Contents

Preface to Volume 2 viii

Foreword by Michael Metcalf x

License Information xvii

21 Introduction to Fortran 90 Language Features 935

21.0 Introduction 935
21.1 Quick Start: Using the Fortran 90 Numerical Recipes Routines 936
21.2 Fortran 90 Language Concepts 937
21.3 More on Arrays and Array Sections 941
21.4 Fortran 90 Intrinsic Procedures 945
21.5 Advanced Fortran 90 Topics 953
21.6 And Coming Soon: Fortran 95 959

22 Introduction to Parallel Programming 962

22.0 Why Think Parallel? 962
22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 964
22.2 Linear Recurrence and Related Calculations 971
22.3 Parallel Synthetic Division and Related Algorithms 977
22.4 Fast Fourier Transforms 981
22.5 Missing Language Features 983

23 Numerical Recipes Utility Functions for Fortran 90 987

23.0 Introduction and Summary Listing 987
23.1 Routines That Move Data 990
23.2 Routines Returning a Location 992
23.3 Argument Checking and Error Handling 994
23.4 Routines for Polynomials and Recurrences 996
23.5 Routines for Outer Operations on Vectors 1000
23.6 Routines for Scatter with Combine 1002
23.7 Routines for Skew Operations on Matrices 1004
23.8 Other Routines 1007

Fortran 90 Code Chapters 1009

B1 Preliminaries 1010

B2 Solution of Linear Algebraic Equations 1014

B3 Interpolation and Extrapolation 1043
<table>
<thead>
<tr>
<th></th>
<th>Integration of Functions</th>
<th>1052</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evaluation of Functions</td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td>Special Functions</td>
<td>1083</td>
</tr>
<tr>
<td></td>
<td>Random Numbers</td>
<td>1141</td>
</tr>
<tr>
<td></td>
<td>Sorting</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Root Finding and Nonlinear Sets of Equations</td>
<td>1182</td>
</tr>
<tr>
<td></td>
<td>Minimization or Maximization of Functions</td>
<td>1201</td>
</tr>
<tr>
<td></td>
<td>Eigensystems</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Fast Fourier Transform</td>
<td>1235</td>
</tr>
<tr>
<td></td>
<td>Fourier and Spectral Applications</td>
<td>1253</td>
</tr>
<tr>
<td></td>
<td>Statistical Description of Data</td>
<td>1269</td>
</tr>
<tr>
<td></td>
<td>Modeling of Data</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>Integration of Ordinary Differential Equations</td>
<td>1297</td>
</tr>
<tr>
<td></td>
<td>Two Point Boundary Value Problems</td>
<td>1314</td>
</tr>
<tr>
<td></td>
<td>Integral Equations and Inverse Theory</td>
<td>1325</td>
</tr>
<tr>
<td></td>
<td>Partial Differential Equations</td>
<td>1332</td>
</tr>
<tr>
<td></td>
<td>Less-Numerical Algorithms</td>
<td>1343</td>
</tr>
</tbody>
</table>

References

Appendices

<table>
<thead>
<tr>
<th></th>
<th>Listing of Utility Modules (nrtype and nrutil)</th>
<th>1361</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alphabetical Listing of Explicit Interfaces</td>
<td>1384</td>
</tr>
<tr>
<td></td>
<td>Index of Programs and Dependencies</td>
<td>1434</td>
</tr>
</tbody>
</table>

General Index to Volumes 1 and 2

1447
Contents of Volume 1: Numerical Recipes in Fortran 77

Plan of the Two-Volume Edition xiii
Preface to the Second Edition xv
Preface to the First Edition xviii
License Information xx
Computer Programs by Chapter and Section xxiv

1 Preliminaries 1
2 Solution of Linear Algebraic Equations 22
3 Interpolation and Extrapolation 99
4 Integration of Functions 123
5 Evaluation of Functions 159
6 Special Functions 205
7 Random Numbers 266
8 Sorting 320
9 Root Finding and Nonlinear Sets of Equations 340
10 Minimization or Maximization of Functions 387
11 Eigensystems 449
12 Fast Fourier Transform 490
13 Fourier and Spectral Applications 530
14 Statistical Description of Data 603
15 Modeling of Data 650
16 Integration of Ordinary Differential Equations 701
17 Two Point Boundary Value Problems 745
18 Integral Equations and Inverse Theory 779
19 Partial Differential Equations 818
20 Less-Numerical Algorithms 881

References 916
Index of Programs and Dependencies 921
Preface to Volume 2

Fortran 90 is not just the long-awaited updating of the Fortran language to modern computing practices. It is also the vanguard of a much larger revolution in computing, that of multiprocessor computers and widespread parallel programming. Parallel computing has been a feature of the largest supercomputers for quite some time. Now, however, it is rapidly moving towards the desktop.

As we watched the gestation and birth of Fortran 90 by its governing “X3J3 Committee” (a process interestingly described by a leading committee member, Michael Metcalf, in the Foreword that follows), it became clear to us that the right moment for moving Numerical Recipes from Fortran 77 to Fortran 90 was sooner, rather than later.

Fortran 90 compilers are now widely available. Microsoft’s Fortran PowerStation for Windows 95 brings that firm’s undeniable marketing force to PC desktop; we have tested this compiler thoroughly on our code and found it excellent in compatibility and performance. In the UNIX world, we have similarly tested, and had generally fine experiences with, DEC’s Fortran 90 for Alpha AXP and IBM’s xlf for RS/6000 and similar machines. NAG’s Fortran 90 compiler also brings excellent Fortran 90 compatibility to a variety of UNIX platforms. There are no doubt other excellent compilers, both available and on the way. Fortran 90 is completely backwards compatible with Fortran 77, by the way, so you don’t have to throw away your legacy code, or keep an old compiler around.

There have been previous special versions of Fortran for parallel supercomputers, but always specific to a particular hardware. Fortran 90, by contrast, is designed to provide a general, architecture-independent framework for parallel computation. Equally importantly, it is an international standard, agreed upon by a large group of computer hardware and software manufacturers and international standards bodies.

With the Fortran 90 language as a tool, we want this volume to be your complete guide for learning how to “think parallel.” The language itself is very general in this regard, and applicable to many present and future computers, or even to other parallel computing languages as they come along. Our treatment emphasizes general principles, but we are also not shy about pointing out parallelization “tricks” that have frequent applicability. These are not only discussed in this volume’s principal text chapters (Chapters 21–23), but are also sprinkled throughout the chapters of Fortran 90 code, called out by a special “parallel hint” logo (left, above). Also scattered throughout the code chapters are specific “Fortran 90 tips,” with their own distinct graphic call-out (left). After you read the text chapters, you might want simply to browse among these hints and tips.

