(ptr_) ptr_->release();

36 ptr_ = other.ptr();

37 if(ptr_) ptr_->grab();

38 }

39 }

40 template <typename Other>

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-15

41 Self_t& operator=(Other *other) {

42 if(ptr_ != other) {

43 if(ptr_) ptr_->release();

44 ptr_ = other;

45 if(ptr_) ptr_->grab();

46 }

47 }

48 T* operator->() {

49 return ptr_;

50 }

51 const T* operator->() const {

52 return ptr_;

53 }

54 T& operator*() {

55 return *ptr_;

56 }

57 const T& operator*() const {

58 return ptr_;

59 }

60 template <typename Other>

61 bool operator==(const Ref<Other> &other) const {

62 return ptr_ == other.ptr_;

63 }

64 bool operator==(const T *other) const {

65 return ptr_ == other;

66 }

67 template <typename Other>

68 bool operator==(const Other *other) const {

69 return ptr_ == other;

70 }

71 template <typename Other>

72 bool operator<(const Ref<Other> &other) const {

73 return ptr_ < other.ptr_;

74 }

75 template <typename Other>

76 bool operator<(const Other *other) const {

77 return ptr_ < other;

78 }

79 T* ptr() const { return ptr_; }

80
81 private:

82 T *ptr_;

83 };

84
85 template <typename Target, typename Source>

86 Ref<Target> cast(const Ref<Source> &pp) {

87 return Ref<Target>(dynamic_cast<Target*>(pp.ptr()));

88 }

89
90 #endif /* ! REF_H_ */

RefBase.h

1 #ifndef REFBASE_H_

2 #define REFBASE_H_

3
4 /**

5 * Base for reference counted objects.

6 */

7
8 #include "Ref.h"

9
10 class RefBase {

11 public:

12 RefBase() : cnt_(0) {}

13 RefBase(const RefBase &) : cnt_(0) {}

14 virtual ~RefBase() {}

15 void grab() throw() {

16 cnt_++;

17 }

18 void release() throw() {

19 cnt_--;

20 if(! cnt_) delete this;

21 }

22 private:

23 int cnt_;

24 };

25
26 #endif /* ! REFBASE_H_ */

fmt.h

1 #ifndef _H_FMT_

2 #define _H_FMT_

3
4 #include "globals.h"

5 #include <iostream>

6 #include <iomanip>

7
8 // The fmt(...) helper class helps hide the mess that is <iomanip>

9 struct fmt {

10 explicit fmt(real_t value, int width=12, int prec=8) :

11 v_(1, value), w_(width), p_(prec)

12 {}

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-16 • D. W. I. Rouson et al.

13 explicit fmt(crd_t value, int width=12, int prec=8) :

14 v_(value), w_(width), p_(prec)

15 {}

16
17 const crd_t v_;

18 const int w_, p_;

19 };

20
21 inline std::ostream& operator<<(std::ostream &os, const fmt &v) {

22 // Store format flags for the stream.

23 std::ios_base::fmtflags flags = os.flags();

24 // Force our own weird format.

25 for(crd_t::const_iterator it = v.v_.begin(); it != v.v_.end(); ++it) {

26 os << " " <<std::setw(v.w_) <<std::setprecision(v.p_) <<std::fixed << *it;

27 }

28 // Restore original format flags.

29 os.flags(flags);

30 return os;

31 }

32
33 #endif //! _H_FMT_

globals.h

1 #ifndef _H_GLOBALS_

2 #define _H_GLOBALS_

3
4 #include "Ref.h"

5 #include "RefBase.h"

6 #include <vector>

7
8 typedef float real_t;

9 typedef std::vector<real_t> crd_t;

10
11 #endif //!_H_GLOBALS

B.1 Semidiscrete Example
main.cpp

1 #include "lorenz.h"

2 #include "fmt.h"

3 #include <iostream>

4
5 int main () {

6 using namespace std;

7 typedef lorenz::ptr_t ptr_t;

8
9 const int num_steps=2000, space_dimension=3;

10 const float sigma=10, rho=28, beta=8.0/3.0, dt=0.01;

11 const crd_t initial_condition(space_dimension, 1.0);

12
13 ptr_t attractor = ptr_t(new lorenz(initial_condition,sigma,rho,beta));

14 const crd_t &output = attractor->output();

15
16 try {

17 std::cout << fmt(output, 12, 10) << "\n";

18
19 for (int step = 1; step <= num_steps; ++step) {

20 integrate (attractor, dt);

21 std::cout << fmt(output, 12, 10) << "\n";

22 }

23 } catch(std::exception &e) {

24 std::cerr << "Error exit following exception of type " << e.what() << "\n";

25 return EXIT_FAILURE;

26 } catch(...) {

27 std::cerr << "Error exit following an unknown exception type\n";

28 return EXIT_FAILURE;

29 }

30 return EXIT_SUCCESS;

31 }

lorenz.h

1 #ifndef __H_LORENZ__

2 #define __H_LORENZ__ 1

3
4 #include "integrable_model.h"

5
6 class lorenz : public integrable_model {

7 public:

8 typedef Ref<lorenz> ptr_t;

9 lorenz ();

10 lorenz (const crd_t, real_t sigma, real_t rho, real_t beta);

11 // Default copy and assignment operators are just fine for this type.

12
13 public:

14 integrable_model::ptr_t d_dt() const;

15 void operator+=(integrable_model::ptr_t other);

16 integrable_model::ptr_t operator*(float val) const;

17
18 const crd_t& output() const;

19

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-17

20 virtual ~lorenz();

21
22 private:

23 crd_t state_; // solution vector.

