Online Appendix to:

Design Patterns for Multiphysics Modeling

in Fortran 2003 and C++

DAMIAN W. I. ROUSON and HELGI ADALSTEINSSON
Sandia National Laboratories

and

JIM XIA

IBM Corporation

APPENDIX A. FORTRAN 2003 IMPLEMENATION

A.1 Semidiscrete Example

program main
use lorenz_module ,only : lorenz,integrate
implicit none ! Prevent implicit typing

! This code integrates the Lorenz equations over time using abstractions that
! follow the Semi-Discrete design pattern of Rouson, Adalsteinsson and Xia
! (ACM TOMS 2010).

type (lorenz) :: attractor

integer :: step ! time step counter

integer ,parameter :: num_steps=2000,space_dimension=3 ! phase space dimension

real  ,parameter :: sigma=10.,rho=28.,beta=8./3.,dt=0.01 ! Lorenz parameters and time step size
real ,parameter ,dimension(space_dimension) &

:: initial_condition=(/1.,1.,1./)

call attractorconstruct(initial_condition,sigma,rho,beta)
print *,attractoroutput()
do step=1,num_steps
call integrate(attractor,dt)
print *,attractoroutput()
end do
end program

module lorenz_module
use integrable_model_module ,only : integrable_model,integrate
implicit none

private ! Hide everything by default
public :: integrate ! Expose time integration procedure

! This type implements operators required for integration by the above procedure.
! The time derivative function is defined to express the Lorenz equations.

type ,extends(integrable_model) ,public :: lorenz

private
real ,dimension(:) ,allocatable :: state ! solution vector
real :: sigma ,rho ,beta ! Lorenz parameters
contains

procedure ,public :: d_dt => dLorenz_dt time derivative

)
procedure ,public :: add => add_lorenz ! add two lorenz objects
procedure ,public :: multiply => multiply_lorenz ! multiply a lorenz object by a real scalar
procedure ,public :: assign  => assign_lorenz ! assign one lorenz object to another
procedure ,public :: comstruct ! constructor

\

procedure ,public :: output accessor: return solution vector

end type lorenz

contains

subroutine construct(this,initial_state,s,r,b) ! constructor

© 2010 ACM 0098-3500/2010/01-ART3 $10.00
DOI 10.1145/1644001.1644004 http://doi.acm.org/10.1145/1644001.1644004

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



S ©®-T® Uk N

-

App-2 J D. W. I. Rouson et al.

class(lorenz) ,intent(out) :: this
real ,dimension(:) ,intent(in) initial_state
real ,intent(in) :: s ,r ,b ! passed values for sigma, rho and beta
tallocate(this’state(size(initial_state)))
thisYstate=initial_state
this)sigma=s; thisjrho=r; thisbeta=b
end subroutine construct

function output(this) result(coordinates) ! accessor: return solution vector
class(lorenz) ,intent(in) :: this
real ,dimension(:) ,allocatable :: coordinates

'allocate(coordinates(size(thisYstate)))
coordinates = thislstate
end function output

function dLorenz_dt(this) result(dState_dt) ! time derivative: encapsulates Lorenz equations

class(lorenz) ,intent (in) this

class(integrable_model) ,allocatable dState_dt

type (lorenz) ,allocatable :: delta

allocate(delta)

allocate(delta)state(size(thisYstate)))

deltalstate(1)=this)sigma*( this’state(2) -this%state(1)) ! 1st lorenz equation
deltalstate(2)=this)state(1)*(thislrho-this%state(3))-thislstate(2) ! 2nd lorenz equation
deltalstate(3)=thisYstate(1)*this¥%state(2)-thisY%beta*thisstate(3) ! 3rd lorenz equation
deltalsigma=0. ! hold Lorenz parameters constant over time

deltalrho=0.

deltajbeta=0.

call move_alloc (delta, dState_dt)
end function

function add_Lorenz(lhs,rhs) result(sum) ! add two Lorenz objects
class(lorenz) ,intent (in) lhs
class(integrable_model) ,intent(in) rhs
class(integrable_model) ,allocatable sum
type (lorenz) ,allocatable :: local_sum ! obviate need for ’select type(sum)

allocate (lorenz :: local_sum)
'allocate(local_sumstate(size(lhs¥state)))
select type(rhs)

class is (lorenz)

local_sum)state = lhsistate + rhsistate
local_sum)sigma = + rhsYsigma
local_sumyrho = lhsYrho + rhsirho

local_sum%beta = lhslbeta + rhsibeta

class default
stop ’add_Lorenz: rhs argument type not supported’
end select
call move_alloc(local_sum, sum)
end function

function multiply_Lorenz(lhs,rhs) result(product) ! multiply a Lorenz object by a real scalar

class(lorenz) ,intent(in) :: lhs

real ,intent(in) :: rhs

class(integrable_model) ,allocatable :: product

type(lorenz) ,allocatable :: local_product ! obviate need for ’select type(sum)’

allocate (local_product)

local_productstate = lhsY%statexrhs

local_productysigma = lhsY%sigma*rhs

local_productrho lhsYrho #*rhs

local_productibeta = lhs)beta *rhs

call move_alloc(local_product, product)
end function

subroutine assign_lorenz(lhs,rhs) ! assign one lorenz object to another
class(lorenz) ,intent(inout) ::
class(integrable_model) ,intent(in)
'if (.not. allocated(lhs’state)) allocate(lhs%state(size(rhs¥state)))
select type(rhs)
class is (lorenz)
lhs)state = rhsistate
lhs%sigma = rhs¥sigma
rhs’rho
lhs%beta = rhs/beta
class default
stop ’assign_lorenz: rhs argument type not supported’
end select
end subroutine
end module lorenz_module

tegrablemodel.f03

module integrable_model_module
implicit none Prevent implicit typing
private Hide everything by default
public :: integrate ! expose time integration procedure

! This stateless type specifies the operators required to support Runge-Kutta time integration,
! while deferring the actual implementation of those operators to extensions (children) of this type.

type ,abstract ,public :: integrable_model
contains

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

procedure(time_derivative ) ,deferred d_dt ! time derivative

procedure( symmetric_operator ) ,deferred add ! add two integrable_model objects

procedure( symmetric_assignment) ,deferred :: assign ! assign one integrable_model to another
procedure (asymmetric_operator ) ,deferred :: multiply ! multiply an integrable_model by a real scalar
generic :: operator(+) => add ! Map operators to corresponding proceures

generic :: operator(*) multiply

generic :: assignment(=) => assign

end type integrable_model

abstract interface
function time_derivative(this) result(dState_dt)
import :: integrable_model
class(integrable_model) ,intent(in) :: this
class(integrable_model) ,allocatable :: dState_dt
end function time_derivative
function symmetric_operator(lhs,rhs) result(operator_result)

import :: integrable_model
class(integrable_model) ,intent(in) :: lhs,rhs
class(integrable_model) ,allocatable :: operator_result

end function symmetric_operator
function asymmetric_operator(lhs,rhs) result(operator_result)

import :: integrable_model
class(integrable_model) ,intent(in) :: lhs
class(integrable_model) ,allocatable :: operator_result
real ,intent(in) :: rhs

end function asymmetric_operator
subroutine symmetric_assignment(lhs,rhs)
import :: integrable_model
class(integrable_model) ,intent(in)
class(integrable_model) ,intent (inout)
end subroutine symmetric_assignment
end interface

contains

subroutine integrate(model,dt) ! Explicit Euler time integration
class(integrable_model) :: model
real ,intent(in) :: dt ! time step size (integration interval
model = model + d_dt(model)*dt ! Explicit Euler formula

contains
function d_dt(this) result(dThis_dt) ! support d_dt(arg) time differentiation syntax

class(integrable_model) ,intent(in) :: this

class(integrable_model) ,allocatable :: dThis_dt
allocate(dThis_dt,source=this)
dThis_dt = this%d_dt()
end function
end subroutine
end module integrable_model_module

App-3

A.2 Strategy and Surrogate Example

program main
use lorenz_module ,only : lorenz
use timed_lorenz_module ,only : timed_lorenz
use explicit_euler_module ,only : explicit_euler
use runge_kutta_2nd_module ,only : runge_kutta_2nd

! This code uses the strategy and surrogate patterns described by Rouson, Adalsteinsson and
! Xia (ACM TOMS 2010) to solve the Lorenz equations.

implicit none ! Prevent implicit typing

type(explicit_euler) :: lorenz_integrator ! Time integration strategy

type (runge_kutta_2nd) :: timed_lorenz_integrator ! Time integration strategy

type (lorenz) :: attractor ! Lorenz equation/state abstraction
type(timed_lorenz) :: timed_attractor ! Time-stamped Lorenz eq./state abstraction
integer :: step | Time step counter

integer ,parameter num_steps=2000, space_dimension=3

real ,parameter sigma=10.,rho=28.,beta=8./3.,dt=0.01 ! Lorenz parameters and step size

real  ,parameter ,dimension(space_dimension) &
initial_condition=(/1.,1.,1./)

call attractorfconstruct(initial_condition,sigma,rho,beta,lorenz_integrator) !Initialize and choose strategy
print *,’lorenz attractor:’
print *,attractoroutput()
do step=1,4*num_steps ! run explicit Euler at increased resolution for comparison to RK2
call attractoriintegrate(dt/4.)
print *,attractoroutput()
end do

call timed_attractorconstruct(initial_condition,sigma,rho,beta,timed_lorenz_integrator) !Re-initialize, choose new strategy

print *,7’
print *,’timed_lorenz attractor:’
print *,timed_attractoroutput()
do step=1,num_steps
call timed_attractorfintegrate(dt)
print *,timed_attractorioutput()
end do
end program main

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-4 J D. W. I. Rouson et al.

module lorenz_module
use strategy_module ,only : strategy ! Abstract time integration strategy
use integrable_model_module ,only : integrable_model ! Abstract integrand

implicit none ! Prevent implicit typing
private ! Hide everything by default

public :: integrable_model ! Expose integrable_model

type ,extends(integrable_model) ,public :: lorenz

private
real ,dimension(:) ,allocatable :: state ! solution vector
real :: sigma ,rho ,beta ! Lorenz parameters
contains
procedure ,public :: construct ! Constructor: allocate and initialize
procedure ,public :: d_dt => dlorenz_dt ! Time derivative (specifies evolution equations)
procedure ,public add => add_lorenz ! Add two instances
procedure ,public :: multiply => multiply_lorenz ! Multiply an instance by a real scalar
procedure ,public :: assign  => assign_lorenz ! Assign one instance to another
procedure ,public :: output ! Accessor: return state

end type
contains

subroutine construct(this,initial_state,s,r,b,this_strategy) ! Constructor: allocate and initialize

class(lorenz) ,intent (out) this

real ,dimension(:) ,intent(in) initial_state
real ,intent (in) s ,r ,b
class(strategy) ,intent (in) this_strategy

'allocate(thisstate(size(initial_state)))

this¥stat nitial_state

thissigma=s; this)rho=r; thisbeta=b

allocate (this’quadrature, source=this_strategy)
end subroutine construct

function dLorenz_dt(this) result(dState_dt) ! Time derivative (specifies evolution equations
class(lorenz) ,intent(in) :: this
class(integrable_model) ,allocatable :: dState_dt
type (lorenz) ,allocatable :: local_dState_dt ! obviates need for ’select type(dState_dt)

allocate(local_dState_dt)
allocate(local_dState_dtYstate(size(this)state)))

local_dState_dt/state(1) = this’sigmax( thislstate(2) -thislstate(1)) ! 1st Lorenz equation
local_dState_dt%state(2) = thisstate(1)*(this’rho-this)state(3))-this)state(2) ! 2nd Lorenz equation
local_dState_dt/%state(3) = thisstate(1)*thislstate(2)-this)betaxthis/state(3) ! 3rd Lorenz equation
local_dState_dt%sigma = 0.
local_dState_dt)rho = 0.
local_dState_dtibeta =0.