A special note to C programmers: Right now, there is no effort at producing a parallel version of C that is comparable to Fortran 90 in maturity, acceptance, and stability. We think, therefore, that C programmers will be well served by using this volume for an educational excursion into Fortran 90, its parallel programming constructions, and the numerical algorithms that capitalize on them. C and C++ programming have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons (in Chapters 21–23) will be amply repaid in the future, as C and C++ eventually develop standard parallel extensions.
A final word of truth in packaging: **Don’t buy this volume unless you also buy (or already have) Volume 1** (now retitled *Numerical Recipes in Fortran 77*). Volume 2 does not repeat any of the discussion of what individual programs actually do, or of the mathematical methods they utilize, or how to use them. While our Fortran 90 code is thoroughly commented, and includes a header comment for each routine that describes its input and output quantities, these comments are not supposed to be a complete description of the programs; the complete descriptions are in Volume 1, which we reference frequently. But here’s a money-saving hint to our previous readers: If you already own a Second Edition version whose title is *Numerical Recipes in FORTRAN* (which doesn’t indicate either “Volume 1” or “Volume 2” on its title page) then take a marking pen and write in the words “Volume 1.” There! (Differences between the previous reprintings and the newest reprinting, the one labeled “Volume 1,” are minor.)

Acknowledgments

We continue to be in the debt of many colleagues who give us the benefit of their numerical and computational experience. Many, though not all, of these are listed by name in the preface to the second edition, in Volume 1. To that list we must now certainly add George Marsaglia, whose ideas have greatly influenced our new discussion of random numbers in this volume (Chapter B7).

With this volume, we must acknowledge our additional gratitude and debt to a number of people who generously provided advice, expertise, and time (a great deal of time, in some cases) in the areas of parallel programming and Fortran 90. The original inspiration for this volume came from Mike Metcalf, whose clear lectures on Fortran 90 (in this case, overlooking the beautiful Adriatic at Trieste) convinced us that Fortran 90 could serve as the vehicle for a book with the larger scope of parallel programming generally, and whose continuing advice throughout the project has been indispensable. Gyan Bhanot also played a vital early role in the development of this book; his first translations of our Fortran 77 programs taught us a lot about parallel programming. We are also grateful to Greg Lindhorst, Charles Van Loan, Amos Yahil, Keith Kimball, Malcolm Cohen, Barry Caplin, Loren Meissner, Mitsu Sakamoto, and George Schnurer for helpful correspondence and/or discussion of Fortran 90’s subtler aspects.

We once again express in the strongest terms our gratitude to programming consultant Seth Finkelstein, whose contribution to both the coding and the thorough testing of all the routines in this book (against multiple compilers and in sometimes-buggy, and always challenging, early versions) cannot be overstated.

WHP and SAT acknowledge the continued support of the U.S. National Science Foundation for their research on computational methods.

February 1996
William H. Press
Saul A. Teukolsky
William T. Vetterling
Brian P. Flannery
Sipping coffee on a sunbaked terrace can be surprisingly productive. One of the *Numerical Recipes* authors and I were each lecturing at the International Center for Theoretical Physics in Trieste, Italy, he on numerical analysis and I on Fortran 90. The numerical analysis community had made important contributions to the development of the new Fortran standard, and so, unsurprisingly, it became quickly apparent that the algorithms for which *Numerical Recipes* had become renowned could, to great advantage, be recast in a new mold. These algorithms had, hitherto, been expressed in serial form, first in Fortran 77 and then in C, Pascal, and Basic. Now, nested iterations could be replaced by array operations and assignments, and the other features of a rich array language could be exploited. Thus was the idea of a “Numerical Recipes in Fortran 90” first conceived and, after three years’ gestation, it is a delight to assist at the birth.

But what is Fortran 90? How did it begin, what shaped it, and how, after nearly foundering, did its driving forces finally steer it to a successful conclusion?

The Birth of a Standard

Back in 1966, the version of Fortran now known as Fortran 66 was the first language ever to be standardized, by the predecessor of the present American National Standards Institute (ANSI). It was an all-American affair. Fortran had first been developed by John Backus of IBM in New York, and it was the dominant scientific programming language in North America. Many Europeans preferred Algol (in which Backus had also had a hand). Eventually, however, the mathematicians who favored Algol for its precisely expressible syntax began to defer to the scientists and engineers who appreciated Fortran’s pragmatic, even natural, style. In 1978, the upgraded Fortran 77 was standardized by the ANSI technical committee, X3J3, and subsequently endorsed by other national bodies and by ISO in Geneva, Switzerland. Its dominance in all fields of scientific and numerical computing grew as new, highly optimizing compilers came onto the market. Although newer languages, particularly Pascal, Basic, PL/1, and later Ada attracted their own adherents, scientific users throughout the 1980s remained true to Fortran. Only towards the end of that decade did C draw increasing support from scientific programmers who had discovered the power of structures and pointers.

During all this time, X3J3 kept functioning, developing the successor version to Fortran 77. It was to be a decade of strife and contention. The early plans, in the late 1970s, were mainly to add to Fortran 77 features that had had to be left out of that standard. Among these were dynamic storage and an array language, enabling it to map directly onto the architecture of supercomputers, then coming onto the market. The intention was to have this new version ready within five years, in 1982. But two new factors became significant at that time. The first was the decision that the next standard should not just codify existing practice, as had largely been the case in 1966 and 1978, but also extend the functionality of the language through...
innovative additions (even though, for the array language, there was significant borrowing from John Iverson’s APL and from DAP Fortran). The second factor was that X3J3 no longer operated under only American auspices. In the course of the 1980s, the standardization of programming languages came increasingly under the authority of the international body, ISO. Initially this was in an advisory role, but now ISO is the body that, through its technical committee WG5 (in full, ISO/IEC JTC1/SC22/WG5), is responsible for determining the course of the language. WG5 also steers the work of the development body, then as now, the highly skilled and competent X3J3. As we shall see, this shift in authority was crucial at the most difficult moment of Fortran 90’s development.

The internationalization of the standards effort was reflected in the welcome given by X3J3 to six or seven European members; they, and about one-third of X3J3’s U.S. members, provided the overlapping core of membership of X3J3 and WG5 that was vital in the final years in bringing the work to a successful conclusion. X3J3 membership, which peaked at about 45, is restricted to one voting member per organization, and significant decisions require a majority of two-thirds of those voting. Nationality plays no role, except in determining the U.S. position on an international issue. Members, who are drawn mainly from the vendors, large research laboratories, and academia, must be present or represented at two-thirds of all meetings in order to retain voting rights.

In 1980, X3J3 reported on its plans to the forerunner of WG5 in Amsterdam, Holland. Fortran 8x, as it was dubbed, was to have a basic array language, new looping constructs, a bit data type, data structures, a free source form, a mechanism to “group” procedures, and another to manage the global name space. Old features, including COMMON, EQUIVALENCE, and the arithmetic-IF, were to be consigned to a so-called obsolete module, destined to disappear in a subsequent revision. This was part of the “core plus modules” architecture, for adding new features and retiring old ones, an aid to backwards compatibility. Even though Fortran 77 compilers were barely available, the work seemed well advanced and the mood was optimistic. Publication was intended to take place in 1985. It was not to be.