24 float sigma_, rho_, beta_;

25 };

26
27 #endif

lorenz.cpp

1 #include <iostream>

2 #include <exception>

3
4 #include "lorenz.h"

5
6 using namespace std;

7
8 struct LorenzError : public std::exception {

9 virtual ~LorenzError() throw() {}

10 };

11
12 // default constructor

13 lorenz::lorenz ()

14 {}

15
16 // constructor using each element

17 lorenz::lorenz (const crd_t initial_state, real_t s, real_t r, real_t b) :

18 state_(initial_state), sigma_(s), rho_(r), beta_(b)

19 {}

20
21 const crd_t& lorenz::output() const {

22 return state_;

23 }

24
25 integrable_model::ptr_t lorenz:: d_dt() const

26 {

27 ptr_t result = ptr_t(new lorenz);

28 result->state_.resize(3);

29 result->state_.at(0) = sigma_*(state_.at(1) - state_.at(0));

30 result->state_.at(1) = state_.at(0)*(rho_ - state_.at(2)) - state_.at(1);

31 result->state_.at(2) = state_.at(0)*state_.at(1) - beta_*state_.at(2);

32 return result;

33 }

34
35
36 void lorenz::operator+=(integrable_model::ptr_t rhs) {

37 ptr_t other = cast<lorenz>(rhs);

38 if(other == NULL) {

39 std::cerr << "lorenz::operator+=: Failed dynamic cast\n";

40 throw LorenzError();

41 }

42 if(other->state_.size() != this->state_.size()) {

43 std::cerr << "lorenz::operator+=: Non-identical dimensions.\n";

44 throw LorenzError();

45 }

46
47 for(size_t i = 0; i < state_.size(); ++i) {

48 state_.at(i) += other->state_.at(i);

49 }

50 }

51
52 integrable_model::ptr_t lorenz::operator*(real_t rhs) const

53 {

54 ptr_t result = ptr_t(new lorenz(*this));

55 for(size_t i = 0; i < result->state_.size(); ++i) {

56 result->state_.at(i) *= rhs;

57 }

58 return result;

59 }

60
61 lorenz::~lorenz()

62 {}

integrable model.h

1 #ifndef __H_INTEGRABLE_MODEL__

2 #define __H_INTEGRABLE_MODEL__ 1

3
4 #include "globals.h"

5
6 class integrable_model : virtual public RefBase {

7 public:

8 typedef Ref<integrable_model> ptr_t;

9
10 virtual ~integrable_model();

11
12 virtual ptr_t d_dt() const = 0;

13 virtual void operator+=(ptr_t) = 0;

14 virtual ptr_t operator*(real_t) const = 0;

15
16 protected:

17 integrable_model(const integrable_model&);

18 integrable_model();

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-18 • D. W. I. Rouson et al.

19 };

20
21 void integrate (integrable_model::ptr_t, real_t);

22
23 #endif

integrable model.cpp

1 #include "integrable_model.h"

2
3 typedef integrable_model::ptr_t ptr_t;

4
5 integrable_model::integrable_model() : RefBase() {

6 }

7
8 integrable_model::integrable_model(const integrable_model&) : RefBase() {

9 }

10
11 integrable_model::~integrable_model() {

12 }

13
14 void integrate (ptr_t model, real_t dt) {

15 *model += *(model->d_dt()) * dt;

16 }

B.2 Strategy Example
main.cpp

1 #include "timed_lorenz.h"

2 #include "explicit_euler.h"

3 #include "runge_kutta_2nd.h"

4 #include "fmt.h"

5 #include <iostream>

6
7 int main () {

8 typedef lorenz::ptr_t ptr_t;

9
10 static const int num_steps=10;

11 const real_t sigma=10., rho=28., beta=8./3., dt=0.01;

12 crd_t initial_condition(3, 1.0);

13
14 Ref<lorenz> attractor = new lorenz(initial_condition, sigma, rho, beta,

15 new explicit_euler);

16 std::cout << "lorenz attractor:\n"

17 << fmt(attractor->coordinate(), 12, 9) << "\n";

18 for (int step = 0; step < 4*num_steps; ++step) {

19 attractor->integrate(0.25*dt);

20 std::cout << fmt(attractor->coordinate(), 12, 9) << "\n";

21 }

22
23 Ref<timed_lorenz> timed_attractor

24 = new timed_lorenz(initial_condition, sigma, rho, beta,

25 new runge_kutta_2nd);

26 std::cout << "\ntimed lorenz attractor:\n"

27 << fmt(timed_attractor->coordinate(), 12, 9) << "\n";

28 for (int i = 0; i < num_steps; ++i) {

29 timed_attractor->integrate(dt);

30 std::cout << fmt(timed_attractor->coordinate(), 12, 9) << "\n";

31 }

32
33 return 0;

34 }

integrable model.h

1 #ifndef _H_INTEGRABLE_MODEL_

2 #define _H_INTEGRABLE_MODEL_

3
4 #include "strategy.h"

5 #include "RefBase.h"

6 #include "globals.h"

7
8 class integrable_model : virtual public RefBase {

9 public:

10 typedef Ref<integrable_model> ptr_t;

11 typedef strategy::ptr_t strategy_t;

12
13 integrable_model(strategy_t);

14 integrable_model(const integrable_model&);

15 virtual ~integrable_model();

16
17 void set_strategy (strategy_t);

18 strategy_t get_strategy () const;

19 void integrate (real_t);

20
21 virtual ptr_t clone() const = 0;

22 virtual ptr_t d_dt() const = 0;

23 virtual ptr_t operator+=(ptr_t) = 0;

24 virtual ptr_t operator*=(real_t) = 0;

25
26 private:

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-19

27 strategy_t quadrature_;

28 };

29
30 #include "model_ops.h"

31
32 #endif //!_H_INTEGRABLE_MODEL_

integrable model.cpp

1 #include "integrable_model.h"

2 #include <exception>

3
4 struct integrable_model_error : public std::exception {

5 virtual ~integrable_model_error() throw() {}

6 };