call move_alloc(local_dState_dt,dState_dt)
end function

function add_lorenz(lhs,rhs) result(sum) ! Add two instances

class(lorenz) sintent(in) :: lhs
class(integrable_model) ,intent(in) :: rhs
class(integrable_model) ,allocatable :: sum
type (lorenz) ,allocatable :: local_sum ! obviates need for ’select type(sum)

select type(rhs)
class is (lorenz)
allocate(local_sum)
'allocate(local_sum)state(size(lhs’state)))
local_sum)state = lhsistate + rhsistate
local_sum)sigma = lhsYsigma + rhs%sigma
local_sum)rho = lhsYrho + rhsirho
local_sumjbeta = lhslbeta + rhsibeta
class default
stop ’assig_lorenz: unsupported class’
end select
call move_alloc(local_sum,sum)
end function

function multiply_lorenz(lhs,rhs) result(product) ! Multiply an instance by a real scalar

class(lorenz) ,intent(in) :: lhs

real ,intent (in) rhs

class(integrable_model) ,allocatable product

type(lorenz) ,allocatable :: local_product ! obviates need for ’select type(product)’

allocate(local_product)
'allocate(local_product’state(size(lhs%state)))
local_productstate = lhs%statex rhs
local_productysigma = lhsY%sigma* rhs
local_productyrho = lhsYrho * rhs
local_productybeta = lhsYbeta * rhs
call move_alloc(local_product,product)

end function

subroutine assign_lorenz(lhs,rhs) ! Assign one instance to another
class(lorenz) sintent(inout) :: lhs
class(integrable_model) ,intent(in) :: rhs
select type(rhs)
class is (lorenz)
'if (.not. allocated(lhs’state)) allocate(lhs)state(size(rhsistate)))

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




107
108

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

lhsstate = rhs¥state
lhsYsigma = rhs)sigma
lhsYrho = rhs¥%rho
lhs’beta = rhsibeta
class default
stop ’assig_lorenz: unsupported class
end select

end subroutine

function output(this) result(coordinates) ! Accessor: return state
class(lorenz) ,intent (in) this
real ,dimension(:) ,allocatable coordinates

'allocate(coordinates(size(this)state)))
coordinates = this)state
end function output
end module lorenz_module

App-5

module strategy_module
use surrogate_module ,only : surrogate ! Substitute for integrable_model (avoiding circular references)

implicit none ! Prevent implicit typing

private ! Hide everything by default
type, abstract ,public :: strategy ! Abstract time integration strategy
contains

procedure (integrator_interface), nopass, deferred :: integrate ! Abstract integration procedure

end type strategy

abstract interface
subroutine integrator_interface(this,dt)

import :: surrogate
class(surrogate) ,intent(inout) :: this ! integrand
real ,intent (in) s dt ! time step size

end subroutine
end interface
end module

module surrogate_module

surrogate.f03
implicit nome ! Prevent implicit typing

private ! Hide everything by default (superfluous in this case)

! This stateless type serves only for purposes of extension by other types.
! In such a role, it can serve as a substitute for the child type when that
! type is inaccessible because of Fortran’s prohibition against circular references.

type ,abstract ,public :: surrogate
end type
end module

timed.lorenz.f03
module timed_lorenz_module

use lorenz_module ,only : lorenz,integrable_model ! Parent and grandparent types

use strategy_module ,only : strategy ! Time integration strategy
implicit none ! Prevent implicit typing
private ! Hide everything by default
public :: integrable_model ! Expose abstract integrand and integrator
type ,extends(lorenz) ,public :: timed_lorenz
private
real :: time ! time stamp
contains

: construct
d_dt => dTimed_lorenz_dt
add => add_timed_lorenz

constructor: allocate and initialize state
time derivative (expresses evolution equations)
add two instances

procedure ,public
procedure ,public
procedure ,public

|
procedure ,public :: multiply => multiply_timed_lorenz ! multiply one instance by a real scalar
procedure ,public :: assign  => assign_timed_lorenz ! assign one instance to another
procedure ,public :: output ! accessor: return state

end type timed_lorenz
contains

subroutine construct(this,initial_state,s,r,b,this_strategy) ! constructor: allocate and initialize state

class(timed_lorenz) ,intent(out) this

real ,dimension(:) ,intent(in) initial_state

real ,intent (in) s ,r ,b ! Lorenz parameters: sigma, rho and beta
class(strategy) ,intent (in) : this_strategy ! time integration algorithm

call thisYlorenzjconstruct(initial_state,s,r,b,this_strategy)

thisjtime = 0.

end subroutine

function dTimed_lorenz_dt(this) result(dState_dt) ! time derivative (expresses evolution equations)

class(timed_lorenz) ,intent(in) :: this

class(integrable_model) ,allocatable :: dState_dt

type(timed_lorenz) ,allocatable :: local_dState_dt ! obviates need for ’select type(dState_dt)’
allocate(local_dState_dt)

local_dState_dtitime = 1. ! dt/dt = 1.

local_dState_dt%lorenz = this%lorenz’d_dt() ! delegate to parent lorenz component
call move_alloc(local_dState_dt,dState_dt)
end function

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



© 001 ;TR W N

© 001U W

App-6 J D. W. I. Rouson et al.

function add_timed_lorenz(lhs,rhs) result(sum) ! add two instances
class(timed_lorenz) sintent(in) :: lhs

class(integrable_model) ,intent(in) rhs
class(integrable_model) ,allocatable :: sum
type (timed_lorenz) ,allocatable :: local_sum ! obviate need for ’select type(sum)

select type(rhs)
class is (timed_lorenz)
allocate(local_sum)
local_sum)time lhs%time + rhsYtime
local_sumlorenz = lhs%lorenz + rhs/lorenz
class default
stop ’add_timed_lorenz: type not supported’
end select
call move_alloc(local_sum,sum)
end function

function multiply_timed_lorenz(lhs,rhs) result(product) ! multiply one instance by a real scalar

class(timed_lorenz) sintent (in) lhs

real ,intent(in) :: rhs

class(integrable_model) ,allocatable :: product

type(timed_lorenz) ,allocatable :: local_product ! obviate need for ’select type(product)’

allocate(local_product)

local_productitime = lhs%time * rhs

local_product%lorenz = lhs%lorenz* rhs

call move_alloc(local_product,product)
end function

subroutine assign_timed_lorenz(lhs,rhs) ! assign one instance to another
class(timed_lorenz) ,intent (inout) :: lhs
class(integrable_model) ,intent(in) :: rhs
select type(rhs)
class is (timed_lorenz)
lhs%time = rhstime
lhs%lorenz = rhs)lorenz
class default
stop ’assign_timed_lorenz: type not supported’
end select
end subroutine

function output(this) result(coordinates) ! return state
class(timed_lorenz) ,intent(in) this
real ,dimension(:) ,allocatable coordinates
coordinates = [ this)time, thislorenzjoutput() ]
end function
end module timed_lorenz_module

explicit.euler.f03
module explicit_euler_module

use surrogate_module ,only : surrogate ! integrable_model parent
use strategy_module ,only : strategy ! time integration strategy
use integrable_model_module ,only : integrable_model ! abstract integrand

implicit nome ! Prevent implicit typing

private ! Hide everything by default
type, extends(strategy) ,public :: explicit_euler ! 1st-order explicit time integrator
contains
procedure, nopass :: integrate
end type
contains

subroutine integrate(this,dt) ! Time integrator
class(surrogate) ,intent(inout) this ! integrand
real ,intent (in) :dt ! time step size
select type (this)
class is (integrable_model)
this = this + this%d_dt()*dt ! Explicit Euler formula
class default
stop ’integrate: unsupported class.’
end select

end subroutine
end module

runge kutta_2nd.£03
module runge_kutta_2nd_module

use surrogate_module ,only : surrogate ! integrable_model parent
use strategy_module ,only : strategy ! parent time integration strategy
use integrable_model_module ,only : integrable_ model ! abstract integrand

implicit nome ! Prevent implicit typing

private ! Hide everything by default
type, extends(strategy) ,public :: runge_kutta_2nd ! 2nd-order Runge-Kutta time integration
contains
procedure, nopass :: integrate ! integration procedure
end type
contains

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ . App-7

subroutine integrate(this,dt) ! Time integrator
class(surrogate) ,intent(inout) :: this ! integrand
real ,intent (in) dt ! time step size
class(integrable_model) ,allocatable : this_half ! function evaluation at interval t+dt/2
select type (this)
class is (integrable_model)
allocate(this_half,source=this)
this_half = this + this%d_dt()*(0.5%dt) ! predictor step
this = this + this_half/d_dt()*dt ! corrector step
class default
stop ’integrate: unsupported class
end select
end subroutine
end module

A.3 Puppeteer Example

program main
use air_module ,only : air
use cloud_module ,only :cloud
use ground_module ,only : ground
use atmosphere_module ,only : atmosphere,integrate
use global_parameters_module ,only : debugging ! print call tree if true

implicit none ! Prevent implicit typing
! This code integrates the Lorenz equations over time using separate abstractions for

! equation and hiding the coupling of those abstractions inside an abstraction that
! follows the Puppeteer design pattern of Rouson, Adalsteinsson and Xia (ACM TOMS 2010).

type (air) sallocatable sky ! puppet for 1st Lorenz equation

type (cloud) ,allocatable  :: puff ! puppet for 2nd Lorenz equation

type (ground) ,allocatable  :: earth ! puppet for 3rd Lorenz equation

type (atmosphere) :: boundary_layer ! Puppeteer

integer :: step ! time step

integer ,parameter :: num_steps=1000 ! total time steps

real ,parameter :: x=1.,y=1.,z=1. ! initial conditions

real H ! time coordinate

real ,parameter :: sigma=10.,rho=28.,beta=8./3.,dt=.02 ! Lorenz parameters

if (debugging) print *,’main: start’
allocate (sky, puff, earth)
call sky’construct(x,sigma)
call pufficonstruct(y,rho)
call earthyconstruct(z,beta)
call boundary_layericonstruct(sky,puff,earth) ! transfer allocations into puppeteer
t =0. ! (all puppets are now deallocated)
write(x,’(£10.4)’,advance=’no’) t; print *,boundary_layer’state_vector()
do step=1,num_steps
call integrate(boundary_layer,dt)
t =t +dt
write(x,’(£10.4)’,advance=’no’) t; print *,boundary_layerstate_vector()
end do
if (debugging) print *,’main: end’
end program main

£03
module atmosphere_module
use air_module ,only : air ! puppet for 1st Lorenz eq. and corresonding state variable
use cloud_module ,only : cloud ! puppet for 2nd Lorenz eq. and corresonding state variable

use ground_module ,only : ground ! puppet for 3rd Lorenz eq. and corresonding state variable
use integrable_model_module ,only : integrable_model ,integrate ! parent type and polymorphic time integrator

use global_parameters_module ,only : debugging ! print call tree if true
implicit none ! Prevent implicit typing

private ! Hide everything by default

public :: integrate ! Expose integration procedure from integrable_model_module

type ,extends(integrable_model) ,public :: atmosphere ! Puppeteer
private
type(air) ,allocatable
type(cloud) ,allocatable
type(ground) ,allocatable
contains

air_puppet
cloud_puppet
ground_puppet

procedure ,public :: subtract => subtract_atmospheres subtract one atmosphere from another

procedure ,public :: d_dt => dAtmosphere_dt ! time derivative
procedure ,public :: dRHS_dV => dAtmosphereRHS_dState ! Jacobian contribution (dR/dV)
procedure ,public :: state_vector => atmosphere_state ! return atmosphere solution vector
procedure ,public :: add => add_atmosphere ! add two atmospheres

'

'

procedure ,public :: multiply => multiply_atmosphere multiply an atmosphere by a real scalar
procedure ,public, pass(rhs) :: inverseTimes => inverseTimesAtmosphere ! abstract Gaussian elimination
procedure ,public :: assign => assign_atmosphere ! assign one atmosphere to another
procedure ,public :: empty_instance => null_instance ! create empty atmosphere

procedure ,public :: construct constructor

end type atmosphere

contains

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-8 J D. W. I. Rouson et al.