One problem was the sheer number of new features that were proposed as additions to the language, most of them worthwhile in themselves but with the totality being too large. This became a recurrent theme throughout the development of the standard. One example was the suggestion of Lawrie Schonfelder (Liverpool University), at a WG5 meeting in Vienna, Austria, in 1982, that certain features already proposed as additions could be combined to provide a full-blown derived data type facility, thus providing Fortran with abstract data types. This idea was taken up by X3J3 and has since come to be recognized, along with the array language, as one of the two main advances brought about by what became Fortran 90. However, the ramifications go very deep: all the technical details of how to handle arrays of objects of derived types that in turn have array components that have the pointer attribute, and so forth, have to be precisely defined and rigorously specified.

Conflict

The meetings of X3J3 were often full of drama. Most compiler vendors were represented as a matter of course but, for many, their main objective appeared to be to maintain the status quo and to ensure that Fortran 90 never saw the light of
day. One vendor's extended (and much-copied) version of Fortran 77 had virtually become an industry standard, and it saw as its mission the maintenance of this lead. A new standard would cost it its perceived precious advantage. Other large vendors had similar points of view, although those marketing supercomputers were clearly keen on the array language. Most users, on the other hand, were hardly prepared to invest large amounts of their employers' and their own resources in simply settling for a trivial set of improvements to the existing standard. However, as long as X3J3 worked under a simple-majority voting rule, at least some apparent progress could be made, although the underlying differences often surfaced. These were even sometimes between users — those who wanted Fortran to become a truly modern language and those wanting to maintain indefinite backwards compatibility for their billions of lines of existing code.

At a watershed meeting, in Scranton, Pennsylvania, in 1986, held in an atmosphere that sometimes verged on despair, a fragile compromise was reached as a basis for further work. One breakthrough was to weaken the procedures for removing outdated features from the language, particularly by removing no features whatsoever from the next standard and by striking storage association (i.e., COMMON and EQUIVALENCE) from the list of features to be designated as obsolescent (as they are now known). A series of votes definitively removed from the language all plans to add: arrays of arrays, exception handling, nesting of internal procedures, the FORALL statement (now in Fortran 95), and a means to access skew array sections. There were other features on this list that, although removed, were reinstated at later meetings: user-defined operators, operator overloading, array and structure constructors, and vector-valued subscripts. After many more travails, the committee voted, a year later, by 26 votes to 9, to forward the document for what was to become the first of three periods of public comment.

While the document was going through the formal standards bureaucracy and being placed before the public, X3J3 polished it further. X3J3 also prepared procedures for processing the comments it anticipated receiving from the public, and to each of which, under the rules, it would have to reply individually. It was just as well. Roughly 400 replies flooded in, many of them very detailed and, disappointingly for those of us wanting a new standard quickly, unquestionably negative towards our work. For many it was too radical, but many others pleaded for yet more modern features, such as pointers.

Now the committee was deadlocked. Given that a document had already been published, any further change required not a simple but a two-thirds majority. The conservatives and the radicals could each block a move to modify the draft standard, or to accept a revised one for public review — and just that happened, in Champagne-Urbana, Illinois, in 1988. Any change, be it on the one hand to modify the list of obsolescent features, to add the pointers or bit data type wanted by the public, to add multi-byte characters to support Kanji and other non-European languages or, on the other hand, to emasculate the language by removing modules or operator overloading, and hence abstract data types, to name but some suggestions, none of these could be done individually or collectively in a way that would achieve consensus. I wrote:

"In my opinion, no standard can now emerge without either a huge concession by the users to the vendors (MODULE/USE) and/or a major change in the composition of the committee. I do not see how members who have worked for up to a decade
or more, devoting time and intellectual energy far beyond the call of duty, can be
expected to make yet more personal sacrifices if no end to the work is in sight, or
if that end is nothing but a travesty of what had been designed and intended as a
modern scientific programming language. . . . I think the August meeting will be a
watershed — if no progress is achieved there will be dramatic resignations, and ISO
could even remove the work from ANSI, which is failing conspicuously in its task.”

(However, the same notes began with a quotation from The Taming of the
Shrew: “And do as adversaries do in law, / Strive mightily, but eat and drink / as
friend.” That we always did, copiously.)

Resolution

The “August meeting” was, unexpectedly, imbued with a spirit of compromise
that had been so sadly lacking at the previous one. Nevertheless, after a week of
discussing four separate plans to rescue the standard, no agreement was reached.
Now the question seriously arose: Was X3J3 incapable of producing a new Fortran
standard for the international community, doomed to eternal deadlock, a victim of
ANSI procedures?

Breakthrough was achieved at a traumatic meeting of WG5 in Paris, France, a
month later. The committee spent several extraordinary days drawing up a detailed
list of what it wanted to be in Fortran 8x. Finally, it set X3J3 an ultimatum that was
unprecedented in the standards world: The ANSI committee was to produce a new
draft document, corresponding to WG5’s wishes, within five months! Failing that,
WG5 would assume responsibility and produce the new standard itself.

This decision was backed by the senior U.S. committee, X3, which effectively
directed X3J3 to carry out WG5’s wishes. And it did! The following November, it
implemented most of the technical changes, adding pointers, bit manipulation intrin-
sic procedures, and vector-valued subscripts, and removing user-defined elemental
functions (now in Fortran 95). The actual list of changes was much longer. X3J3 and
WG5, now collaborating closely, often in gruelling six-day meetings, spent the next
18 months and two more periods of (positive) public comment putting the finishing
touches to what was now called Fortran 90, and it was finally adopted, after some
cliff-hanging votes, for forwarding as a U.S. and international standard on April 11,
1991, in Minneapolis, Minnesota.

Among the remaining issues that were decided along the way were whether
pointers should be a data type or be defined in terms of an attribute of a variable,
implying strong typing (the latter was chosen), whether the new standard should
coexist alongside the old one rather than definitively replace it (it coexisted for a
while in the U.S., but was a replacement elsewhere, under ISO rules), and whether,
in the new free source form, blanks should be significant (fortunately, they are).

Fortran 90

The main new features of Fortran 90 are, first and foremost, the array language
and abstract data types. The first is built on whole array operations and assignments,
array sections, intrinsic procedures for arrays, and dynamic storage. It was designed
with optimization in mind. The second is built on modules and module procedures,
derived data types, operator overloading and generic interfaces, together with
 pointers. Also important are the new facilities for numerical computation including a set of numeric inquiry functions, the parametrization of the intrinsic types, new control constructs — SELECT CASE and new forms of DO, internal and recursive procedures and optional and keyword arguments, improved I/O facilities, and many new intrinsic procedures. Last but not least are the new free source form, an improved style of attribute-oriented specifications, the IMPLICIT NONE statement, and a mechanism for identifying redundant features for subsequent removal from the language. The requirement on compilers to be able to identify, for example, syntax extensions, and to report why a program has been rejected, are also significant. The resulting language is not only a far more powerful tool than its successor, but a safer and more reliable one too. Storage association, with its attendant dangers, is not abolished, but rendered unnecessary. Indeed, experience shows that compilers detect errors far more frequently than before, resulting in a faster development cycle. The array syntax and recursion also allow quite compact code to be written, a further aid to safe programming.