7
8 typedef integrable_model::ptr_t ptr_t;

9 typedef integrable_model::strategy_t strategy_t;

10
11 integrable_model::integrable_model(strategy_t quad) :

12 RefBase(), quadrature_(quad)

13 {}

14
15 integrable_model::integrable_model(const integrable_model& other) :

16 RefBase(), quadrature_(other.quadrature_)

17 {}

18
19 integrable_model::~integrable_model() {

20 }

21
22 void integrable_model::set_strategy (strategy_t quad) {

23 quadrature_ = quad;

24 }

25
26 strategy_t integrable_model::get_strategy () const {

27 return quadrature_;

28 }

29
30 void integrable_model::integrate (real_t dt) {

31 quadrature_->integrate(this, dt);

32 }

lorenz.h

1 #ifndef _H_LORENZ_

2 #define _H_LORENZ_

3
4 #include "integrable_model.h"

5
6 class lorenz : public integrable_model {

7 public:

8 typedef integrable_model::ptr_t ptr_t;

9 typedef integrable_model::strategy_t strategy_t;

10
11 lorenz(const crd_t&, real_t sigma, real_t rho, real_t beta, strategy_t);

12 virtual ~lorenz();

13
14 virtual ptr_t clone() const;

15 virtual ptr_t d_dt() const;

16 virtual ptr_t operator+=(ptr_t);

17 virtual ptr_t operator*=(real_t);

18
19 void set_coordinate(const crd_t&);

20 const crd_t& coordinate() const;

21 real_t sigma() const;

22 real_t rho() const;

23 real_t beta() const;

24
25 private:

26 crd_t state_;

27 real_t sigma_, rho_, beta_;

28 };

29
30 #endif // !_H_LORENZ_

lorenz.cpp

1 #include "lorenz.h"

2 #include "fmt.h"

3 #include <exception>

4
5 struct lorenz_error : public std::exception {

6 virtual ~lorenz_error() throw() {}

7 };

8
9 typedef lorenz::ptr_t ptr_t;

10 typedef lorenz::strategy_t strategy_t;

11
12 lorenz::lorenz(const crd_t& ste, real_t s, real_t r, real_t b, strategy_t str) :

13 integrable_model(str), state_(ste), sigma_(s), rho_(r), beta_(b)

14 {}

15
16 lorenz::~lorenz() {

17 }

18

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-20 • D. W. I. Rouson et al.

19 ptr_t lorenz::clone() const {

20 return ptr_t(new lorenz(*this));

21 }

22
23 ptr_t lorenz::d_dt() const {

24 crd_t new_state(3);

25 new_state.at(0) = sigma_ * (state_.at(1) - state_.at(0));

26 new_state.at(1) = state_.at(0) * (rho_ - state_.at(2)) - state_.at(1);

27 new_state.at(2) = state_.at(0) * state_.at(1) - beta_ * state_.at(2);

28 return ptr_t(new lorenz(new_state, sigma_, rho_, beta_, get_strategy()));

29 }

30
31 ptr_t lorenz::operator+=(ptr_t inval) {

32 Ref<lorenz> other = cast<lorenz>(inval);

33 if((other == NULL) || (state_.size() != other->state_.size())) {

34 std::cerr << "lorenz::operator+=: Invalid input argument\n";

35 throw lorenz_error();

36 }

37 size_t size = state_.size();

38 for(size_t i = 0; i < size; ++i) {

39 state_.at(i) += other->state_.at(i);

40 }

41 return ptr_t(this);

42 }

43
44 ptr_t lorenz::operator*=(real_t val) {

45 size_t size = state_.size();

46 for(size_t i = 0; i < size; ++i) {

47 state_.at(i) *= val;

48 }

49 return ptr_t(this);

50 }

51
52 void lorenz::set_coordinate(const crd_t& state) {

53 state_ = state;

54 }

55
56 const crd_t& lorenz::coordinate() const {

57 return state_;

58 }

59
60 real_t lorenz::sigma() const {

61 return sigma_;

62 }

63
64 real_t lorenz::rho() const {

65 return rho_;

66 }

67
68 real_t lorenz::beta() const {

69 return beta_;

70 }

timed lorenz.h

1 #ifndef _H_TIMED_LORENZ_

2 #define _H_TIMED_LORENZ_

3
4 #include "strategy.h"

5 #include "lorenz.h"

6
7
8 class timed_lorenz : public lorenz {

9 public:

10 typedef lorenz::ptr_t ptr_t;

11 typedef lorenz::strategy_t strategy_t;

12
13 timed_lorenz(const crd_t&, real_t sigma, real_t rho, real_t beta,

14 strategy_t, double t_init = 0);

15 virtual ~timed_lorenz();

16 virtual ptr_t clone() const;

17 virtual ptr_t d_dt() const;

18 virtual ptr_t operator+=(ptr_t);

19 virtual ptr_t operator*=(real_t);

20
21 void set_time (real_t);

22 real_t get_time() const;

23 private:

24 real_t time_;

25 };

26
27 #endif //!_H_TIMED_LORENZ_

timed lorenz.cpp

1 #include "timed_lorenz.h"

2 #include <exception>

3
4 struct timed_lorenz_error : public std::exception {

5 virtual ~timed_lorenz_error() throw() {}

6 };

7
8 typedef timed_lorenz::ptr_t ptr_t;

9 typedef timed_lorenz::strategy_t strategy_t;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-21

10
11 timed_lorenz::timed_lorenz(const crd_t& ste, real_t s, real_t r, real_t b,

12 strategy_t strat, double t_init) :

13 lorenz(ste, s, r, b, strat), time_(t_init)