32 function null_instance(this) result(blank_slate) ! create empty atmosphere

33 class (atmosphere) ,intent (in) this

34 class(integrable_model) ,allocatable blank_slate

35 allocate(atmosphere :: blank_slate)

36 end function

37

38 subroutine construct(this,air_target,cloud_target,ground_target) ! constructor

39 class (atmosphere) sintent(out)  :: this

40 type(air) ,allocatable ,intent(inout) :: air_target

41 type(cloud) ,allocatable ,intent(inout) :: cloud_target

42 type(ground) ,allocatable ,intent(inout) :: ground_target

43 if (debugging) print x,°’ atmosphere’construct(): start’

44 call move_alloc(air_target, this%air_puppet) ! transfer allocations from puppets to Puppeteer

45 call move_alloc(ground_target, this’ground_puppet)

46 call move_alloc(cloud_target, this%cloud_puppet)

47 if (debugging) print x,’ atmosphere’construct(): end’

48 end subroutine

49

50 function dAtmosphere_dt(this) result(dState_dt) ! time derivative (evolution equations)

51 class(atmosphere) ,intent(in) :: this

52 class(integrable_model) ,allocatable dState_dt

53 type (atmosphere) ,allocatable :: delta ! obviates the use of ’select type(this)’

54

55 if (debugging) print x,°’ atmosphere’dAtmosphere_dt(): start’

56 allocate(delta)

57 deltalair_puppet = thisYair_puppet%d_dt( this%cloud_puppet¥coordinate())

58 deltalcloud_puppet = this%cloud_puppet%d_dt( this%air_puppetcoordinate() ,this%ground_puppetlcoordinate())

59 deltal,ground_puppet = this%ground_puppet%d_dt (thisair_puppet’coordinate() ,this%cloud_puppeticoordinate())

60 call move_alloc(delta, dState_dt)

61 if (debugging) print *,”  atmosphereldAtmosphere_dt(): end’

62 end function

63

64 function dAtmosphereRHS_dState(this) result(dRHS_dState) ! atmosphere contribution to Jacobian

65 class (atmosphere) sintent (in) : this

66 real ,dimension(:,:) ,allocatable dAir_dAir , dAir_dCloud , dAir_dGround ! Sub-blocks

67 real ,dimension(:,:) ,allocatable :: dCloud_dAir , dCloud_dCloud , dCloud_dGround ! of dR/dV

68 real ,dimension(:,:) ,allocatable :: dGround_dAir ,dGround_dCloud ,dGround_dGround ! array.

69 real ,dimension(:,:) ,allocatable :: dRHS_dState

70 real ,dimension(:) ,allocatable :: air_coordinate, cloud_coordinate, ground_coordinate

71 integer :: air_egs,air_vars,cloud_eqgs,cloud_vars,ground_egs,ground_vars,i,j,rows,cols
72 if (debugging) print *,”  atmosphere’dAtmosphereRHS_dState(): start’

73 select type(this)

74 type is (atmosphere) ! Calculate matrices holding partial derivative of puppet evolution equation right-hand
75 ! sides with respect to the dependent variables of each puppet.

76 air_coordinate = this%air_puppet’coordinate()

77 cloud_coordinate= this’cloud_puppet’coordinate ()

78 ground_coordinate=this’ground_puppet’coordinate ()

79

80 dAir_dAir = this%air_puppet%d_dAir (cloud_coordinate) ! Diagonal block submatrix
81 dCloud_dCloud = this%cloud_puppet’%d_dCloud(air_coordinate,ground_coordinate) ! Diagonal block submatrix
82 dGround_dGround = thisYground_puppet’%d_dGround(air_coordinate,cloud_coordinate) ! Diagonal block submatrix
83 air_eqs size(dAir_dAir,1) ! submatrix rows

84 air_vars size(dAir_dAir,2) ! submatrix columns

85 cloud_egs size(dCloud_dCloud,1) ! submatrix rows

86 cloud_vars size(dCloud_dCloud,2) ! submatrix columns

87 ground_eqs size(dGround_dGround,1) ! submatrix rows

88 ground_vars size(dGround_dGround,2) ! submatrix columns

89 dAir_dCloud = this%air_puppet¥%d_dy(cloud_coordinate) ! 0ff-diagonal
90 dAir_dGround reshape (source=(/(0.,i=1,air_eqs*ground_vars)/) ,shape=(/air_eqs,ground_vars/)) ! 0ff-diagonal
91 dCloud_dAir this%cloud_puppet%d_dx(air_coordinate,ground_coordinate) ! 0ff-diagonal
92 dCloud_dGround = this%cloud_puppet%d_dz(air_coordinate,ground_coordinate) ! 0ff-diagonal
93 dGround_dAir = thisYground_puppet%d_dx(air_coordinate,cloud_coordinate) ! 0ff-diagonal
94 dGround_dCloud = this/ground_puppet%d_dy(air_coordinate,cloud_coordinate) ! 0ff-diagonal
95

96 rows=air_eqs+cloud_eqs+ground_eqs

97 cols=air_vars+cloud_vars+ground_vars

98 allocate (dRHS_dState(rows,cols))

99 dRHS_dState(1:air_eqs, 1:air_vars) = dAir_dAir ! Begin result assembly
100 dRHS_dState(l:air_eqs, air_vars+l:air_vars+cloud_vars) = dAir_dCloud

101 dRHS_dState(1:air_eqs, air_vars+cloud_vars+1l:cols) = dAir_dGround

102

103 dRHS_dState(air_eqs+1:air_egs+cloud_eqs, 1:air_vars) = dCloud_dAir

104 dRHS_dState(air_eqs+1:air_eqgs+cloud_eqs, air_vars+l:air_vars+cloud_vars) = dCloud_dCloud

105 dRHS_dState(air_eqs+1:air_egs+cloud_eqgs, air_vars+cloud_vars+1:cols) = dCloud_dGround

106

107 dRHS_dState(air_eqs+cloud_eqs+1l:rows, 1:air_vars) = dGround_dAir

108 dRHS_dState(air_eqgs+cloud_eqs+l:rows, air_vars+l:air_vars+cloud_vars) = dGround_dCloud

109 dRHS_dState(air_eqgs+cloud_eqs+l:rows, air_vars+cloud_vars+l:cols) = dGround_dGround ! Finish result assembly
110 end select

111 if (debugging) print *,’ atmosphere’dAtmosphereRHS_dState(): end’

112 end function dAtmosphereRHS_dState

113

114 function atmosphere_state(this) result(phase_space) ! assemble and return solution vector

115 class(atmosphere) ,intent(in) :: this

116 real ,dimension(:) ,allocatable :: state

117 real ,dimension(:) ,allocatable X,¥,z,phase_space

118 integer :: x_start,y_start,z_start

119 integer :: x_end ,y_end ,z_end

120 1if (debugging) print x,’ atmosphere’atmosphere_state(): start’ (commented to avoid I/0 recursion)

121 x = thislair_puppet/coordinate() ; x_start=1 ; x_end=x_start+size(x)-1

122 y = thislcloud_puppeticoordinate() ; y_start=x_end+1; y_end=y_start+size(y)-1

123 z = thislground_puppet/coordinate(); z_start=y_end+1; z_end=z_start+size(z)-1

124 allocate(phase_space(size(x)+size(y)+size(z)))

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

phase_space (x_start:x_end) = x

phase_space(y_start:y_end) = y

phase_space(z_start:z_end) = z

'if (debugging) print *,’ atmosphere’atmosphere_state(): end’ (commented to avoid I/0 recursion)
end function

function add_atmosphere(lhs,rhs) result(sum)
class (atmosphere) ,intent (in)
class(integrable_model) ,intent(in)
class(integrable_model) ,allocatable :
type (atmosphere), allocatable :: local_sum ! used to avoid ’select type(sum)’

if (debugging) print *,°’ atmosphere’add_atmosphere(): start’
allocate (local_sum)
select type(rhs)
type is (atmosphere)
tallocate(local_sumfair_puppet,local_sum’ground_puppet,local_sum’cloud_puppet)
local_sumfair_puppet = lhsfair_puppet  + rhsair_puppet
local_sumfcloud_puppet = lhs%cloud_puppet + rhs%cloud_puppet
local_sum’ground_puppet = lhsyground_puppet + rhs)ground_puppet
class default
stop ’add_atmosphere: rhs argument type not supported’

end select
call move_alloc(local_sum, sum)
if (debugging) print *,’ atmosphere’add_atmosphere(): end’

end function

function subtract_atmospheres(lhs,rhs) result(difference)
class (atmosphere) ,intent(in) :: lhs
class (integrable_model) ,intent(in) rhs
class(integrable_model) ,allocatable
type (atmosphere) ,allocatable

difference
local_difference

if (debugging) print *,’ a Jsubtract_a es(): start’
allocate(local_difference)
select type(rhs)
type is (atmosphere)
tallocate(local_differencefair_puppet,local_differencelground_puppet,local_difference’cloud_puppet)
local_differencefair_puppet = lhslair_puppet - rhsair_puppet
local_difference’cloud_puppet = lhs%cloud_puppet - rhs%cloud_puppet
local_differencelground_puppet = lhsyground_puppet - rhs%ground_puppet
class default
stop ’add_atmosphere: rhs argument type not supported’

end select
call move_alloc(local_difference, difference)
if (debugging) print *,’ a %subtract_a es(): end’

end function

function inverseTimesAtmosphere(lhs,rhs) result(product) ! Solve linear system Ax=b by Gaussian elimination
class(atmosphere) ,intent(in) :: rhs
class(integrable_model) ,allocatable :: product
real ,dimension(:,:) ,allocatable ,intent(in) :: lhs
type (atmosphere) ,allocatable :: local_product
real ,dimension(:) ,allocatable i1 x,b
real ,dimension(:,:) ,allocatable i A
real factor
integer : row,col,n,p ! p=pivot row/col
real ,parameter :: pivot_tolerance=1.0E-02

n=size(lhs,1)
b = rhsYstate_vector()
if (n /= size(lhs,2) .or. n /= size(b)) stop ’integrable_model.f03: ill-posed matrix problem in inverseTimes()’
tallocate(A(n,n),b(n))
allocate(x(n))
A = lhs
do p=1,n-1 ! Forward elimination
if (abs(A(p,p))<pivot_tolerance) stop ’invert: use an algorithm with pivoting’
do row=p+1,n
factor=A(row,p) /A(p,p)
forall(col=p:n)
A(row,col) = A(row,col) - A(p,col)*factor
end forall
b(row) = b(row) - b(p)*factor
end do
end do
x(n) = b(n)/A(n,n) ! Back substitution
do row=n-1,1,-1
x(row) = (b(row) - sum(A(row,row+l:n)*x(row+1:n)))/A(row,row)
end do
allocate(local_product,source=rhs)
call local_product¥air_puppet¥%construct (x(1),x(2))
call local_productcloud_puppet’construct (x(3))
call local_product¥ground_puppet’construct (x(4))
call move_alloc(local_product, product)
end function

function multiply_Atmosphere(lhs,rhs) result(product) ! multiply atmosphere object by a real scalar

class(atmosphere) ,intent (in) 1lhs

real ,intent (in) rhs

class(integrable_model) ,allocatable :: product

type (atmosphere) ,allocatable local_product ! used to avoid ’select type(product)
if (debugging) print *,’ a e/multiply A phere(): start’

App-9

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-10 J D. W. |. Rouson et al.