No programming language can succeed if it consists simply of a definition (witness Algol 68). Also required are robust compilers from a wide variety of vendors, documentation at various levels, and a body of experience. The first Fortran 90 compiler appeared surprisingly quickly, in 1991, especially in view of the widely touted opinion that it would be very difficult to write one. Even more remarkable was that it was written by one person, Malcolm Cohen of NAG, in Oxford, U.K. There was a gap before other compilers appeared, but now they exist as native implementations for almost all leading computers, from the largest to PCs. For the most part, they produce very efficient object code; where, for certain new features, this is not the case, work is in progress to improve them.

The first book, Fortran 90 Explained, was published by John Reid and me shortly before the standard itself was published. Others followed in quick succession, including excellent texts aimed at the college market. At the time of writing there are at least 19 books in English and 22 in various other languages: Chinese, Dutch, French, Japanese, Russian, and Swedish. Thus, the documentation condition is fulfilled.

The body of experience, on the other hand, has yet to be built up to a critical size. Teaching of the language at college level has only just begun. However, I am certain that this present volume will contribute decisively to a significant breakthrough, as it provides models not only of the numerical algorithms for which previous editions are already famed, but also of an excellent Fortran 90 style, something that can develop only with time. Redundant features are abjured. It shows that, if we abandon these features and use new ones in their place, the appearance of code can initially seem unfamiliar, but, in fact, the advantages become rapidly apparent. This new edition of Numerical Recipes stands as a landmark in this regard.

Fortran Evolution

The formal procedures under which languages are standardized require them either to evolve or to die. A standard that has not been revised for some years must either be revised and approved anew, or be withdrawn. This matches the technical pressure on the language developers to accommodate the increasing complexity both of the problems to be tackled in scientific computation and of the underlying hardware
on which programs run. Increasing problem complexity requires more powerful features and syntax; new hardware needs language features that map onto it well.

Thus it was that X3J3 and WG5, having finished Fortran 90, began a new round of improvement. They decided very quickly on new procedures that would avoid the disputes that bedevilled the previous work: WG5 would decide on a plan for future standards, and X3J3 would act as the so-called development body that would actually produce them. This would be done to a strict timetable, such that any feature that could not be completed on time would have to wait for the next round. It was further decided that the next major revision should appear a decade after Fortran 90 but, given the somewhat discomforting number of requests for interpretation that had arrived, about 200, that a minor revision should be prepared for mid-term, in 1995. This should contain only “corrections, clarifications and interpretations” and a very limited number (some thought none) of minor improvements.

At the same time, scientific programmers were becoming increasingly concerned at the variety of methods that were necessary to gain efficient performance from the ever-more widely used parallel architectures. Each vendor provided a different set of parallel extensions for Fortran, and some academic researchers had developed yet others. On the initiative of Ken Kennedy of Rice University, a High-Performance Fortran Forum was established. A coalition of vendors and users, its aim was to produce an ad hoc set of extensions to Fortran that would become an informal but widely accepted standard for portable code. It set itself the daunting task of achieving that in just one year, and succeeded. Melding existing dialects like Fortran D, CM Fortran, and Vienna Fortran, and adopting the new Fortran 90 as a base, because of its array syntax, High-Performance Fortran (HPF) was published in 1993 and has since become widely implemented. However, although HPF was designed for data parallel codes and mainly implemented in the form of directives that appear to non-HPF processors as comment lines, an adequate functionality could not be achieved without extending the Fortran syntax. This was done in the form of the PURE attribute for functions — an assertion that they contain no side effects — and the FORALL construct — a form of array assignment expressed with the help of indices.

The dangers of having diverging or competing forms of Fortran 90 were immediately apparent, and the standards committees wisely decided to incorporate these two syntactic changes also into Fortran 95. But they didn’t stop there. Two further extensions, useful not only for their expressive power but also to access parallel hardware, were added: elemental functions, ones written in terms of scalars but that accept array arguments of any permitted shape or size, and an extension to allow nesting of WHERE constructs, Fortran’s form of masked assignment. To readers of Numerical Recipes, perhaps the most relevant of the minor improvements that Fortran 95 brings are the ability to distinguish between a negative and a positive real zero, automatic deallocation of allocatable arrays, and a means to initialize the values of components of objects of derived data types and to initialize pointers to null.

The medium-term objective of a relatively minor upgrade has been achieved on schedule. But what does the future hold? Developments in the underlying principles of procedural programming languages have not ceased. Early Fortran introduced the concepts of expression abstraction ($X=Y+Z$) and later control expression (e.g., the DO loop). Fortran 77 continued this with the IF-THEN-ELSE, and Fortran 90 with the DO and SELECT CASE constructs. Fortran 90 has a still higher level of expression abstraction (array assignments and expressions) as well as data structures and even
full-blown abstract data types. However, during the 1980s the concept of objects came to the fore, with methods bound to the objects on which they operate. Here, one particular language, C++, has come to dominate the field. Fortran 90 lacks a means to point to functions, but otherwise has most of the necessary features in place, and the standards committees are now faced with the dilemma of deciding whether to make the planned Fortran 2000 a fully object-oriented language. This could possibly jeopardize its powerful, and efficient, numerical capabilities by too great an increase in language complexity, so should they simply batten down the hatches and not defer to what might be only a passing storm? At the time of writing, this is an open issue. One issue that is not open is Fortran’s lack of in-built exception handling. It is virtually certain that such a facility, much requested by the numerical community, and guided by John Reid, will be part of the next major revision. The list of other requirements is long but speculative, but some at the top of the list are conditional compilation, command line argument handling, I/O for objects of derived type, and asynchronous I/O (which is also planned for the next release of HPF). In the meantime, some particularly pressing needs have been identified, for the handling of floating-point exceptions, interoperability with C, and allowing allocatable arrays as structure components, dummy arguments, and function results. These have led WG5 to begin processing these three items using a special form of fast track, so that they might become optional but standard extensions well before Fortran 2000 itself is published in the year 2001.

Conclusion

Writing a book is always something of a gamble. Unlike a novel that stands or falls on its own, a book devoted to a programming language is dependent on the success of others, and so the risk is greater still. However, this new Numerical Recipes in Fortran 90 volume is no ordinary book, since it comes as the continuation of a highly successful series, and so great is its significance that it can, in fact, influence the outcome in its own favor. I am entirely confident that its publication will be seen as an important event in the story of Fortran 90, and congratulate its authors on having performed a great service to the field of numerical computing.

Geneva, Switzerland
January 1996

Michael Metcalf
License Information

Read this section if you want to use the programs in this book on a computer. You’ll need to read the following Disclaimer of Warranty, get the programs onto your computer, and acquire a Numerical Recipes software license. (Without this license, which can be the free “immediate license” under terms described below, the book is intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained in this volume are free of error, or are consistent with any particular standard of merchantability, or that they will meet your requirements for any particular application. They should not be relied on for solving a problem whose incorrect solution could result in injury to a person or loss of property. If you do use the programs in such a manner, it is at your own risk. The authors and publisher disclaim all liability for direct or consequential damages resulting from your use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

- You can type the programs from this book directly into your computer. In this case, the only kind of license available to you is the free “immediate license” (see below). You are not authorized to transfer or distribute a machine-readable copy to any other person, nor to have any other person type the programs into a computer on your behalf. We do not want to hear bug reports from you if you choose this option, because experience has shown that virtually all reported bugs in such cases are typing errors!