14 {}

15
16 timed_lorenz::~timed_lorenz() {

17 }

18
19 ptr_t timed_lorenz::clone() const {

20 return ptr_t(new timed_lorenz(*this));

21 }

22
23 ptr_t timed_lorenz::d_dt() const {

24 Ref<lorenz> parent = cast<lorenz>(lorenz::d_dt());

25 return ptr_t(new timed_lorenz(parent->coordinate(), parent->sigma(),

26 parent->rho(), parent->beta(),

27 parent->get_strategy(), 1.0));

28 }

29
30 ptr_t timed_lorenz::operator+=(ptr_t inval) {

31 Ref<timed_lorenz> other = cast<timed_lorenz>(inval);

32 if(other == NULL) {

33 std::cerr << "timed_lorenz::operator+=: Invalid input type\n";

34 throw timed_lorenz_error();

35 }

36 lorenz::operator+=(other);

37 time_ += other->time_;

38 return ptr_t(this);

39 }

40
41 ptr_t timed_lorenz::operator*=(real_t val) {

42 lorenz::operator*=(val);

43 time_ *= val;

44 return ptr_t(this);

45 }

46
47 void timed_lorenz::set_time (real_t t) {

48 time_ = t;

49 }

50
51 real_t timed_lorenz::get_time() const {

52 return time_;

53 }

explicit euler.h

1 #ifndef _H_EXPLICIT_EULER_

2 #define _H_EXPLICIT_EULER_

3
4 #include "strategy.h"

5 #include "integrable_model.h"

6
7 class explicit_euler : public strategy

8 {

9 public:

10 virtual ~explicit_euler();

11 virtual void integrate (model_t this_obj, real_t dt) const;

12 };

13
14 #endif //!_H_EXPLICIT_EULER_

explicit euler.cpp

1 #include "explicit_euler.h"

2 #include "integrable_model.h"

3 #include <exception>

4
5 explicit_euler::~explicit_euler()

6 {}

7
8 void explicit_euler::integrate (model_t this_obj, real_t dt) const {

9 *this_obj += this_obj->d_dt() * dt;

10 }

runge kutta 2nd.h

1 #ifndef _H_RUNGE_KUTTA_2ND_

2 #define _H_RUNGE_KUTTA_2ND_

3
4 #include "strategy.h"

5 #include "integrable_model.h"

6
7 class runge_kutta_2nd : public strategy {

8 public:

9 virtual ~runge_kutta_2nd();

10 virtual void integrate(model_t this_obj, real_t dt) const;

11 };

12
13 #endif

runge kutta 2nd.cpp

1 #include <iostream>

2 #include <exception>

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-22 • D. W. I. Rouson et al.

3
4 #include "integrable_model.h"

5 #include "runge_kutta_2nd.h"

6
7 using namespace std;

8
9 runge_kutta_2nd::~runge_kutta_2nd() {

10 }

11
12 void runge_kutta_2nd::integrate (model_t this_obj, real_t dt) const {

13 model_t this_half = this_obj + this_obj->d_dt() * (0.5*dt); // predictor

14 *this_obj += this_half->d_dt() * dt; // corrector

15 }

strategy.h

1 #ifndef _H_STRATEGY_

2 #define _H_STRATEGY_

3
4 #include "globals.h"

5 #include "RefBase.h"

6
7 class integrable_model;

8 class strategy : public RefBase {

9 public:

10 typedef Ref<strategy> ptr_t;

11 typedef Ref<integrable_model> model_t;

12
13 virtual ~strategy() {}

14 virtual void integrate (model_t this_obj, real_t dt) const = 0;

15 };

16
17 #endif //!_H_STRATEGY_

model ops.h

1 #ifndef _H_MODEL_OPS_

2 #define _H_MODEL_OPS_

3
4 inline integrable_model::ptr_t

5 operator+(integrable_model::ptr_t a, integrable_model::ptr_t b)

6 {

7 integrable_model::ptr_t tmp = a->clone();

8 *tmp += b;

9 return tmp;

10 }

11
12 inline integrable_model::ptr_t operator*(integrable_model::ptr_t a, real_t b) {

13 integrable_model::ptr_t tmp = a->clone();

14 *tmp *= b;

15 return tmp;

16 }

17
18 #endif //! _H_MODEL_OPS_

B.3 Puppeteer Example
main.cpp

1 #include "atmosphere.h"

2 #include "fmt.h"

3
4 typedef integrable_model::ptr_t ptr_t;

5
6 int main() {

7 const int num_steps=1000;

8 const real_t x=1., y=1., z=1., sigma=10., rho=28, beta=8./3., dt=0.02;

9
10 air sky(x, sigma);

11 cloud puff(y, rho);

12 ground earth(z, beta);

13 ptr_t boundary_layer = ptr_t(new atmosphere(sky, puff, earth));

14
15 real_t t = 0.;

16 std::cout << fmt(t,5,2) << " "

17 << fmt(boundary_layer->state_vector()) << "\n";

18 for(int step = 1; step <= num_steps; ++step) {

19 integrate(boundary_layer, dt);

20 t += dt;

21 std::cout << fmt(t,5,2) << " "

22 << fmt(boundary_layer->state_vector()) << "\n";

23 }

24 }

integrable model.h

1 #ifndef _H_INTEGRABLE_MODEL_

2 #define _H_INTEGRABLE_MODEL_

3
4 #include "mat.h"

5 #include "RefBase.h"

6
7 class integrable_model : virtual public RefBase {

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-23

8 public:

9 typedef Ref<integrable_model> ptr_t;

10
11 integrable_model();

12 integrable_model(const integrable_model&);

13 virtual ~integrable_model();

14
15 // The following methods do dynamic allocation (yuck).