218 allocate(local_product)
219 !allocate(local_productair_puppet,local_productiground_puppet,local_product’cloud_puppet)
220 local_product?air_puppet = lhs%air_puppet * rhs
221 local_productcloud_puppet = lhs¥cloud_puppet * rhs
222 local_product¥ground_puppet = lhs¥ground_puppet * rhs
223 call move_alloc(local_product, product)
224 if (debugging) print *,”  atmospherefmultiply_Atmosphere(): end’
225 end function
226
227 subroutine assign_atmosphere(lhs,rhs) ! assign one atmosphere object to another
228 class (atmosphere) ,intent (inout)
229 class(integrable_model) ,intent(in)
230 if (debugging) print x,°’ atmosphere’assign_atmosphere(): start’
231 select type(rhs)
232 type is (atmosphere)
233 tallocate(1hs%air_puppet,lhs’cloud_puppet,lhs%ground_puppet)
234 1hs%air_puppet = rhsjair_puppet
235 1hsYcloud_puppet = rhsYcloud_puppet
236 1lhsYground_puppet = rhsYground_puppet
237 class default
238 stop ’assign_atmosphere: rhs argument type not supported’
239 end select
240 if (debugging) print x,°’ atmosphere’assign_atmosphere(): end’
241 end subroutine
242 end module atmosphere_module
1 module air_module
2 use global_parameters_module ,only : debugging ! print call tree information if true
3
4 implicit none ! Prevent implicit typing
5 private ! Hide everything by default
6
7 ! Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):
8 integer ,parameter :: num_eqs=2,num_vars=2
9
10 This type tracks the evolution of the first state variable in the Lorenz system
11 according to the first Lorenz equation. It also tracks the corresponding paramater (sigma)
12 according to the differential equation d(sigma)/dt=0. For illustrative purposes,

'
'
'

13 ! this implementation exposes the number of state variables (2) to the puppeteer without
'
'

14 providing direct access to them or exposing anything about their layout, storage location
15 or identifiers (x and sigma). Their existence is apparent in the rank (2) of the matrix

16 ! d_dAir() returns as its diagonal Jacobian element contribution.

17

18 type ,public :: air

19 private

20 real :: x,sigma ! 1st Lorenz equation solution variable and parameter

21 contains

22 procedure ,public construct => construct_air ! constructor: allocate and initialize components
23 procedure ,public coordinate=> coordinate_air ! (returns ph pace coordinate)
24 procedure ,public d_dt ! time derivative (evolution equations)
25 procedure ,public d_dAir ! contribution to diagonal Jacobian element
26 procedure ,public d_dy ! contribution to off-diagonal Jacobian element
27 procedure ,private :: add_air ! add two instances

28 procedure ,private subtract_air ! subtract one instance from another

29 procedure ,private multiply_air ! multiply an instance by a real scalar
30 generic  ,public operator(+)  => add_air ! map defined operators to corresponding procedures
31 generic  ,public operator(-)  => subtract_air

32 generic  ,public operator(*x)  => multiply_air

33 end type air

34

35 contains

36

37 subroutine construct_air(this,x_initial,s) ! constructor: allocate and initialize components
38 class(air) ,intent(out) :: this

39 real sintent(in) :: x_initial

40 real ,intent(in) :: s

41

42 if (debugging) print x,°’ airjconstruct_air: start’

43 this%x = x_initial

44 thisysigma = s

45 if (debugging) print *,’ airfconstruct_air: end’

46 end subroutine

47

48 function coordinate_air(this) result(return_x) ! accessor (returns phase-space coordinate)
49 class(air) ,intent (in) this

50 real ,dimension(:) ,allocatable return_x

51

52 1if (debugging) print x,’ airfcoordinate_air: start’ (commented to avoid I/0 recursion )
53 tallocate(return_x(num_vars))

54 return_x = [ this’x ,thisYsigma ]

55 1if (debugging) print x,’ airfcoordinate_air: end’ (commented to avoid I/0 recursion)
56 end function

57

58 function d_dt(this,y) result(dx_dt) ! time derivative (evolution equations)

59 class(air) ,intent (in) this

60 real ,dimension(:) ,intent(in) :: y

61 type(air) ::odx_dt

62

63 if (debugging) print x,°’ airfd_dt: start’

64 dx_dt%x=this)sigma* (y (1) -this%x)

65 dx_dt%sigma=0.

66 if (debugging) print *,’ airfd_dt: end’

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




101
102

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ . App-11

end function

function d_dAir(this,y) result(dRHS_dx) ! contribution to diagonal Jacobian element
class(air) ,intent(in) this
real ,dimension(:,:) ,allocatable :: dRHS_dx
real ,dimension(:) ,allocatable :: y
if (debugging) print *,’ airfd_dAir: start’

lallocate (dRHS_dx (num_eqs,num_vars))
'dRHS_dx = [ d{sigma*(y-x)}/dx d{sigma*(y-x)}/dsigma ]
! [ a{0}/ax d{0}/dsigma ]
if (size(y) /= 1) stop ’d_dAir: invalid y size’
dRHS_dx = reshape(source=(/-this¥sigma,0.,y(1)-this%x,0./),shape=(/num_eqs,num_vars/))
if (debugging) print *,°’ air’d_dAir: end’
end function

function d_dy(this,y) result(dRHS_dy) ! contribution to off-diagonal Jacobian element

class(air) ,intent(in) :: this
real ,dimension sallocatable dRHS_dy
real ,dimension(: ,allocatable :: y

if (debugging) print *,’ airfd_dy: start’
allocate (dRHS_dy (num_eqs,size(y)))

'dRHS_dy = [ d{sigma*(y(1)-x(1))}/dy(1) 0 ... 0]

! [ a{0}/dy(1) 0 ...0]
dRHS_dy = 0.

dRHS_dy(1,1) = thisYsigma

if (debugging) print *,’ air¥d_dy: end’

end function

function add_air(lhs,rhs) result(sum) ! add two instances

class(air) ,intent(in) 1hs,rhs

type(air) sum

if (debugging) print *,°’ airfadd_air: start’
sum’x = lhs¥x + rhsYx

sum’sigma = lhs¥sigma + rhs%sigma

if (debugging) print *,’ airfadd_air: end’

end function

function subtract_air(lhs,rhs) result(difference) ! subtract one instance from another

class(air) ,intent(in) :: 1lhs,rhs

type (air) :: difference

if (debugging) print *,°’ airfsubtract_air: start’
differencelx = lhs%x - rhsix

differencelsigma = lhsY%sigma - rhs%sigma

if (debugging) print *,’ airjsubtract_air: end’

end function

function multiply_air(lhs,rhs) result(product) ! multiply an instance by a real scalar

class(air) ,intent(in) 1lhs

real ,intent (in) rhs

type(air) :: product

if (debugging) print x,°’ airfmultiply_air: start’
productx = lhs%x *rhs

productysigma = lhsYsigma*rhs

if (debugging) print *,’ airfmultiply_air: end’

end function
end module air_module

clou 03

module cloud_module
use global_parameters_module ,only : debugging ! print call tree if .true.

implicit none ! Prevent implicit typing
private ! Hide everything by default

This type tracks the evolution of the second state variable in the Lorenz system
according to the second Lorenz equation. It also tracks the corresponding paramater (rho)
according to the differential equation d(rho)/dt=0. For illustrative purposes,

this implementation does not expose the number of state variables (2) to the puppeteer
because no iteration is required and the need for arithmetic operations on rho is therefore
an internal concern. The rank of the matrix d_dCloud() returns is thus 1 to reflect the
only variable on which the puppeteer needs to iterate when handling nonlinear couplings in
implicit solvers.

Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):
integer ,parameter :: num_egs=1,num_vars=1

type ,public :: cloud
private
real :: y,rho ! 2nd Lorenz equation solution variable and parameter
contains
procedure ,public
procedure ,public
procedure ,public
procedure ,public

: construct => construct_cloud constructor: allocate and initialize components
: coordinate=> coordinate_cloud accessor (returns phase-space coordinate)
d_dt time derivative (evolution equations)

'
'
!

: d_dCloud ! contribution to diagonal Jacobian element
'
'
'
'

procedure ,public d_dx ! contribution to off-diagonal Jacobian element
procedure ,public :: d_dz ! contribution to off-diagonal Jacobian element
procedure ,private :: add_cloud add two instances

procedure ,private :: subtract_cloud subtract one instance from another

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-12 J D. W. |. Rouson et al.

31 procedure ,private :: multiply_cloud ! multiply an instance by a real scalar
32 generic  ,public operator(+) => add_cloud ! map defined operators to corresponding procedures
33 generic  ,public operator(-) subtract_cloud

34 generic  ,public :: operator(*) => multiply_cloud

35 end type cloud

36

37 contains

38

39 subroutine construct_cloud(this,y_initial,r) ! constructor: allocate and initialize components
40 class(cloud) ,intent(out) :: this

41 real ,intent(in) :: y_initial

42 real ,optional ,intent(in) :: r

43 if (debugging) print x,°’ cloudconstruct_cloud: start’

44 this%y = y_initial

45 if (present(r)) thisfrho = r

46 if (debugging) print x,’ cloudyconstruct_cloud: end’

47 end subroutine

48

49 function coordinate_cloud(this) result(return_y) ! accessor (returns phase-space coordinate)
50 class(cloud) ,intent(in) :: this

51 real ,dimension(:) ,allocatable :: return_y

52 1if (debugging) print *,’ cloud%coordinate_cloud: start’ (commented to prevent I/0 recursion)
53 !allocate(return_y (num_vars))

54 return_y = [this)y]

55 1if (debugging) print *,’ cloudlcoordinate_cloud: end’ (commented to prevent I/0 recursion)
56 end function

57

58 function d_dCloud(this,x_ignored,z_ignored) result(dRHS_dy) ! contribution to diagonal Jacobian element
59 class(cloud) ,intent(in) :: this

60 real ,dimension(:) ,allocatable ,intent(in) x_ignored,z_ignored

61 real ,dimension(:,:) ,allocatable dRHS_dy

62 if (debugging) print *,’ cloud’d_dCloud: start’

63 allocate (dRHS_dy (num_eqgs,num_vars))

64 'dRHS_dy (1) = [ d{x(1)*(rho-z(1))-y(1)}/dy(1) ]

65 dRHS_dy(1,1) = -1.

66 if (debugging) print *,’ cloud%d_dCloud: end’

67 end function

68

69 function d_dx(this,x,z) result(dRHS_dx) ! contribution to off-diagonal Jacobian element
70 class(cloud) ,intent(in) :: this

71 real ,dimension(:) ,allocatable ,intent(in) X,z

72 real ,dimension(:,:) ,allocatable :: dRHS_dx

73 if (debugging) print *,’ cloud’d_dx: start’

74 allocate (dRHS_dx (num_eqgs,size(x)))

75 'dRHS_dx = [ d{x(1)*(rho-z(1))-y}/dx(1) 0 ... 0]

76 dRHS_dx = 0.

77 dRHS_dx(1,1) = thisY%rho-z(1)

78 if (debugging) print *,’ cloud%d_dx: end’

79 end function

80

81 function d_dz(this,x,z) result(dRHS_dz) ! contribution to off-diagonal Jacobian element
82 class(cloud) ,intent(in) :: this

83 real ,dimension(:) ,allocatable ,intent(in) :: x,z

84 real ,dimension(:,:) ,allocatable :: dRHS_dz

85 if (debugging) print x,°’ cloud’d_dz: start’

86 allocate (dRHS_dz(num_eqgs,size(z)))

87 'dRHS_dz = [ d{x(1)*(rho-z(1))-y(1)}/dz(1) 0 ... 0]

88 dRHS_dz = 0.

89 dRHS_dz(1,1) = -x(1)

90 if (debugging) print *,’ cloud’d_dz: end’

91 end function

92

93 function d_dt(this,x,z) result(dy_dt) ! time derivative (evolution equations)

94 class(cloud) ,intent (in) this

95 real ,dimension(:) ,intent(in) X,z

96 type (cloud) 11 dy_dt

97 if (debugging) print x,°’ cloud’d_dt_cloud: start’

98 dy_dt%y = x(1)*(this%rho-z(1))-thisly

99 dy_dt%rho = 0.