- You can download the Numerical Recipes programs electronically from the Numerical Recipes On-Line Software Store, located at our Web site (http://www.nr.com). They are packaged as a password-protected file, and you’ll need to purchase a license to unpack them. You can get a single-screen license and password immediately, on-line, from the On-Line Store, with fees ranging from $50 (PC, Macintosh, educational institutions’ UNIX) to $140 (general UNIX). Downloading the packaged software from the On-Line Store is also the way to start if you want to acquire a more general (multiscreen, site, or corporate) license.

- You can purchase media containing the programs from Cambridge University Press. Diskette versions are available in IBM-compatible format for machines running Windows 3.1, 95, or NT. CDROM versions in ISO-9660 format for PC, Macintosh, and UNIX systems are also available; these include both Fortran and C versions (as well as versions in Pascal
and BASIC from the first edition) on a single CDROM. Diskettes purchased from Cambridge University Press include a single-screen license for PC or Macintosh only. The CDROM is available with a single-screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a slightly higher price) with a single-screen license for UNIX workstations (order ISBN 0 521 576075). Orders for media from Cambridge University Press can be placed at 800 872-7423 (North America only) or by email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest of world). Or, visit the Web sites http://www.cup.org (North America) or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are automatically acquired with the purchase of media from Cambridge University Press, or of an unlocking password from the Numerical Recipes On-Line Software Store, while other types of licenses require that you communicate specifically with Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our Web site http://www.nr.com has additional information.

- [“Immediate License”] If you are the individual owner of a copy of this book and you type one or more of its routines into your computer, we authorize you to use them on that computer for your own personal and noncommercial purposes. You are not authorized to transfer or distribute machine-readable copies to any other person, or to use the routines on more than one machine, or to distribute executable programs containing our routines. This is the only free license.

- [“Single-Screen License”] This is the most common type of low-cost license, with terms governed by our Single Screen (Shrinkwrap) License document (complete terms available through our Web site). Basically, this license lets you use Numerical Recipes routines on any one screen (PC, workstation, X-terminal, etc.). You may also, under this license, transfer pre-compiled, executable programs incorporating our routines to other, unlicensed, screens or computers, providing that (i) your application is noncommercial (i.e., does not involve the selling of your program for a fee), (ii) the programs were first developed, compiled, and successfully run on a licensed screen, and (iii) our routines are bound into the programs in such a manner that they cannot be accessed as individual routines and cannot practicably be unbound and used in other programs. That is, under this license, your program user must not be able to use our programs as part of a program library or “mix-and-match” workbench. Conditions for other types of commercial or noncommercial distribution may be found on our Web site (http://www.nr.com).

- [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of the Single Screen License can be extended to designated groups of machines, defined by number of screens, number of machines, locations, or ownership. Significant discounts from the corresponding single-screen
prices are available when the estimated number of screens exceeds 40. Contact Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739) for details.

- [“Course Right-to-Copy License”] Instructors at accredited educational institutions who have adopted this book for a course, and who have already purchased a Single Screen License (either acquired with the purchase of media, or from the Numerical Recipes On-Line Software Store), may license the programs for use in that course as follows: Mail your name, title, and address; the course name, number, dates, and estimated enrollment; and advance payment of $5 per (estimated) student to Numerical Recipes Software, at this address: P.O. Box 243, Cambridge, MA 02238 (USA). You will receive by return mail a license authorizing you to make copies of the programs for use by your students, and/or to transfer the programs to a machine accessible to your students (but only for the duration of the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by copyright. Generally it is an infringement for you to copy into your computer a program from a copyrighted source. (It is also not a friendly thing to do, since it deprives the program’s author of compensation for his or her creative effort.) Under copyright law, all “derivative works” (modified versions, or translations into another computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in a particular form. In the case of a computer program, the ideas consist of the program’s methodology and algorithm, including the necessary sequence of steps adopted by the programmer. The expression of those ideas is the program source code (particularly any arbitrary or stylistic choices embodied in it), its derived object code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those ideas in your own completely different implementation, then that new program implementation belongs to you. That is what we have done for those programs in this book that are not entirely of our own devising. When programs in this book are said to be “based” on programs published in copyright sources, we mean that the ideas are the same. The expression of these ideas as source code is our own. We believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks of SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation, and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of International Business Machines Corporation. Apple and Macintosh are trademarks of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open.
Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary computer software of Numerical Algorithms Group (USA) Inc. PostScript and Adobe Illustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt least, Numerical Recipes (when identifying products) is a trademark of Numerical Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical requirement that ideas be credited to their known originators. When programs in this book are based on known sources, whether copyrighted or in the public domain, published or “handed-down,” we have attempted to give proper attribution. Unfortunately, the lineage of many programs in common circulation is often unclear. We would be grateful to readers for new or corrected information regarding attributions, which we will attempt to incorporate in subsequent printings.
Chapter 21. Introduction to Fortran 90

21.0 Introduction

Fortran 90 is in many respects a backwards-compatible modernization of the long-used (and much abused) Fortran 77 language, but it is also, in other respects, a new language for parallel programming on present and future multiprocessor machines. These twin design goals of the language sometimes add confusion to the process of becoming fluent in Fortran 90 programming.

In a certain trivial sense, Fortran 90 is strictly backwards-compatible with Fortran 77. That is, any Fortran 90 compiler is supposed to be able to compile any legacy Fortran 77 code without error. The reason for terming this compatibility trivial, however, is that you have to tell the compiler (usually via a source file name ending in ".f" or ".for") that it is dealing with a Fortran 77 file. If you instead try to pass off Fortran 77 code as native Fortran 90 (e.g., by naming the source file something ending in ".f90") it will not always work correctly!

It is best, therefore, to approach Fortran 90 as a new computer language, albeit one with a lot in common with Fortran 77. Indeed, in such terms, Fortran 90 is a fairly big language, with a large number of new constructions and intrinsic functions. Here, in one short chapter, we do not pretend to provide a complete description of the language. Luckily, there are good books that do exactly that. Our favorite one is by Metcalf and Reid [1], cited throughout this chapter as “M&R.” Other good starting points include [2] and [3].

Our goal, in the remainder of this chapter, is to give a good, working description of those Fortran 90 language features that are not immediately self-explanatory to Fortran 77 programmers, with particular emphasis on those that occur most frequently in the Fortran 90 versions of the Numerical Recipes routines. This chapter, by itself, will not teach you to write Fortran 90 code. But it ought to help you acquire a reading knowledge of the language, and perhaps provide enough of a head start that you can rapidly pick up the rest of what you need to know from M&R or another Fortran 90 reference book.

CITED REFERENCES AND FURTHER READING:
21.1 Quick Start: Using the Fortran 90 Numerical Recipes Routines

This section is for people who want to jump right in. We'll compute a Bessel function \(J_0(x) \), where \(x \) is equal to the fourth root of the Julian Day number of the 200th full moon since January 1900. (Now there's a useful quantity!)