16 virtual ptr_t d_dt() const = 0;

17 virtual void dRHS_dV(mat_t &result) const = 0;

18 virtual ptr_t clone() const = 0;

19 virtual ptr_t inverse_times(const mat_t&) const = 0;

20 virtual crd_t state_vector() const = 0;

21
22 // The following methods are destructive updates.

23 virtual ptr_t operator+=(ptr_t) = 0;

24 virtual ptr_t operator-=(ptr_t) = 0;

25 virtual ptr_t operator*=(real_t) = 0;

26 };

27
28 // Integration routine.

29 void integrate(integrable_model::ptr_t state, double dt);

30
31 #endif //!_H_INTEGRABLE_MODEL_

integrable model.cpp

1 #include "integrable_model.h"

2 #include "model_ops.h"

3
4 integrable_model::integrable_model() : RefBase() {

5 }

6
7 integrable_model::integrable_model(const integrable_model&) : RefBase() {

8 }

9
10 integrable_model::~integrable_model() {

11 }

12
13 void integrate(ptr_t state, double dt) {

14 static const int num_iterations = 5;

15 ptr_t initial = state->clone();

16 mat_t identity, dRHS_dState;

17 for(int iteration = 0; iteration < num_iterations; ++iteration) {

18 state->dRHS_dV(dRHS_dState);

19 identity.identity(dRHS_dState.rows());

20 mat_t jacobian = identity - (0.5*dt) * dRHS_dState;

21 ptr_t residual= state-(initial+((initial->d_dt()+state->d_dt())*(0.5*dt)));

22 ptr_t scratch = residual->inverse_times(jacobian);

23 *state -= scratch;

24 }

25 }

atmosphere.h

1 #ifndef _H_ATMOSPHERE_

2 #define _H_ATMOSPHERE_

3
4 #include "integrable_model.h"

5 #include "air.h"

6 #include "cloud.h"

7 #include "ground.h"

8
9 class atmosphere : public integrable_model {

10 public:

11 typedef integrable_model::ptr_t ptr_t;

12 typedef Ref<atmosphere> self_t;

13
14 atmosphere(const air&, const cloud&, const ground&);

15 virtual ~atmosphere();

16
17 // The following methods do dynamic allocation (yuck).

18 virtual ptr_t d_dt() const;

19 virtual void dRHS_dV(mat_t&) const;

20 virtual ptr_t clone() const;

21 virtual ptr_t inverse_times(const mat_t&) const;

22 virtual crd_t state_vector() const;

23
24 // The following methods are destructive updates.

25 virtual ptr_t operator+=(ptr_t);

26 virtual ptr_t operator-=(ptr_t);

27 virtual ptr_t operator*=(real_t);

28
29 private:

30 air air_;

31 cloud cloud_;

32 ground ground_;

33 };

34
35 #endif //!_H_ATMOSPHERE_

atmosphere.cpp

1 #include "atmosphere.h"

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-24 • D. W. I. Rouson et al.

2 #include <exception>

3 #include <cmath>

4
5 struct atmosphere_error : public std::exception {

6 virtual ~atmosphere_error() throw() {}

7 };

8
9 typedef atmosphere::ptr_t ptr_t;

10
11 atmosphere::atmosphere(const air &a, const cloud &c, const ground &g) :

12 air_(a), cloud_(c), ground_(g)

13 {}

14
15 atmosphere::~atmosphere() {

16 }

17
18 ptr_t atmosphere::d_dt() const {

19 return

20 ptr_t(new atmosphere(air_.d_dt(cloud_.coordinate()),

21 cloud_.d_dt(air_.coordinate(),ground_.coordinate()),

22 ground_.d_dt(air_.coordinate(),cloud_.coordinate())));

23 }

24
25 void atmosphere::dRHS_dV(mat_t &result) const {

26 // Figure out the required dimensions.

27 dim_t adim = air_.dimensions();

28 dim_t cdim = cloud_.dimensions();

29 dim_t gdim = ground_.dimensions();

30 // Resize the result matrix.

31 result.clear_resize(adim.eqs + cdim.eqs + gdim.eqs,

32 adim.vars + cdim.vars + gdim.vars);

33 if(result.rows() != result.cols()) {

34 std::cerr << "atmosphere::dRHS_dV: Ill-formed problem: total of "

35 << result.rows() << " equations and " << result.cols()

36 << " variables\n";

37 throw atmosphere_error();

38 }

39 // dAir/dAir

40 result.set_submat(0, 0, air_.d_dAir(cloud_.coordinate()));

41 // dAir/dCloud

42 result.set_submat(0, adim.vars, air_.d_dy(cloud_.coordinate()));

43 // dAir/dGround is all zero -- skipping that one.

44 // dCloud/dAir

45 result.set_submat(adim.eqs, 0,

46 cloud_.d_dx(air_.coordinate(),ground_.coordinate()));

47 // dCloud/dCloud

48 result.set_submat(adim.eqs, adim.vars,

49 cloud_.d_dCloud(air_.coordinate(),ground_.coordinate()));

50 // dCloud/dGround

51 result.set_submat(adim.eqs, adim.vars+cdim.vars,

52 cloud_.d_dz(air_.coordinate(),ground_.coordinate()));

53 // dGround/dAir

54 result.set_submat(adim.eqs+cdim.eqs, 0,

55 ground_.d_dx(air_.coordinate(),cloud_.coordinate()));

56 // dGround/dCloud

57 result.set_submat(adim.eqs+cdim.eqs, adim.vars,

58 ground_.d_dy(air_.coordinate(),cloud_.coordinate()));

59 // dGround/dGround

60 result.set_submat(adim.eqs+cdim.eqs, adim.vars+cdim.vars,

61 ground_.d_dGround(air_.coordinate(),cloud_.coordinate()));

62 }

63
64 ptr_t atmosphere::clone() const {

65 return ptr_t(new atmosphere(*this));