100 if (debugging) print *,’ cloud%d_dt_cloud: end’

101 end function

102

103 function add_cloud(lhs,rhs) result(sum) ! add two instances

104 class(cloud) ,intent(in) :: lhs,rhs

105 type(cloud) 1 sum

106 if (debugging) print x,°’ cloud’add_cloud: start’

107 sum’y = lhsly + rhsiy

108 sumfrho = lhs%rho + rhsirho

109 if (debugging) print *,’ cloud%add_cloud: end’

110 end function

111

112 function subtract_cloud(lhs,rhs) result(difference) ! subtract one instance from another
113 class(cloud) ,intent(in) :: lhs,rhs

114 type(cloud) :: difference

115 if (debugging) print *,’ cloudysubtract_cloud: start’

116 difference%y = lhshy - rhsly

117 differencelrho = lhs%rho - rhs¥rho

118 if (debugging) print x,°’ cloudsubtract_cloud: end’

119 end function

120

121 function multiply_cloud(lhs,rhs) result(product) ! multiply an instance by a real scalar
122 class(cloud) ,intent(in) :: lhs

123 real ,intent(in) :: rhs

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




124
125
126
127
128
129
130

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ . App-13

type(cloud) 11 product

if (debugging) print *,’ cloud/multiply_cloud: start’
product’y = lhs¥%y* rhs

productyrho = lhs)rho* rhs

if (debugging) print *,’ cloud%multiply_cloud: end’

end function

end module cloud_module

module ground_module

use global_parameters_module ,only : debugging ! print call tree if true

implicit none ! Prevent implicit typing
private ! Hide everything by default

This type tracks the evolution of the third state variable in the Lorenz system
according to the third Lorenz equation. It also tracks the corresponding paramater (beta)
according to the differential equation d(beta)/dt=0. For illustrative purposes,

this implementation does not expose the number of state variables (2) to the puppeteer
because no iteration is required and the need for arithmetic operations on beta is therefore
an internal concern. The rank of the matrix d_dGround() returned is thus 1 to reflect the
only variable on which the puppeteer needs to iterate when handling nonlinear couplings in
implicit solvers.

Number of evolution equations/variables exposed to the outside world (via Jacobian sub-block shapes):
integer ,parameter :: num_egs=1,num_vars=1

type ,public :: ground

private
real :: z,beta ! 3rd Lorenz equation solution variable and parameter

contains
procedure ,public :: construct => construct_ground ! constructor: allocate and initialize components
procedure ,public :: coordinate=> coordinate_ground ! accessor (returns phase-space coordinate)
procedure ,public :: d_dt ! time derivative (evolution equations)
procedure ,public :: d_dGround contribution to diagonal Jacobian element
procedure ,public :: d_dx contribution to off-diagonal Jacobian element
procedure ,public :: d_dy contribution to off-diagonal Jacobian element
procedure ,private :: add_ground add two instances

subtract one instance from another
multiply an instance by a real scalar
map defined operators to corresponding procedures

procedure ,private
procedure ,private :: multiply_ground
generic  ,public :: operator(+) => add_ground
generic  ,public :: operator(-) => subtract_ground
generic  ,public :: operator(x) => multiply_ground
end type ground

subtract_ground

contains

subroutine construct_ground(this,z_initial,b) ! constructor: allocate and initialize components

class(ground) ,intent(out) this

real ,intent(in) :: z_initial

real ,optional ,intent(in) :: b

if (debugging) print *,’ ground’construct_ground: start’

this%z = z_initial

if (present(b)) thisibeta = b

if (debugging) print *,°’ ground’construct_ground: end’
end subroutine

function coordinate_ground(this) result(return_z) ! (returns ph P coordinate)
class(ground) ,intent (in) this
real ,dimension(:) ,allocatable return_z
1if (debugging) print *,’ groundjcoordinate_ground: start’ (can cause I/0 recursion error)
'allocate(return_z(num_vars))
return_z = [ this¥z ]
'if (debugging) print x,’ ground’,coordinate_ground: end’ (can cause I/0 recursion error)
end function

function d_dt(this,x,y) result(dz_dt) ! time derivative (evolution equations)

class (ground) ,intent(in) :: this
real ,dimension(:) ,intent(in) :: x,y
type (ground) 11 dz_dt

if (debugging) print *,’ _dt: start’
dz_dt%z = x(1)*y(1) - this)betaxthislz
dz_dt%beta = 0.

if (debugging) print *,’ ground’d_dt: end’

end function

function d_dGround(this,x_ignored,y_ignored) result(dRHS_dz) ! contribution to diagonal Jacobian element
class (ground) ,intent(in) :: this
real ,dimension(:) ,allocatable ,intent(in) :: x_ignored,y_ignored
real ,dimension(:,:) ,allocatable dRHS_dz
if (debugging) print *,’ ground’d_dGround: start’
'dRHS_dz = [ d{x(1)*y(1) - beta*z}/dz(1) ]
allocate (dRHS_dz(num_eqs,num_vars))
dRHS_dz(1,1) = -thisibeta
if (debugging) print *,’ ground’d_dGround: end’
end function

function d_dx(this,x,y) result(dRHS_dx) ! contribution to off-diagonal Jacobian element
class(ground) ,intent (in) this
real ,dimension(:) ,allocatable ,intent(in) :: X,y
real ,dimension(:,:) ,allocatable dRHS_dx
if (debugging) print *,’ ground’d_dx: start’

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-14 J D. W. |. Rouson et al.

84 allocate (dRHS_dx (num_eqs,size(x)))

85 'dRHS_dz = [ d{x(1)*y(1) - beta*z(1)}/dx(1) 0 ... 0]

86 dRHS_dx=0.

87 dRHS_dx(1,1) = y(1)

88 if (debugging) print *,’ ground’d_dx: end’

89 end function

90

91 function d_dy(this,x,y) result(dRHS_dy) ! contribution to off-diagonal Jacobian element
92 class (ground) ,intent(in) :: this

93 real ,dimension(:) ,allocatable ,intent(in) :: X,y

94 real ,dimension(:,:) ,allocatable :: dRHS_dy

95 if (debugging) print x,°’ ground/d_dy: start’

96 allocate (dRHS_dy (num_egs,size(y)))

97 'dRHS_dz = [ d{x(1)*y(1) - beta*z(1)}/dy(1) 0 ... 0]

98 dRHS_dy = 0.

99 dRHS_dy(1,1) = x(1)

100 if (debugging) print *,’ groundyd_dy: end’

101 end function

102

103 function add_ground(lhs,rhs) result(sum) ! add two instances
104 class(ground) ,intent(in) 1lhs,rhs

105 type (ground) 1:osum

106 if (debugging) print x,°’ ground/add_ground: start’

107 sum%z = lhskhz + rhs¥z

108 sumybeta = lhs)beta + rhsibeta

109 if (debugging) print *,’ groundladd_ground: end’

110 end function

111

112 function subtract_ground(lhs,rhs) result(difference) ! subtract one instance from another
113 class(ground) ,intent(in) :: lhs,rhs

114 type (ground) :: difference

115 if (debugging) print *,’ ground/subtract_ground: start’
116 difference’z = lhs%z - rhsiz

117 differencelbeta = lhs)beta - rhsibeta

118 if (debugging) print x,°’ ground/subtract_ground: end’
119 end function

120

121 function multiply_ground(lhs,rhs) result(product) ! multiply an instance by a real scalar
122 class(ground) ,intent(in) :: lhs

123 real ,intent(in) :: rhs

124 type (ground) :: product

125 if (debugging) print *,’ ground/multiply_ground: start’
126 productz = lhs%z * rhs

127 productybeta = lhs’beta* rhs

128 if (debugging) print x,°’ ground/multiply_ground: end’
129 end function

130 end module ground_module

APPENDIX B. C++ IMPLEMENATION

1 #ifndef REF_H_

2 #define REF_H_

3

4| /e

5 * A very simple invasive reference counted pointer.
6 * In future C++, this should be replaced with shared-ptr
7 */

8

9 #include <iostream>

10 #include <unistd.h>

11

12 template <typename T>

13 class Ref {

14 public:

15 typedef Ref<T> Self_t;

16

17 Ref() : ptr_(NULL) {}

18 Ref(const Self_t &other) : ptr_(other.ptr_ ) {
19 if (ptr_) ptr_->grab();

20 }

21 template <typename Other>

22 Ref (Ref<Other> other) : ptr_(other.ptr()) {
23 if(ptr_) ptr_->grab();

24 }

25 template <typename Other>

26 Ref(Other *other) : ptr_(other) {

27 if (ptr_) ptr_->grab();

28 }

29 “Ref() {

30 if (ptr_) ptr_->release();

31 }

32 template <typename Other>

33 Self_t& operator=(const Ref<Other> &other) {
34 if (other.ptr() !'= ptr_) {

35 if(ptr_) ptr_->release();

36 ptr_ = other.ptr();

37 if (ptr_) ptr_->grab();

38 }

39 }

40 template <typename Other>

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ J App-15

Self_t& operator=(0Other *other) {
if(ptr_ != other) {
if(ptr_) ptr_->release();
ptr_ = other;
if (ptr_) ptr_->grab();
b3
b
T* operator->() {
return ptr_;
}
const T* operator->() const {
return ptr_;
3
T& operator*() {
return *ptr_;
b3
const T& operator*() const {
return ptr_;
b
template <typename Other>
bool operator==(const Ref<Other> &other) const {

return ptr_ == other.ptr_;

}

bool operator==(const T *other) const {
return ptr_ == other;

¥

template <typename Other>

bool operator==(const Other *other) comst {
return ptr_ == other;

¥

template <typename Other>

bool operator<(const Ref<Other> &other) const {
return ptr_ < other.ptr_;

template <typename Other>
bool operator<(const Other *other) const {
return ptr_ < other;

T+ ptr() const { return ptr_; }
private:
T *ptr_;
};
template <typename Target, typename Source>

Ref<Target> cast(const Ref<Source> &pp) {
return Ref<Target>(dynamic_cast<Target*>(pp.ptr()));

#endif /x ! REF_H_ */

#ifndef REFBASE_H_
#define REFBASE_H_

/¥*
* Base for reference counted objects.

*/
#include "Ref.h"

class RefBase {
public:
RefBase() : cnt_(0) {}
RefBase(const RefBase &) : cnt_(0) {}
virtual "RefBase() {}
void grab() throw() {
cnt_++;
¥
void release() throw() {
cnt_--;
if (! cnt_) delete this;
}
private:
int cnt_;

b S

#endif /* ! REFBASE_H_ */

#ifndef _H_FMT_
#define _H_FMT_

#include "globals.h"
#include <iostream>
#include <iomanip>

// The fmt(...) helper class helps hide the mess that is <iomanip>
struct fmt {
explicit fmt(real_t value, int width=12, int prec=8) :
v_(1, value), w_(width), p_(prec)
A8

ACM Transactions on Mathematical Software, Vol. 37, No,

. 1, Article 3, Publication date: January 2010.



13
14
15

17
18
19

21
22

24
25

27
28
29

31
32
33

= OO0 Ul W

=

© 001 ; TR W N

App-16 J D. W. |. Rouson et al.

}

¥

explicit fmt(crd_t value, int width=12, int prec=8)
v_(value), w_(width), p_(prec)
ey

const crd_t v_;
const int w_, p_;

inline std::ostream& operator<<(std::ostream &os, const fmt &v) {

// Store format flags for the stream.
std::ios_base::fmtflags flags = os.flags();
// Force our own weird format.
for(crd_t::const_iterator it = v.v_.begin(); it != v.v_.end(); ++it) {
os << " " <<std::setw(v.w_) <<std::setprecision(v.p_) <<std::fixed << *it;
}
// Restore original format flags.
os.flags(flags);
return os;

#endif //! _H_FMT_

#ifndef _H_GLOBALS_
#define _H_GLOBALS_

#include "Ref.h"
#include "RefBase.h"

#include <vector>

typedef float real_t;
typedef std::vector<real_t> crd_t;

#endif //!_H_GLOBALS

B.