First, locate the important files \(\text{nrtype.f90} \), \(\text{nrutil.f90} \), and \(\text{nr.f90} \), as listed in Appendices C1, C1, and C2, respectively. These contain modules that either are (i) used by our routines, or else (ii) describe the calling conventions of our routines to (your) user programs. Compile each of these files, producing (with most compilers) a .mod file and a .o (or similarly named) file for each one.

Second, create this main program file:

```fortran
PROGRAM hello_bessel
USE nrtype
USE nr, ONLY: flmoon, bessj0
IMPLICIT NONE
INTEGER(I4B) :: n=200,nph=2,jd
REAL(SP) :: x,frac,ans
call flmoon(n,nph,jd,frac)
x=jd**0.25_sp
ans=bessj0(x)
write (*,*) 'Hello, Bessel: ', ans
END PROGRAM
```

Here is a quick explanation of some elements of the above program:

The first \text{USE} statement includes a module of ours named \text{nrtype}, whose purpose is to give symbolic names to some kinds of data types, among them single-precision reals ("sp") and four-byte integers ("i4b"). The second \text{USE} statement includes a module of ours that defines the calling sequences, and variable types, expected by (in this case) the Numerical Recipes routines \text{flmoon} and \text{bessj0}.

The \text{IMPLICIT NONE} statement signals that we want the compiler to require us explicitly to declare all variable types. \text{We strongly urge that you always take this option.}

The next two lines declare integer and real variables of the desired kinds. The variable \(n \) is initialized to the value 200, \(nph \) to 2 (a value expected by \text{flmoon}).

We call \text{flmoon}, and take the fourth root of the answer it returns as \(jd \). Note that the constant 0.25 is typed to be single-precision by the appended _sp.

We call the \text{bessj0} routine, and print the answer.

Third, compile the main program file, and also the files \text{flmoon.f90}, \text{bessj0.f90}. Then, link the resulting object files with also \text{nrutil.o} (or similar system-dependent name, as produced in step 1). Some compilers will also require you to link with \text{nr.o} and \text{nrtype.o}.

Fourth, run the resulting executable file. Typical output is:

```
Hello, Bessel:  7.3096365E-02
```
21.2 Fortran 90 Language Concepts

The Fortran 90 language standard defines and uses a number of standard terms for concepts that occur in the language. Here we summarize briefly some of the most important concepts. Standard Fortran 90 terms are shown in italics. While by no means complete, the information in this section should help you get a quick start with your favorite Fortran 90 reference book or language manual.

A note on capitalization: Outside a character context, Fortran 90 is not case-sensitive, so you can use upper and lower case any way you want, to improve readability. A variable like SP (see below) is the same variable as the variable sp. We like to capitalize keywords whose use is primarily at compile-time (statements that delimit program and subprogram boundaries, declaration statements of variables, fixed parameter values), and use lower case for the bulk of run-time code. You can adopt any convention that you find helpful to your own programming style; but we strongly urge you to adopt and follow some convention.

Data Types and Kinds

Data types (also called simply types) can be either intrinsic data types (the familiar INTEGER, REAL, LOGICAL, and so forth) or else derived data types that are built up in the manner of what are called “structures” or “records” in other computer languages. (We’ll use derived data types very sparingly in this book.) Intrinsic data types are further specified by their kind parameter (or simply kind), which is simply an integer. Thus, on many machines, REAL(4) (with kind = 4) is a single-precision real, while REAL(8) (with kind = 8) is a double-precision real. Literal constants (or simply literals) are specified as to kind by appending an underscore, as 1.5_4 for single precision, or 1.5_8 for double precision. [M&R, §2.5–§2.6]

Unfortunately, the specific integer values that define the different kind types are not specified by the language, but can vary from machine to machine. For that reason, one almost never uses literal kind parameters like 4 or 8, but rather defines in some central file, and imports into all one’s programs, symbolic names for the kinds. For this book, that central file is the module named nrtype, and the chosen symbolic names include SP, DP (for reals); I2B, I4B (for two- and four-byte integers); and LGT for the default logical type. You will therefore see us consistently writing REAL(SP), or 1.5_sp, and so forth.

Here is an example of declaring some variables, including a one-dimensional array of length 500, and a two-dimensional array with 100 rows and 200 columns:

```fortran
USE nrtype
REAL(SP) :: x,y,z
INTEGER(I4B) :: i,j,k
REAL(SP), DIMENSION(500) :: arr
REAL(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)
```

The last line shows an alternative form for array syntax. And yes, there are default kind parameters for each intrinsic type, but these vary from machine to machine and can get you into trouble when you try to move code. We therefore specify all kind parameters explicitly in almost all situations.
Array Shapes and Sizes

The shape of an array refers to both its dimensionality (called its rank), and also the lengths along each dimension (called the extents). The shape of an array is specified by a rank-one array whose elements are the extents along each dimension, and can be queried with the shape intrinsic (see p. 949). Thus, in the above example, shape(barr) returns an array of length 2 containing the values (100, 200).

The size of an array is its total number of elements, so the intrinsic size(barr) would return 20000 in the above example. More often one wants to know the extents along each dimension, separately: size(barr,1) returns the value 100, while size(barr,2) returns the value 200. [M&R, §2.10]

Section §21.3, below, discusses additional aspects of arrays in Fortran 90.

Memory Management

Fortran 90 is greatly superior to Fortran 77 in its memory-management capabilities, seen by the user as the ability to create, expand, or contract workspace for programs. Within subprograms (that is, subroutines and functions), one can have automatic arrays (or other automatic data objects) that come into existence each time the subprogram is entered, and disappear (returning their memory to the pool) when the subprogram is exited. The size of automatic objects can be specified by arbitrary expressions involving values passed as actual arguments in the calling program, and thus received by the subprogram through its corresponding dummy arguments. [M&R, §6.4]

Here is an example that creates some automatic workspace named carr:

```fortran
SUBROUTINE dosomething(j,k)
  USE nrtype
  REAL(SP), DIMENSION(2*j,k**2) :: carr
END SUBROUTINE dosomething
```

Finer control on when workspace is created or destroyed can be achieved by declaring allocatable arrays, which exist as names only, without associated memory, until they are allocated within the program or subprogram. When no longer needed, they can be deallocated. The allocation status of an allocatable array can be tested by the program via the allocated intrinsic function (p. 952). [M&R, §6.5]

Here is an example in outline:

```fortran
REAL(SP), DIMENSION(:,,:), ALLOCATABLE :: darr
allocate(darr(10,20))
allocate(darr(100,200))
dallocate(darr)
```

Notice that darr is originally declared with only “slots” (colons) for its dimensions, and is then allocated/deallocated twice, with different sizes.