66 }

67
68 crd_t atmosphere::state_vector() const {

69 const crd_t &cc = cloud_.coordinate(), &gc = ground_.coordinate();

70 crd_t state_space = air_.coordinate();

71 state_space.insert(state_space.end(), cc.begin(), cc.end());

72 state_space.insert(state_space.end(), gc.begin(), gc.end());

73 return state_space;

74 }

75
76
77 ptr_t atmosphere::inverse_times(const mat_t &lhs) const {

78 static const real_t pivot_tolerance = 1e-2;

79
80 const int n = lhs.rows();

81 crd_t b = this->state_vector();

82 if((n != lhs.cols()) || (size_t(n) != b.size())) {

83 std::cerr <<"integrable_model::inverse_times: ill-posed matrix problem\n";

84 throw atmosphere_error();

85 }

86 crd_t x(n);

87 mat_t A(lhs);

88 for(int p = 0; p < n-1; ++p) { // forward elimination

89 if(fabs(A(p,p)) < pivot_tolerance) {

90 std::cerr << "integrable_model::inverse_times: "

91 << "use an algorithm with pivoting\n";

92 throw atmosphere_error();

93 }

94 for(int row = p+1; row < n; ++row) {

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-25

95 real_t factor = A(row,p) / A(p,p);

96 for(int col = p; col < n; ++col) {

97 A(row,col) = A(row,col) - A(p,col)*factor;

98 }

99 b.at(row) = b.at(row)- b.at(p)*factor;

100 }

101 }

102 x.at(n-1) = b.at(n-1) / A(n-1,n-1); // back substitution

103 for(int row = n-1; row >= 0; --row) {

104 real_t the_sum = 0;

105 for(int col = row+1; col < n; ++col) {

106 the_sum += A(row,col) * x.at(col);

107 }

108 x.at(row) = (b.at(row) - the_sum) / A(row,row);

109 }

110 return ptr_t(new atmosphere(air(x.at(0), x.at(1)),

111 cloud(x.at(2), cloud_.rho()),

112 ground(x.at(3), ground_.beta())));

113 }

114
115 ptr_t atmosphere::operator+=(ptr_t other) {

116 self_t added = cast<atmosphere>(other);

117 if(other == NULL) {

118 std::cerr << "atmosphere::operator+=: Invalid input type\n";

119 throw atmosphere_error();

120 }

121 air_ += added->air_;

122 cloud_ += added->cloud_;

123 ground_ += added->ground_;

124 return ptr_t(this);

125 }

126
127 ptr_t atmosphere::operator-=(ptr_t other) {

128 self_t subbed = cast<atmosphere>(other);

129 if(other == NULL) {

130 std::cerr << "atmosphere::operator-=: Invalid input type\n";

131 throw atmosphere_error();

132 }

133 air_ -= subbed->air_;

134 cloud_ -= subbed->cloud_;

135 ground_ -= subbed->ground_;

136 return ptr_t(this);

137 }

138
139 ptr_t atmosphere::operator*=(real_t value) {

140 air_ *= value;

141 cloud_ *= value;

142 ground_ *= value;

143 return ptr_t(this);

144 }

air.h

1 #ifndef _H_AIR_

2 #define _H_AIR_

3
4 #include "mat.h"

5
6 class air {

7 public:

8 air(real_t x, real_t sigma);

9
10 const crd_t& coordinate() const;

11 air d_dt(const crd_t&) const;

12 mat_t d_dAir(const crd_t&) const;

13 mat_t d_dy(const crd_t&) const;

14 air& operator+=(const air&);

15 air& operator-=(const air&);

16 air& operator*=(real_t);

17
18 inline dim_t dimensions() const { return dim_t(dim_, dim_); }

19
20 private:

21 static const int dim_;

22 crd_t x_; // sigma is stored at x_[1]

23 };

24
25 #endif //!_H_AIR_

air.cpp

1 #include "air.h"

2
3 const int air::dim_ = 2;

4
5 air::air(real_t x, real_t sigma) {

6 x_.push_back(x);

7 x_.push_back(sigma);

8 }

9
10 const crd_t& air::coordinate() const {

11 return x_;

12 }

13

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-26 • D. W. I. Rouson et al.

14 air air::d_dt(const crd_t &y) const {

15 return air((x_.at(1) * (y.at(0) - x_.at(0))), 0);

16 }

17
18 mat_t air::d_dAir(const crd_t& y) const {

19 mat_t result(dim_, dim_);

20 result(0, 0) = -x_.at(1);

21 result(0, 1) = y.at(0) - x_.at(0);

22 return result;

23 }

24
25 mat_t air::d_dy(const crd_t &y) const {

26 mat_t result(dim_, y.size());

27 result(0, 0) = x_.at(1);

28 return result;

29 }

30
31 air& air::operator+=(const air &other) {

32 x_.at(0) += other.x_.at(0);

33 x_.at(1) += other.x_.at(1);

34 return *this;

35 }

36
37 air& air::operator-=(const air &other) {

38 x_.at(0) -= other.x_.at(0);

39 x_.at(1) -= other.x_.at(1);

40 return *this;

41 }

42
43 air& air::operator*=(real_t value) {

44 x_.at(0) *= value;

45 x_.at(1) *= value;

46 return *this;

47 }

cloud.h

1 #ifndef _H_CLOUD_

2 #define _H_CLOUD_

3
4 #include "mat.h"

5
6 class cloud {

7 public:

8 cloud(real_t y, real_t rho);

9
10 const crd_t& coordinate() const;

11 real_t rho() const;

12 cloud d_dt(const crd_t&, const crd_t&) const;

13 mat_t d_dCloud(const crd_t&, const crd_t&) const;

14 mat_t d_dx(const crd_t&, const crd_t&) const;

15 mat_t d_dz(const crd_t&, const crd_t&) const;