1 Semidiscrete Example

#include "lorenz.h"
#include "fmt.h"
#include <iostream>

int main () {

using namespace std;
typedef lorenz::ptr_t ptr_t;

const int num_steps=2000, space_dimension=3;
const float sigma=10, rho=28, beta=8.0/3.0, dt=0.01;
const crd_t initial_condition(space_dimension, 1.0);

ptr_t attractor = ptr_t(new lorenz(initial_condition,sigma,rho,beta));
const crd_t &output = attractor->output();
try {

std::cout << fmt(output, 12, 10) << "\n";

for (int step = 1; step <= num_steps; ++step) {
integrate (attractor, dt);
std::cout << fmt(output, 12, 10) << "\n";

-

catch(std: :exception &e) {

std::cerr << "Error exit following exception of type " << e.what() << "\n";
return EXIT_FAILURE;

catch(...) {

std::cerr << "Error exit following an unknown exception type\n";

return EXIT_FAILURE;

-

return EXIT_SUCCESS;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.

lorenz.h

#ifndef __H_LORENZ__
#define __H_LORENZ__ 1

#include "integrable_model.h"

class lorenz : public integrable_model {
public:

typedef Ref<lorenz> ptr_t;
lorenz ();

lorenz (const crd_t, real_t sigma, real_t rho, real_t beta);

// Default copy and assignment operators are just fine for this type.

public:

integrable_model::ptr_t d_dt() const;
void operator+=(integrable_model::ptr_t other);
integrable_model::ptr_t operator*(float val) const;

const crd_t& output() const;




20
21
22

24
25
26
27

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

virtual “lorenz();

private:
crd_t state_; // solution vector.
float sigma_, rho_, beta_;

bH

#endif

App-17

#include <iostream>
#include <exception>

#include "lorenz.h"
using namespace std;

struct LorenzError : public std::exception {
virtual ~LorenzError() throw() {}

}

// default constructor
lorenz::lorenz ()

3

// constructor using each element
lorenz::lorenz (const crd_t initial_state, real_t s, real_t r, real_t b)
state_(initial_state), sigma_(s), rho_(r), beta_(b)

8

const crd_t& lorenz::output() const {
return state_;

¥

integrable_model::ptr_t lorenz:: d_dt() const

{
ptr_t result = ptr_t(new lorenz);
result->state_.resize(3);
result->state_.at(0) = sigma_x(state_.at(1) - state_.at(0));
result->state_.at(1) = state_.at(0)*(rho_ - state_.at(2)) - state_.at(1);
result->state_.at(2) = state_.at(0)*state_.at(1) - beta_*state_.at(2);
return result;

void lorenz::operator+=(integrable_model::ptr_t rhs) {
ptr_t other = cast<lorenz>(rhs);
if (other == NULL) {
std::cerr << "lorenz::operator+=: Failed dynamic cast\n"
throw LorenzError();

if (other->state_.size()
std::cerr << "lorenz
throw LorenzError();

this->state_.size()) {
operator+=: Non-identical dimensions.\n";

for(size_t i = 0; i < state_.size(); ++i) {
state_.at(i) += other->state_.at(i);
¥
¥

integrable_model::ptr_t lorenz::operator*(real_t rhs) const
{
ptr_t result = ptr_t(new lorenz(xthis));
for(size_t i = 0; i < result->state_.size(); ++i) {
result->state_.at(i) *= rhs;

return result;

ntegrable.model.h

#ifndef __H_INTEGRABLE_MODEL__
#define __H_INTEGRABLE_MODEL__ 1

#include "globals.h"

class integrable_model : virtual public RefBase {
public:
typedef Ref<integrable_model> ptr_t;

virtual “integrable_model();

virtual ptr_t d_dt() comst = 0;
virtual void operator+=(ptr_t) = 0;
virtual ptr_t operator*(real_t) const = 0;

protected:
integrable_model(const integrable_model&);
integrable_model();

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



19
20
21

23

© 001 ; TR W

App-18 J D. W. |. Rouson et al.

};
void integrate (integrable_model::ptr_t, real_t);

#endif

integrable-model.cpp

#include "integrable_model.h"
typedef integrable_model::ptr_t ptr_t;

integrable_model::integrable_model() : RefBase() {
}

integrable_model: :integrable_model(const integrable modeld) : RefBase() {

}
integrable_model: : “integrable_model() {
void integrate (ptr_t model, real_t dt) {

*model += *(model->d_dt()) * dt;
}

B.2 Strategy Example

#include "timed_lorenz.h"
#include "explicit_euler.h"
#include "runge_kutta_2nd.h"
#include "fmt.h"

#include <iostream>

int main ) {
typedef lorenz::ptr_t ptr_t;

static comst int num_steps=10;
const real_t sigma=10., rho=28., beta=8./3., dt=0.01;
crd_t initial_condition(3, 1.0);

Ref<lorenz> attractor = new lorenz(initial_condition, sigma, rho, beta,
new explicit_euler);
std::cout << "lorenz attractor:\n"
<< fmt(attractor->coordinate(), 12, 9) << "\n";
for (int step = 0; step < 4*num_steps; ++step) {
attractor->integrate(0.25%dt) ;
std::cout << fmt(attractor->coordinate(), 12, 9) << "\n";

¥

Ref<timed_lorenz> timed_attractor

= new timed_lorenz(initial_condition, sigma, rho, beta,

new runge_kutta_2nd);
std::cout << "\ntimed lorenz attractor:\n"
<< fmt(timed_attractor->coordinate(), 12, 9) << "\n";

for (int i = 0; i < num_steps; ++i) {

timed_attractor->integrate(dt);

std::cout << fmt(timed_attractor->coordinate(), 12, 9) << "\n";

¥

return 0;

integrable_mode

#ifndef _H_INTEGRABLE_MODEL_
#define _H_INTEGRABLE_MODEL_

#include "strategy.h"
#include "RefBase.h"
#include "globals.h"

class integrable_model : virtual public RefBase {
public:

typedef Ref<integrable_model> ptr_t;

typedef strategy::ptr_t strategy_t;

integrable_model (strategy_t);
integrable_model(const integrable_model&);
virtual “integrable_model();

void set_strategy (strategy_t);
strategy_t get_strategy () comst;
void integrate (real_t);

virtual ptr_t clone() const = 0;
virtual ptr_t d_dt() comst = 0;
virtual ptr_t operator+=(ptr_t) = 0
virtual ptr_t operator*=(real_t) = 0;

private:

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

strategy_t quadrature_;

#include "model_ops.h"

#endif //!_H_INTEGRABLE_MODEL_

App-19

integrable.model.cpp

#include "integrable_model.h"
#include <exception>

struct integrable_model_error : public std::exception {
virtual ~integrable_model_error() throw() {}

typedef integrable_model::ptr_t ptr_t;
typedef integrable model::strategy_t strategy_t;

integrable_model: : integrable_model(strategy_t quad)
RefBase(), quadrature_(quad)
Re]

integrable_model::integrable_model(const integrable_model& other)
RefBase(), quadrature_(other.quadrature_)

{3

integrable_model: : “integrable_model() {

¥

void integrable_model::set_strategy (strategy_t quad) {
quadrature_ = quad;

¥

strategy_t integrable_model::get_strategy () const {
return quadrature_;

void integrable_model::integrate (real_t dt) {
quadrature_->integrate(this, dt);

lorenz.h

#ifndef _H_LORENZ_
#define _H_LORENZ_

#include "integrable_model.h"

class lorenz : public integrable_model {
public:
typedef integrable_model::ptr_t ptr_t;
typedef integrable_model::strategy_t strategy_t;

lorenz(const crd_t&, real_t sigma, real_t rho, real_t beta, strategy_t);
virtual “lorenz();

virtual ptr_t clone() const;
virtual ptr_t d_dt() const;
virtual ptr_t operator+=(ptr_t);
virtual ptr_t operator*=(real_t);

void set_coordinate(const crd_t&);
const crd_t& coordinate() const;
real_t sigma() const;

real_t rho() const;

real_t beta() const;

private:
crd_t state_;
real_t sigma_, rho_, beta_;

¥

#endif // ! _H_LORENZ_

#include "lorenz.h"
#include "fmt.h"
#include <exception>

struct lorenz_error : public std::exception {
virtual “lorenz_error() throw() {}

typedef lorenz::ptr_t ptr_t;
typedef lorenz::strategy_t strategy_t;

lorenz::lorenz(const crd_t& ste, real_t s, real_t r, real_t b, strategy_t str)
integrable_model(str), state_(ste), sigma_(s), rho_(r), beta_(b)

lorenz::~lorenz() {

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



© 00 1O UK W

App-20 J D. W. |. Rouson et al.

ptr_t lorenz::clone() const {
return ptr_t(new lorenz(xthis));

}

ptr_t lorenz::d_dt() const {
crd_t new_state(3);
new_state.at(0) = sigma_ * (state_.at(1) - state_.at(0));
new_state.at(1) = state_.at(0) * (rho_ - state_.at(2)) - state_.at(1);
new_state.at(2) = state_.at(0) * state_.at(1) - beta_ * state_.at(2);
return ptr_t(new lorenz(new_state, sigma_, rho_, beta_, get_strategy()));

ptr_t lorenz::operator+=(ptr_t inval) {
Ref<lorenz> other = cast<lorenz>(inval);
if ((other == NULL) || (state_.size() != other->state_.size())) {
std::cerr << "lorenz::operator+=: Invalid input argument\n"
throw lorenz_error();

size_t size = state_.size();
for(size_t i = 0; i < size; ++i) {
state_.at(i) += other->state_.at(i);

return ptr_t(this);

ptr_t lorenz::operator*=(real_t val) {
size_t size = state_.size();
for(size_t i = 0; i < size; ++i) {
state_.at(i) *= val;
¥
return ptr_t(this);

void lorenz::set_coordinate(const crd_t& state) {
state_ = state;

}

const crd_t& lorenz::coordinate() const {
return state_;

}
real_t lorenz::sigma() const {

return sigma_;

real_t lorenz::rho() const {
return rho_;

real_t lorenz::beta() const {
return beta_;

#ifndef _H_TIMED_LORENZ_
#define _H_TIMED_LORENZ_

#include "strategy.h"
#include "lorenz.h"

class timed_lorenz : public lorenz {
public:

typedef lorenz::ptr_t ptr_t;

typedef lorenz::strategy_t strategy_t;

timed_lorenz(const crd_t&, real_t sigma, real_t rho, real_t beta,
strategy_t, double t_init = 0);

virtual “timed_lorenz();

virtual ptr_t clone() const;

virtual ptr_t d_dt() const;

virtual ptr_t operator+=(ptr_t);

virtual ptr_t operator*=(real_t);

void set_time (real_t);

real_t get_time() const;
private:

real_t time_;

}

#endif //!_H_TIMED_LORENZ_

timed-lorenz.cpp

#include "timed_lorenz.h"
#include <exception>

struct timed_lorenz_error : public std::exception {
virtual “timed_lorenz_error() throw() {}
}

typedef timed_lorenz
typedef timed_lorenz::

tr_t ptr_t;
trategy_t strategy_t;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

timed_lorenz::timed_lorenz(const crd_t& ste, real_t s, real_t r, real_t b,
strategy_t strat, double t_init)
lorenz(ste, s, r, b, strat), time_(t_init)

{3

timed_lorenz::~timed_lorenz() {

ptr_t timed_lorenz::clone() const {
return ptr_t(new timed_lorenz(*this));

ptr_t timed_lorenz::d_dt() const {
Ref<lorenz> parent = cast<lorenz>(lorenz::d_dt());
return ptr_t(new timed_lorenz(parent->coordinate(), parent->sigma(),
parent->rho(), parent->beta(),
parent->get_strategy(), 1.0));
¥

ptr_t timed_lorenz::operator+=(ptr_t inval) {

Ref<timed_lorenz> other = cast<timed_lorenz>(inval);

if (other == NULL) {
std::cerr << "timed_lorenz::operator+=: Invalid input type\n";
throw timed_lorenz_error();

¥

lorenz: :operator+=(other);

time_ += other->time_;

return ptr_t(this);

}

ptr_t timed_lorenz::operator*=(real_t val) {
lorenz: :operator*=(val);
time_ *= valj
return ptr_t(this);

¥

void timed_lorenz::set_time (real_t t) {
time_ = t;

¥

real_t timed_lorenz::get_time() const {
return time_;

App-21

#ifndef _H_EXPLICIT_EULER_
#define _H_EXPLICIT_EULER_

#include "strategy.h"
#include "integrable_model.h"

class explicit_euler : public strategy
{
public:

virtual “explicit_euler();

virtual void integrate (model_t this_obj, real_t dt) const;

bH

#endif //!_H_EXPLICIT_EULER_

#include "explicit_euler.h"
#include "integrable_model.h"
#include <exception>

explicit_euler:: “explicit_euler()

3

void explicit_euler::integrate (model_t this_obj, real_t dt) const {
*this_obj += this_obj->d_dt() * dt;
}

#ifndef _H_RUNGE_KUTTA_2ND_
#define _H_RUNGE_KUTTA_2ND_

#include "strategy.h"
#include "integrable_model.h"

class runge_kutta_2nd : public strategy {
public:
virtual “runge_kutta_2nd();
virtual void integrate(model_t this_obj, real_t dt) const;

#endif

runge kutta_2n

#include <iostream>
#include <exception>

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




-
SO WO U A W

11
12
13
14
15
16

18
19

21
22
23
24

NI

oo

App-22 J D. W. |. Rouson et al.