Yet finer control is achieved by the use of pointers. Like an allocatable array, a pointer can be allocated, at will, its own associated memory. However, it has the additional flexibility of alternatively being pointer associated with a target that
already exists under another name. Thus, pointers can be used as redefinable aliases for other variables, arrays, or (see §21.3) array sections. [M&R, §6.12]

Here is an example that first associates the pointer `parr` with the array `earr`, then later cancels that association and allocates it its own storage of size 50:

```fortran
REAL(SP), DIMENSION(:,), POINTER :: parr
REAL(SP), DIMENSION(100), TARGET :: earr
...
parr => earr
... nullify(parr)
allocate(parr(50))
...
deallocate(parr)
```

Procedure Interfaces

When a procedure is referenced (e.g., called) from within a program or subprogram (examples of scoping units), the scoping unit must be told, or must deduce, the procedure’s interface, that is, its calling sequence, including the types and kinds of all dummy arguments, returned values, etc. The recommended procedure is to specify this interface via an explicit interface, usually an interface block (essentially a declaration statement for subprograms) in the calling subprogram or in some module that the calling program includes via a USE statement. In this book all interfaces are explicit, and the module named `nr` contains interface blocks for all of the Numerical Recipes routines. [M&R, §5.11]

Here is a typical example of an interface block:

```fortran
INTERFACE
  SUBROUTINE caldat(julian, mm, id, iyyy)
  USE nrtype
  INTEGER(I4B), INTENT(IN) :: julian
  INTEGER(I4B), INTENT(OUT) :: mm, id, iyyy
END SUBROUTINE caldat
END INTERFACE
```

Once this interface is made known to a program that you are writing (by either explicit inclusion or a USE statement), then the compiler is able to flag for you a variety of otherwise difficult-to-find bugs. Although interface blocks can sometimes seem overly wordy, they give a big payoff in ultimately minimizing programmer time and frustration.

For compatibility with Fortran 77, the language also allows for implicit interfaces, where the calling program tries to figure out the interface by the old rules of Fortran 77. These rules are quite limited, and prone to producing devilishly obscure program bugs. We strongly recommend that implicit interfaces never be used.

Elemental Procedures and Generic Interfaces

Many intrinsic procedures (those defined by the language standard and thus usable without any further definition or specification) are also generic. This means that a single procedure name, such as `log(x)`, can be used with a variety of types and kind parameters for the argument `x`, and the result returned will have the same type and kind parameter as the argument. In this example, `log(x)` allows any real or complex argument type.
Better yet, most generic functions are also *elemental*. The argument of an elemental function can be an array of arbitrary shape! Then, the returned result is an array of the same shape, with each element containing the result of applying the function to the corresponding element of the argument. (Hence the name *elemental*, meaning “applied element by element.”) [M&R, §8.1] For example:

```fortran
REAL(SP), DIMENSION(100,100) :: a,b
b=sin(a)
```

Fortran 90 has no facility for creating new, user-defined elemental functions. It does have, however, the related facility of *overloading* by the use of generic interfaces. This is invoked by the use of an interface block that attaches a single generic name to a number of distinct subprograms whose dummy arguments have different types or kinds. Then, when the generic name is referenced (e.g., called), the compiler chooses the specific subprogram that matches the types and kinds of the actual arguments used. [M&R, §5.18] Here is an example of a generic interface block:

```fortran
INTERFACE myfunc
  FUNCTION myfunc_single(x)
    USE nrtype
    REAL(SP) :: x,myfunc_single
  END FUNCTION myfunc_single

  FUNCTION myfunc_double(x)
    USE nrtype
    REAL(DP) :: x,myfunc_double
  END FUNCTION myfunc_double
END INTERFACE
```

A program with knowledge of this interface could then freely use the function reference `myfunc(x)` for `x`’s of both type SP and type DP.

We use overloading quite extensively in this book. A typical use is to provide, under the same name, both scalar and vector versions of a function such as a Bessel function, or to provide both single-precision and double-precision versions of procedures (as in the above example). Then, to the extent that we have provided all the versions that you need, you can pretend that our routine is elemental. In such a situation, if you ever call our function with a type or kind that we have not provided, the compiler will instantly flag the problem, because it is unable to resolve the generic interface.

Modules

Modules, already referred to several times above, are Fortran 90’s generalization of Fortran 77’s common blocks, INCLUDEd files of parameter statements, and (to some extent) statement functions. Modules are *program units*, like main programs or subprograms (subroutines and functions), that can be separately compiled. A module is a convenient place to stash global data, *named constants* (what in Fortran 77 are called “symbolic constants” or “PARAMETERS”), interface blocks to subprograms and/or actual subprograms themselves (*module subprograms*). The convenience is that a module’s information can be incorporated into another program unit via a simple, one-line USE statement. [M&R, §5.5]

Here is an example of a simple module that defines a few parameters, creates some global storage for an array named `arr` (as might be done with a Fortran 77 common block), and defines the interface to a function `yourfunc`:
As mentioned earlier, the module \texttt{nr} contains INTERFACE declarations for all the Numerical Recipes. When we include a statement of the form

\begin{verbatim}
USE nr, ONLY: recipe1
\end{verbatim}

it means that the program uses the additional routine \texttt{recipe1}. The compiler is able to use the explicit interface declaration in the module to check that \texttt{recipe1} is invoked with arguments of the correct type, shape, and number. However, a weakness of Fortran 90 is that there is no fail-safe way to be sure that the interface module (here \texttt{nr}) stays synchronized with the underlying routine (here \texttt{recipe1}). You might think that you could accomplish this by putting \texttt{USE nr, ONLY: recipe1} into the \texttt{recipe1} program itself. Unfortunately, the compiler interprets this as an erroneous double definition of \texttt{recipe1}'s interface, rather than (as would be desirable) as an opportunity for a consistency check. (To achieve this kind of consistency check, you can put the procedures themselves, not just their interfaces, into the module.)

\section*{21.3 More on Arrays and Array Sections}

Arrays are the central conceptual core of Fortran 90 as a parallel programming language, and thus worthy of some further discussion. We have already seen that arrays can “come into existence” in Fortran 90 in several ways, either directly declared, as

\begin{verbatim}
REAL(SP), DIMENSION(100,200) :: arr
\end{verbatim}

or else allocated by an allocatable variable or a pointer variable,

\begin{verbatim}
REAL(SP), DIMENSION(:,,:), ALLOCATABLE :: arr
REAL(SP), DIMENSION(:,,:), POINTER :: barr
... allocate(arr(100,200),barr(100,200))
\end{verbatim}

or else (not previously mentioned) passed into a subprogram through a dummy argument:

\begin{verbatim}
SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,::) :: carr
... i=size(carr,1)
\end{verbatim}
In the above example we also show how the subprogram can find out the size of the actual array that is passed, using the \texttt{size} intrinsic. This routine is an example of the use of an \textit{assumed-shape array}, new to Fortran 90. The actual extents along each dimension are inherited from the calling routine at run time. A subroutine with assumed-shape array arguments \textit{must} have an explicit interface in the calling routine, otherwise the compiler doesn’t know about the extra information that must be passed. A typical setup for calling \texttt{myroutine} would be:

\begin{verbatim}
PROGRAM use_myroutine
USE nrtype
REAL(SP), DIMENSION(10,10) :: arr
INTERFACE
SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
END SUBROUTINE myroutine
END INTERFACE
...
call myroutine(a)
\end{verbatim}

Of course, for the recipes we have provided all the interface blocks in the file \texttt{nr.f90}, and you need only a \texttt{USE nr} statement in your calling program.