16 cloud& operator+=(const cloud&);

17 cloud& operator-=(const cloud&);

18 cloud& operator*=(real_t);

19
20 inline dim_t dimensions() const { return dim_t(dim_, dim_); }

21
22 private:

23 static const int dim_;

24 crd_t y_;

25 real_t rho_;

26 };

27
28 #endif //!_H_CLOUD_

cloud.cpp

1 #include "cloud.h"

2
3 const int cloud::dim_ = 1;

4
5 cloud::cloud(real_t y, real_t rho) :

6 y_(1, y), rho_(rho)

7 {}

8
9 const crd_t& cloud::coordinate() const {

10 return y_;

11 }

12
13 real_t cloud::rho() const {

14 return rho_;

15 }

16
17 cloud cloud::d_dt(const crd_t &x, const crd_t &z) const {

18 return cloud((x.at(0) * (rho_ - z.at(0)) - y_.at(0)), 0);

19 }

20
21 mat_t cloud::d_dCloud(const crd_t&, const crd_t&) const {

22 mat_t result(dim_, dim_);

23 result(0, 0) = -1;

24 return result;

25 }

26

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-27

27 mat_t cloud::d_dx(const crd_t &x, const crd_t &z) const {

28 mat_t result(dim_, x.size());

29 result(0, 0) = rho_ - z.at(0);

30 return result;

31 }

32
33 mat_t cloud::d_dz(const crd_t &x, const crd_t &z) const {

34 mat_t result(dim_, z.size());

35 result(0, 0) = -x.at(0);

36 return result;

37 }

38
39 cloud& cloud::operator+=(const cloud &other) {

40 y_.at(0) += other.y_.at(0);

41 rho_ += other.rho_;

42 return *this;

43 }

44 cloud& cloud::operator-=(const cloud &other) {

45 y_.at(0) -= other.y_.at(0);

46 rho_ -= other.rho_;

47 return *this;

48 }

49
50 cloud& cloud::operator*=(real_t value) {

51 y_.at(0) *= value;

52 rho_ *= value;

53 return *this;

54 }

ground.h

1 #ifndef _H_GROUND_

2 #define _H_GROUND_

3
4 #include "mat.h"

5
6 class ground {

7 public:

8 ground(real_t y, real_t rho);

9
10 const crd_t& coordinate() const;

11 real_t beta() const;

12 ground d_dt(const crd_t&, const crd_t&) const;

13 mat_t d_dGround(const crd_t&, const crd_t&) const;

14 mat_t d_dx(const crd_t&, const crd_t&) const;

15 mat_t d_dy(const crd_t&, const crd_t&) const;

16 ground& operator+=(const ground&);

17 ground& operator-=(const ground&);

18 ground& operator*=(real_t);

19
20 inline dim_t dimensions() const { return dim_t(dim_, dim_); }

21
22 private:

23 static const int dim_;

24 crd_t z_;

25 real_t beta_;

26 };

27
28 #endif //!_H_GROUND_

ground.cpp

1 #include "ground.h"

2
3 const int ground::dim_ = 1;

4
5 ground::ground(real_t z, real_t beta) :

6 z_(1, z), beta_(beta)

7 {}

8
9 const crd_t& ground::coordinate() const {

10 return z_;

11 }

12
13 real_t ground::beta() const {

14 return beta_;

15 }

16
17 ground ground::d_dt(const crd_t& x, const crd_t& y) const {

18 return ground((x.at(0) * y.at(0) - beta_ * z_.at(0)), 0);

19 }

20
21 mat_t ground::d_dGround(const crd_t&, const crd_t&) const {

22 mat_t result(dim_, dim_);

23 result(0, 0) = -beta_;

24 return result;

25 }

26
27 mat_t ground::d_dx(const crd_t &x, const crd_t &y) const {

28 mat_t result(dim_, x.size());

29 result(0, 0) = y.at(0);

30 return result;

31 }

32

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-28 • D. W. I. Rouson et al.

33 mat_t ground::d_dy(const crd_t &x, const crd_t &y) const {

34 mat_t result(dim_, y.size());

35 result(0, 0) = x.at(0);

36 return result;

37 }

38
39 ground& ground::operator+=(const ground &other) {

40 z_.at(0) += other.z_.at(0);

41 beta_ += other.beta_;

42 return *this;

43 }

44
45 ground& ground::operator-=(const ground& other) {

46 z_.at(0) -= other.z_.at(0);

47 beta_ -= other.beta_;

48 return *this;

49 }

50
51 ground& ground::operator*=(real_t value) {

52 z_.at(0) *= value;

53 beta_ *= value;

54 return *this;

55 }

mat.h

1 #ifndef _H_MAT_

2 #define _H_MAT_

3
4 #include "globals.h"

5 #include <iostream>

6 #include <iomanip>

7
8 class mat_t {

9 public:

10 typedef crd_t::value_type value_type;

11 typedef crd_t::reference reference;

12
13 mat_t();

14 mat_t(int rows, int cols);

15 void clear();

16 void resize(int rows, int cols);

17 void clear_resize(int rows, int cols, value_type value = 0);

18 void identity(int rows);

19 int rows() const;

20 int cols() const;

21 value_type operator()(int r, int c) const;

22 reference operator()(int r, int c);

23 void set_submat(int r, int c, const mat_t &other);

24 mat_t& operator-=(const mat_t&);

25 mat_t& operator*=(real_t);

26
27 private:

28 int r_, c_;

29 crd_t data_;

30 };

31
32 inline mat_t operator-(const mat_t &a, const mat_t &b) {

33 mat_t retval(a);

34 retval -= b;

35 return retval;

36 }

37
38 inline mat_t operator*(real_t value, const mat_t &matrix) {

39 mat_t retval(matrix);

40 retval *= value;

41 return retval;