#include "integrable_model.h"
#include "runge_kutta_2nd.h"

using namespace std;

runge_kutta_2nd: :“runge_kutta_2nd() {

void runge_kutta_2nd::integrate (model_t this_obj, real_t dt) const {
model_t this_half = this_obj + this_obj->d_dt() * (0.5%dt); // predictor

*this_obj += this_half->d_dt() * dt; // corrector
¥

#ifndef _H_STRATEGY_
#define _H_STRATEGY_

#include "globals.h"
#include "RefBase.h"

class integrable_model;
class strategy : public RefBase {
public:

typedef Ref<strategy> ptr_t;

typedef Ref<integrable_model> model_t;

virtual “strategy() {}
virtual void integrate (model_t this_obj, real_t dt) comst = 0;

#endif //!_H_STRATEGY_

#ifndef _H_MODEL_OPS_
#define _H_MODEL_OPS_

inline integrable_model::ptr_t
operator+(integrable_model::ptr_t a, integrable_model::ptr_t b)
{

integrable_model::ptr_t tmp = a->clone();

*tmp += b;

Teturn tmp;

inline integrable_model::ptr_t operator*(integrable_model::ptr_t a, real_t b) {
integrable_model::ptr_t tmp = a->clone();
*tmp *= b;
return tmp;

}

#endif //! _H_MODEL_OPS_

B.3 Puppeteer Example

#include "atmosphere.h"
#include "fmt.h"

typedef integrable_model::ptr_t ptr_t;

int main() {
const int num_steps=1000;
const real_t x=1., y=1., z=1., sigma=10., rho=28, beta=8./3., dt=0.02;

air sky(x, sigma);

cloud puff(y, rho);

ground earth(z, beta);

ptr_t boundary_layer = ptr_t(new atmosphere(sky, puff, earth));

real t t = 0.;
std::cout << fmt(t,5,2) << " "
<< fmt(boundary_layer->state_vector()) << "\n";

for(int step = 1; step <= num_steps; ++step) {

integrate(boundary_layer, dt);

t += dt;

std::cout << fmt(t,5,2) << " "

<< fmt(boundary_layer->state_vector()) << "\n";

integrablemodel.h

#ifndef _H_INTEGRABLE_MODEL_
#define _H_INTEGRABLE_MODEL_

#include "mat.h"
#include "RefBase.h"

class integrable_model : virtual public RefBase {

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




8 public:

9 typedef Ref<integrable_model> ptr_t;

10

11 integrable_model();

12 integrable_model(const integrable_model);

13 virtual “integrable_model();

14

15 // The following methods do dynamic allocation (yuck).
16 virtual ptr_t d_dt() comst = 0;

17 virtual void dRHS_dV(mat_t &result) const = 0;

18 virtual ptr_t clone() const = 0;

19 virtual ptr_t inverse_times(const mat_t&) const = 0;
20 virtual crd_t state_vector() const = 0;
21
22 // The following methods are destructive updates.
23 virtual ptr_t operator+=(ptr_t) = 0;
24 virtual ptr_t operator-=(ptr_t) = 0
25 virtual ptr_t operator*=(real_t) = 0;
26 s
27
28 | // Integration routine.
29 void integrate(integrable_model::ptr_t state, double dt);
30
31 #endif //!_H_INTEGRABLE_MODEL_

1 #include "integrable_model.h"

2 #include "model_ops.h"

3

4 integrable_model: : integrable_model() : RefBase() {

5

6

7 integrable_model: :integrable_model(const integrable model&) : RefBase() {
8

9

10 integrable_model: : “integrable_model() {

11

12

13 void integrate(ptr_t state, double dt) {

14 static const int num_iterations = 5;

15 ptr_t initial = state->clone();

16 mat_t identity, dRHS_dState;

17 for(int iteration = 0; iteration < num_iterations; ++iteration) {
18 state->dRHS_dV(dRHS_dState) ;

19 identity.identity(dRHS_dState.rows());

20 mat_t jacobian = identity - (0.5%dt) * dRHS_dState;
21 ptr_t residual= state-(initial+((initial->d_dt()+state->d_dt())*(0.5xdt)));
22 ptr_t scratch = residual->inverse_times(jacobian);
23 *state -= scratch;

24 3

25 ¥

1 #ifndef _H_ATMOSPHERE_

2 #define _H_ATMOSPHERE_

3

4 #include "integrable_model.h"

5 #include "air.h"

6 #include "cloud.h"

7 #include "ground.h"

8

9 class atmosphere : public integrable_model {

10 public:

11 typedef integrable_model::ptr_t ptr_t;

12 typedef Ref<atmosphere> self_t;

13

14 atmosphere(const air&, const cloud, const ground&);
15 virtual ~atmosphere();

16

17 // The following methods do dynamic allocation (yuck).
18 virtual ptr_t d_dt() conmst;

19 virtual void dRHS_dV(mat_t&) const;

20 virtual ptr_t clone() conmst;

21 virtual ptr_t inverse_times(const mat_t&) const;

22 virtual crd_t state_vector() const;

23

24 // The following methods are destructive updates.

25 virtual ptr_t operator+=(ptr_t);

26 virtual ptr_t operator-=(ptr_t);

27 virtual ptr_t operator*=(real_t);

28

29 private:

30 air air_;

31 cloud cloud_;

32 ground ground_;

33 H

34

35 #endif //!_H_ATMOSPHERE_

CPP

1 [ #include "atmosphere.h"

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ J

App-23

ACM Transactions on Mathematical Software, Vol. 37, No.

1, Article 3, Publication date: January 2010.



App-24 J D. W. |. Rouson et al.

#include <exception>
#include <cmath>

struct atmosphere_error : public std::exception {
virtual “atmosphere_error() throw() {}

}
typedef atmosphere::ptr_t ptr_t;
atmosphere: :atmosphere(const air &a, const cloud &c, const ground &g)

air_(a), cloud_(c), ground_(g)
e

atmosphere: : “atmosphere () {

ptr_t atmosphere::d_dt() const {
return
ptr_t(new atmosphere(air_.d_dt(cloud_.coordinate()),
cloud_.d_dt(air_.coordinate() ,ground_.coordinate()),
ground_.d_dt(air_.coordinate () ,cloud_.coordinate())));

¥

void atmosphere::dRHS_dV(mat_t &result) const {

// Figure out the required dimensions.

dim_t adim = air_.dimensions();
cloud_.dimensions();
dim_t gdim = ground_.dimensions();
// Resize the result matrix.
result.clear_resize(adim.eqs + cdim.eqs + gdim.egs,

adim.vars + cdim.vars + gdim.vars);

if (result.rows() != result.cols()) {

std::cerr << "atmosphere::dRHS_dV: Ill-formed problem: total of

<< result.rows() << " equations and " << result.cols()
<< " variables\n";

throw atmosphere_error();
}
// dAir/dAir
result.set_submat (0, 0, air_.d_dAir(cloud_.coordinate()));
// dAir/dCloud
result.set_submat (0, adim.vars, air_.d_dy(cloud_.coordinate()));
// dAir/dGround is all zero -- skipping that one.
// dCloud/dAir
result.set_submat(adim.eqs, 0,

cloud_.d_dx(air_.coordinate(),ground_.coordinate()));

dim_t cdim

// dCloud/dCloud

result.set_submat(adim.eqs, adim.vars,
cloud_.d_dCloud(air_.coordinate(),ground_.coordinate()));

// dCloud/dGround

result.set_submat(adim.eqs, adim.vars+cdim.vars,
cloud_.d_dz(air_.coordinate(),ground_.coordinate()));

// dGround/dAir

result.set_submat(adim.eqs+cdim.eqs, O,
ground_.d_dx(air_.coordinate(),cloud_.coordinate()));

// dGround/dCloud

result.set_submat(adim.egs+cdim.eqs, adim.vars,
ground_.d_dy(air_.coordinate(),cloud_.coordinate()));

// dGround/dGround

result.set_submat(adim.eqs+cdim.eqs, adim.vars+cdim.vars,
ground_.d_dGround(air_.coordinate(),cloud_.coordinate()));

¥

ptr_t atmosphere::clone() const {
return ptr_t(new atmosphere(*this));

crd_t atmosphere::state_vector() const {
const crd_t &cc = cloud_.coordinate(), &gc = ground_.coordinate();
crd_t state_space = air_.coordinate();
state_space.insert(state_space.end(), cc.begin(), cc.end());
state_space.insert(state_space.end(), gc.begin(), gc.end());
return state_space;

ptr_t atmosphere::inverse_times(const mat_t &lhs) const {
static const real_t pivot_tolerance = le-2;

const int n = lhs.rows();

crd_t b = this->state_vector();

if((n !'= lhs.colsO) || (size_t(n) != b.size())) {
std::cerr <<"integrable_model::inverse_times: ill-posed matrix problem\n"
throw atmosphere_error();

crd_t x(n);
mat_t A(lhs);
for(int p = 0; p < n-1; ++p) { // forward elimination
if (fabs(A(p,p)) < pivot_tolerance) {
std::cerr << "integrable_model::inverse_times: "
<< "use an algorithm with pivoting\n";
throw atmosphere_error();
}

for(int row = p+1; row < n; ++row) {

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




95
96
97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++ J App-25

real_t factor = A(row,p) / A(p,p);
for(int col = p; col < mn; ++col) {
A(row,col) = A(row,col) - A(p,col)*factor;

b.at(row) = b.at(row)- b.at(p)*factor;

¥
¥
x.at(n-1) = b.at(n-1) / A(n-1,n-1); // back substitution
for(int row = n-1; row >= 0; —--row) {

real_t the_sum = 0;
for(int col = rowtl; col < n; ++col) {
the_sum += A(row,col) * x.at(col);

¥

x.at(row) = (b.at(row) - the_sum) / A(row,row);

return ptr_t(new atmosphere(air(x.at(0), x.at(1)),
cloud(x.at(2), cloud_.rho()),
ground(x.at(3), ground_.beta())));
¥

ptr_t atmosphere::operator+=(ptr_t other) {
self_t added = cast<atmosphere>(other);
if (other == NULL) {

std::cerr << "atmosphere::operator+=: Invalid input type\n";
throw atmosphere_error();

¥

air_ += added->air_;

cloud_ += added->cloud_;
ground_ += added->ground_;
return ptr_t(this);

ptr_t atmosphere::operator-=(ptr_t other) {
self_t subbed = cast<atmosphere>(other);
if (other == NULL) {
std::cerr << "atmosphere::operator-=: Invalid input type\n"
throw atmosphere_error();

air_  -= subbed->air_;
cloud_ ~-= subbed->cloud_;
ground_ -= subbed->ground_;
return ptr_t(this);

}

ptr_t atmosphere::operator*=(real_t value) {
air_ *= value;
cloud_ #*= value;
ground_ *= value;

return ptr_t(this);

#ifndef _H_AIR_
#define _H_AIR_

#include "mat.h"

class air {
public:
air(real_t x, real_t sigma);

const crd_t& coordinate() conmst;
air d_dt(const crd_t&) const;
mat_t d_dAir(const crd_t&) const;
mat_t d_dy(const crd_t&) const;
air& operator+=(const air&);
airk operator-=(const air&);
air& operator*=(real_t);

inline dim_t dimensions() const { return dim_t(dim_, dim.); }

private:

static const int dim_;

crd_t x_; // sigma is stored at x_[1]
bS

#endif //!_H_AIR_

#include "air.h"
const int air::dim_ = 2;
air::air(real_t x, real_t sigma) {

x_.push_back (x) ;
x_.push_back(sigma) ;

const crd_t& air::coordinate() const {
return x_;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-26 J D. W. |. Rouson et al.

air air::d_dt(const crd_t &y) const {
return air((x_.at(1) * (y.at(0) - x_.at(0))), 0);
}

mat_t air::d_dAir(const crd_t& y) const {
mat_t result(dim_, dim_);
result(0, 0) = -x_.at(1);
result(0, 1) = y.at(0) - x_.at(0);
return result;

}

mat_t air::d_dy(const crd_t &y) const {
mat_t result(dim_, y.size());
result(0, 0) = x_.at(1);
return result;

¥

air& air::operator+=(const air &other) {
x_.at(0) += other.x_.at(0);
x_.at(1) += other.x_.at(1);
return *this;

air& air::operator-=(const air &other) {
x_.at(0) -= other.x_.at(0);
x_.at(1) -= other.x_.at(1);
return *this;

air& air::operator*=(real_t value) {
x_.at(0) *= value;
x_.at(1) *= value;
return *this;

#ifndef _H_CLOUD_
#define _H_CLOUD_

#include "mat.h"

class cloud {
public:
cloud(real_t y, real_t rho);

const crd_t& coordinate() const;

real_t rho() conmst;

cloud d_dt(const crd_t&, const crd_t&) const;
mat_t d_dCloud(const crd_t&, const crd_t&) const;
mat_t d_dx(const crd_t&, const crd_t&) const;
mat_t d_dz(const crd_t&, const crd_t&) const;
cloud& operator+=(const cloudg);

cloud& operator-=(const cloud&);

cloud& operator*=(real_t);

inline dim_t dimensions() const { return dim_t(dim_, dim_); }

private:
static const int dim_j;
crd_t y_;
real_t rho_;

#endif //!_H_CLOUD_

#include "cloud.h"
const int cloud::dim_ = 1;

cloud: :cloud(real_t y, real_t rho)
y_(1, y), rho_(rho)
e

const crd_t& cloud::coordinate() const {
return y_;

real_t cloud::rho() const {
return rho_;

cloud cloud::d_dt(const crd_t &x, const crd_t &z) comst {
return cloud((x.at(0) * (rho_ - z.at(0)) - y_.at(0)), 0);

mat_t cloud::d_dCloud(const crd_t&, const crd_t&) const {
mat_t result(dim_, dim_);
result(0, 0) = -1;
return result;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.




27
28
29

31
32
33

35
36

38
39

41
42
43

45
46

48
49

51
52
53
54

Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

mat_t cloud::d_dx(const crd_t &x, const crd_t &z) const {
mat_t result(dim_, x.size());
result(0, 0) = rho_ - z.at(0);
return result;

mat_t cloud::d_dz(const crd_t &x, const crd_t &z) const {
mat_t result(dim_, z.size());
result (0, 0) = -x.at(0);

return result;

cloud& cloud::operator+=(const cloud &other) {
y_.at(0) += other.y_.at(0);
rho_ += other.rho_;
return *this;

¥

cloudg cloud::operator-=(const cloud &other) {
y-.at(0) other.y_.at(0);
rho_ -= other.rho_;

return *this;

cloud& cloud::operator*=(real_t value) {
y-.at(0) *= value;
rho_ *= value;

return *this;

App-27

#ifndef _H_GROUND_
#define _H_GROUND_

#include "mat.h"

class ground {
public:
ground(real_t y, real_t rho);

const crd_t& coordinate() const;

real_t beta() const;

ground d_dt(const crd_t&, const crd_t&) const;
mat_t d_dGround(const crd_t&, const crd_t&) const;
mat_t d_dx(const crd_t&, const crd_t&) const;
mat_t d_dy(const crd_t&, const crd_t&) const;
groundg operator+=(const groundg);

ground& operator-=(const ground{);

ground¥ operator*=(real_t);

inline dim_t dimensions() const { return dim_t(dim_, dim_); }

private:
static const int dim_;
crd_t z_;
real_t beta_;

¥

#endif //!_H_GROUND_

#include "ground.h"
const int ground::dim_ = 1;

ground: :ground(real_t z, real_t beta)
z_(1, z), beta_(beta)
{3

const crd_t& ground::coordinate() const {
return z_;

real_t ground::beta() const {
return beta_;

ground ground::d_dt(const crd_t& x, const crd_t& y) const {
return ground((x.at(0) * y.at(0) - beta_ * z_.at(0)), 0);
3

mat_t ground::d_dGround(const crd_t&, const crd_t&) const {
mat_t result(dim_, dim_);
result(0, 0) = -beta_;
return result;

mat_t ground::d_dx(const crd_t &x, const crd_t &y) const {
mat_t result(dim_, x.size());
result(0, 0) = y.at(0);
return result;

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-28 J D. W. |. Rouson et al.

mat_t ground::d_dy(const crd_t &x, const crd_t &y) const {
mat_t result(dim_, y.size());
result(0, 0) = x.at(0);
return result;

ground& ground: :operator+=(const ground &other) {
z_.at(0) += other.z_.at(0);
beta_ += other.beta_;
return *this;

ground& ground::operator-=(const ground& other) {
z_.at(0) -= other.z_.at(0);
beta_ -= other.beta_;
return *this;

}

ground% ground: :operators=(real_t value) {
z_.at(0) *= value;
beta_ *= value;
return *this;

¥

#ifndef _H_MAT_
#define _H_MAT_

#include "globals.h"
#include <iostream>
#include <iomanip>

class mat_t {

public:
typedef crd_t::value_type value_type;
typedef crd_t::reference reference;

mat_t();

mat_t(int rows, int cols);

void clear();

void resize(int rows, int cols);

void clear_resize(int rows, int cols, value_type value = 0);
void identity(int rows);

int rows() const;

int cols() const;

value_type operator() (int r, int c) const;
reference operator() (int r, int c);

void set_submat(int r, int c, const mat_t &other);
mat_t& operator-=(const mat_t&);

mat_t& operator*=(real_t);

private:
int r_, c_;
crd_t data_;
}

inline mat_t operator-(const mat_t &a, const mat_t &b) {
mat_t retval(a);
retval -= b;
return retval;

inline mat_t operator*(real_t value, const mat_t &matrix) {
mat_t retval(matrix);
retval *= value;
return retval;

struct dim_t {
const int egs;
const int vars;

dim_t(int eqcnt, int varcnt)
eqs(eqgent), vars(varcat)

}

~

inline std::ostream& operator<<(std::ostream &os, const mat_t &mat)
std::ios_base::fmtflags flags = os.flags();
for(int r = 0; r < mat.rows(); ++r) {

os << "[";
for(int ¢ = 0; ¢ < mat.cols(); ++c) {
0s << " " <<std::setw(12) <<std::setprecision(8) <<std::fixed <<mat(r,c);
}
os << "]\n";
¥
os.flags(flags);
return os;

¥

#endif // ' _H_MAT_

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



Design Patterns for Multiphysics Modeling in Fortran 2003 and C++

App-29

#include "mat.h"
#include <exception>
#include <iostream>

struct matrix_error : public std::exception {
virtual “matrix_error() throw() {}

}
mat_t::mat_t()

r_(0), c_(0)
{3

mat_t::mat_t(int rows, int cols) {
this->resize(rows, cols);

}

void mat_t::clear() {
r_=c_=0;
data_.clear();

}

void mat_t::resize(int rows, int cols) {
if(rows < 0 || cols < 0) {
std::cerr << "mat_t::resize: Rows and columns must be >= 0.\n";
throw matrix_error();

b3
i£(! data_.empty()) {
// Copy data over.

else {
// common case.
data_.resize(rows*cols);
r_ = rows;
c_ = cols;
}
}

void mat_t::clear_resize(int rows, int cols, value_type value) {
if (rows < 0 || cols < 0) {
std::cerr << "mat_t::clear_resize: Rows and columns must be >= O\n";
throw matrix_error();

data_.resize(rows*cols);

r_ = rows;
c_ = cols;
std::fill(data_.begin(), data_.end(), value);

¥

void mat_t::identity(int size) {
this->clear_resize(size, size, 0);
for(int i = 0; i < size; ++i) {
this->operator () (i,i) = 1;
¥
¥

int mat_t::rows() const {
return r_;

int mat_t::cols() const {
return c_;

mat_t::value_type mat_t::operator() (int r, int c) const {
if(x <0 Il r>r_ |l c<0ollc>c){
std::cerr << "mat_t::operator(): Invalid index (" << r << ", " << ¢
<< "). Bounds are (" << r_ << ", " << ¢ << ")\n";
throw matrix_error();
¥

return data_.at(cxr_ + r);

mat_t::reference mat_t::operator()(int r, int c) {
i@ <ol r>r_ Il c<ollc>c){
std::cerr << "mat_t::operator(): Invalid index (" << r << ", " << ¢
<< "). Bounds are (" << r_ << ", " << ¢ << ")\n";
throw matrix_error();

return data_.at(c*r_ + r);

¥

void mat_t::set_submat(int startrow, int startcol, const mat_t &other) {
for(int r = 0; r < other.rows(); ++r) {
for(int ¢ = 0; ¢ < other.cols(); ++c) {
this->operator () (r+startrow, c+startcol) = other(r,c);

¥
¥
¥
mat_t& mat_t::operator-=(const mat_t &other) {
if (this->rows() != other.rows() || this->cols() != other.cols()) {
std::cerr << "mat_t::operator-=: Matrices must be of identical size.\n";

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



App-30 J D. W. |. Rouson et al.

93 throw matrix_error();
94
95 const size_t size = data_.size();
96 for(size_t i = 0; i < size; ++i)
97 data_[i] -= other.data_[il;
98 return *this;
99 }
100
101 mat_t& mat_t::operator*=(real_t value) {
102 for(crd_t::iterator it = data_.begin(); it != data_.end(); ++it)
103 *it *= value;
104 return *this;
105 }
1 #ifndef _H_INTEGRABLE_MODEL_OPS
2 #define _H_INTEGRABLE_MODEL_OPS
3
4 #include "integrable_model.h"
5 #include <exception>
6
7 struct model_ops_exception : public std::exception {
8 virtual “model_ops_exception() throw() {}
9 };
10
11 typedef Ref<integrable_model> ptr_t;
12
13 inline ptr_t operator+(ptr_t a, ptr_t b) {
14 if(a NULL || b == NULL) {
15 std::cerr << "ptr_t + ptr_t: Neither pointer must be NULL\n";
16 throw model_ops_exception() ;
17 }
18 ptr_t c¢ = a->clone();
19 *c += b;
20 return c;
21 }
22
23 inline ptr_t operator-(ptr_t a, ptr_t b) {
24 if(a == NULL || b == NULL) {
25 std::cerr << "ptr_t - ptr_t: Neither pointer must be NULL\n";
26 throw model_ops_exception() ;
27 }
28 ptr_t c¢ = a->clone();
29 *c -= b;
30 return c;
31 }
32
33 inline ptr_t operator*(ptr_t a, real_t b) {
34 if(a == NULL) {
35 std::cerr << "ptr_t * real_t: Pointer must not be NULL\n";
36 throw model_ops_exception() ;
37 }
38 ptr_t c¢ = a->clone();
39 *c *= b;
40 return c;
41 }
42
43 inline ptr_t operator*(real_t b, ptr_t a) {
44 return axb;
45
46

47 #endif //!_H_INTEGRABLE_MODEL_OPS

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 3, Publication date: January 2010.