42 }

43
44 struct dim_t {

45 const int eqs;

46 const int vars;

47
48 dim_t(int eqcnt, int varcnt) :

49 eqs(eqcnt), vars(varcnt)

50 {}

51 };

52
53 inline std::ostream& operator<<(std::ostream &os, const mat_t &mat) {

54 std::ios_base::fmtflags flags = os.flags();

55 for(int r = 0; r < mat.rows(); ++r) {

56 os << "[";

57 for(int c = 0; c < mat.cols(); ++c) {

58 os << " " <<std::setw(12) <<std::setprecision(8) <<std::fixed <<mat(r,c);

59 }

60 os << "]\n";

61 }

62 os.flags(flags);

63 return os;

64 }

65
66 #endif // !_H_MAT_

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ • App-29

mat.cpp

1 #include "mat.h"

2 #include <exception>

3 #include <iostream>

4
5 struct matrix_error : public std::exception {

6 virtual ~matrix_error() throw() {}

7 };

8
9 mat_t::mat_t() :

10 r_(0), c_(0)

11 {}

12
13 mat_t::mat_t(int rows, int cols) {

14 this->resize(rows, cols);

15 }

16
17 void mat_t::clear() {

18 r_ = c_ = 0;

19 data_.clear();

20 }

21
22 void mat_t::resize(int rows, int cols) {

23 if(rows < 0 || cols < 0) {

24 std::cerr << "mat_t::resize: Rows and columns must be >= 0.\n";

25 throw matrix_error();

26 }

27 if(! data_.empty()) {

28 // Copy data over.

29 }

30 else {

31 // common case.

32 data_.resize(rows*cols);

33 r_ = rows;

34 c_ = cols;

35 }

36 }

37
38 void mat_t::clear_resize(int rows, int cols, value_type value) {

39 if(rows < 0 || cols < 0) {

40 std::cerr << "mat_t::clear_resize: Rows and columns must be >= 0\n";

41 throw matrix_error();

42 }

43 data_.resize(rows*cols);

44 r_ = rows;

45 c_ = cols;

46 std::fill(data_.begin(), data_.end(), value);

47 }

48
49 void mat_t::identity(int size) {

50 this->clear_resize(size, size, 0);

51 for(int i = 0; i < size; ++i) {

52 this->operator()(i,i) = 1;

53 }

54 }

55
56 int mat_t::rows() const {

57 return r_;

58 }

59
60 int mat_t::cols() const {

61 return c_;

62 }

63
64 mat_t::value_type mat_t::operator()(int r, int c) const {

65 if(r < 0 || r >= r_ || c < 0 || c >= c_) {

66 std::cerr << "mat_t::operator(): Invalid index (" << r << ", " << c

67 << "). Bounds are (" << r_ << ", " << c << ")\n";

68 throw matrix_error();

69 }

70 return data_.at(c*r_ + r);

71 }

72
73 mat_t::reference mat_t::operator()(int r, int c) {

74 if(r < 0 || r >= r_ || c < 0 || c >= c_) {

75 std::cerr << "mat_t::operator(): Invalid index (" << r << ", " << c

76 << "). Bounds are (" << r_ << ", " << c << ")\n";

77 throw matrix_error();

78 }

79 return data_.at(c*r_ + r);

80 }

81
82 void mat_t::set_submat(int startrow, int startcol, const mat_t &other) {

83 for(int r = 0; r < other.rows(); ++r) {

84 for(int c = 0; c < other.cols(); ++c) {

85 this->operator()(r+startrow, c+startcol) = other(r,c);

86 }

87 }

88 }

89
90 mat_t& mat_t::operator-=(const mat_t &other) {

91 if(this->rows() != other.rows() || this->cols() != other.cols()) {

92 std::cerr << "mat_t::operator-=: Matrices must be of identical size.\n";

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

App-30 • D. W. I. Rouson et al.

93 throw matrix_error();

94 }

95 const size_t size = data_.size();

96 for(size_t i = 0; i < size; ++i)

97 data_[i] -= other.data_[i];

98 return *this;

99 }

100
101 mat_t& mat_t::operator*=(real_t value) {

102 for(crd_t::iterator it = data_.begin(); it != data_.end(); ++it)

103 *it *= value;

104 return *this;

105 }

model ops.h

1 #ifndef _H_INTEGRABLE_MODEL_OPS

2 #define _H_INTEGRABLE_MODEL_OPS

3
4 #include "integrable_model.h"

5 #include <exception>

6
7 struct model_ops_exception : public std::exception {

8 virtual ~model_ops_exception() throw() {}

9 };

10
11 typedef Ref<integrable_model> ptr_t;

12
13 inline ptr_t operator+(ptr_t a, ptr_t b) {

14 if(a == NULL || b == NULL) {

15 std::cerr << "ptr_t + ptr_t: Neither pointer must be NULL\n";

16 throw model_ops_exception();

17 }

18 ptr_t c = a->clone();

19 *c += b;

20 return c;

21 }

22
23 inline ptr_t operator-(ptr_t a, ptr_t b) {

24 if(a == NULL || b == NULL) {

25 std::cerr << "ptr_t - ptr_t: Neither pointer must be NULL\n";

26 throw model_ops_exception();

27 }

28 ptr_t c = a->clone();

29 *c -= b;

30 return c;

31 }

32
33 inline ptr_t operator*(ptr_t a, real_t b) {

34 if(a == NULL) {

35 std::cerr << "ptr_t * real_t: Pointer must not be NULL\n";

36 throw model_ops_exception();

37 }

38 ptr_t c = a->clone();

39 *c *= b;

40 return c;

41 }

42
43 inline ptr_t operator*(real_t b, ptr_t a) {

44 return a*b;

45 }

46
47 #endif //!_H_INTEGRABLE_MODEL_OPS

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