\subsection*{Conformable Arrays}

Two arrays are said to be \textit{conformable} if their shapes are the same. Fortran 90 allows practically all operations among conformable arrays and elemental functions that are allowed for scalar variables. Thus, if \texttt{arr}, \texttt{barr}, and \texttt{carr} are mutually conformable, we can write,

\begin{verbatim}
arr=barr+cos(carr)+2.0_sp
\end{verbatim}

and have the indicated operations performed, element by corresponding element, on the entire arrays. The above line also illustrates that a scalar (here the constant \texttt{2.0_sp}, but a scalar variable would also be fine) is deemed conformable with \texttt{any} array — it gets “expanded” to the shape of the rest of the expression that it is in. \cite[M&R, §3.11]{nr90}

In Fortran 90, as in Fortran 77, the default lower bound for an array subscript is 1; however, it can be made some other value at the time that the array is declared:

\begin{verbatim}
REAL(SP), DIMENSION(100,200) :: farr
REAL(SP), DIMENSION(0:99,0:199) :: garr
...
\end{verbatim}

\begin{verbatim}
farr = 3.0_sp*garr + 1.0_sp
\end{verbatim}

Notice that \texttt{farr} and \texttt{garr} are conformable, since they have the same shape, in this case \texttt{(100,200)}. Also note that when they are used in an array expression, the operations are taken between the corresponding elements of \textit{their shapes}, not necessarily the corresponding elements of \textit{their indices}. \cite[M&R, §3.10]{nr90} In other words, one of the components evaluated is,

\begin{verbatim}
farr(1,1) = 3.0_sp*garr(0,0) + 1.0_sp
\end{verbatim}

This illustrates a fundamental aspect of array (or data) parallelism in Fortran 90. Array constructions should \textit{not} be thought of as merely abbreviations for do-loops.
over indices, but rather as genuinely parallel operations on same-shaped objects, abstracted of their indices. This is why the standard makes no statement about the order in which the individual operations in an array expression are executed; they might in fact be carried out simultaneously, on parallel hardware.

By default, array expressions and assignments are performed for all elements of the same-shaped arrays referenced. This can be modified, however, by use of a *where* construction like this:

```fortran
where (harr > 0.0_sp)
  farr = 3.0_sp*garr + 1.0_sp
end where
```

Here *harr* must also be conformable to *farr* and *garr*. Analogously with the Fortran *if*-statement, there is also a one-line form of the *where*-statement. There is also a *where* ... else where ... end where form of the statement, analogous to *if* ... else if ... end if. A significant language limitation in Fortran 90 is that nested *where*-statements are not allowed. [M&R, §6.8]

Array Sections

Much of the versatility of Fortran 90’s array facilities stems from the availability of *array sections*. An array section acts like an array, but its memory location, and thus the values of its elements, is actually a subset of the memory location of an already-declared array. Array sections are thus “windows into arrays,” and they can appear on either the left side, or the right side, or both, of a replacement statement. Some examples will clarify these ideas.

Let us presume the declarations

```fortran
REAL(SP), DIMENSION(100) :: arr
INTEGER(I4B), DIMENSION(6) :: iarr=(/11,22,33,44,55,66/)  
```

Note that *iarr* is not only declared, it is also initialized by an *initialization expression* (a replacement for Fortran 77’s *DATA* statement). [M&R, §7.5] Here are some array sections constructed from these arrays:

<table>
<thead>
<tr>
<th>Array Section</th>
<th>What It Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>arr(:)</td>
<td>same as arr</td>
</tr>
<tr>
<td>arr(1:100)</td>
<td>same as arr</td>
</tr>
<tr>
<td>arr(1:10)</td>
<td>one-dimensional array containing first 10 elements of arr</td>
</tr>
<tr>
<td>arr(51:100)</td>
<td>one-dimensional array containing second half of arr</td>
</tr>
<tr>
<td>arr(51:)</td>
<td>same as arr(51:100)</td>
</tr>
<tr>
<td>arr(10:1:-1)</td>
<td>one-dimensional array containing first 10 elements of arr, but in reverse order</td>
</tr>
<tr>
<td>arr((/10,99,1,6/))</td>
<td>one-dimensional array containing elements 10, 99, 1, and 6 of arr, in that order</td>
</tr>
<tr>
<td>arr(iarr)</td>
<td>one-dimensional array containing elements 11, 22, 33, 44, 55, 66 of arr, in that order</td>
</tr>
</tbody>
</table>
Now let’s try some array sections of the two-dimensional array

\[
\text{REAL(SP), DIMENSION(100,100) :: barr}
\]

<table>
<thead>
<tr>
<th>Array Section</th>
<th>What It Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{barr(:,::)}</td>
<td>same as \text{barr}</td>
</tr>
<tr>
<td>\text{barr(1:100,1:100)}</td>
<td>same as \text{barr}</td>
</tr>
<tr>
<td>\text{barr(7,:)}</td>
<td>one-dimensional array containing the 7th row of \text{barr}</td>
</tr>
<tr>
<td>\text{barr(7,1:100)}</td>
<td>same as \text{barr(7,:)}</td>
</tr>
<tr>
<td>\text{barr(:,7)}</td>
<td>one-dimensional array containing the 7th column of \text{barr}</td>
</tr>
<tr>
<td>\text{barr(21:30,71:90)}</td>
<td>two-dimensional array containing the sub-block of \text{barr} with the indicated ranges of indices; the shape of this array section is (10, 20)</td>
</tr>
<tr>
<td>\text{barr(100:1:-1,100:1:-1)}</td>
<td>two-dimensional array formed by flipping \text{barr} upside down and backwards</td>
</tr>
<tr>
<td>\text{barr(2:100:2,2:100:2)}</td>
<td>two-dimensional array of shape (50, 50) containing the elements of \text{barr} whose row and column indices are both even</td>
</tr>
</tbody>
</table>

Some terminology: A construction like \text{2:100:2}, above, is called a subscript triplet. Its integer pieces (which may be integer constants, or more general integer expressions) are called lower, upper, and stride. Any of the three may be omitted. An omitted stride defaults to the value 1. Notice that, if \text{upper} − \text{lower} has a different sign from \text{stride}, then a subscript triplet defines an empty or zero-length array, e.g., \text{1:5:-1} or \text{10:1:1} (or its equivalent form, simply \text{10:1}). Zero-length arrays are not treated as errors in Fortran 90, but rather as “no-ops.” That is, no operation is performed in an expression or replacement statement among zero-length arrays. (This is essentially the same convention as in Fortran 77 for do-loop indices, which array expressions often replace.) [M&R, §6.10]

It is important to understand that array sections, when used in array expressions, match elements with other parts of the expression according to shape, not according to indices. (This is exactly the same principle that we applied, above, to arrays with subscript lower bounds different from the default value of 1.) One frequently exploits this feature in using array sections to carry out operations on arrays that access neighboring elements. For example,

\[
\text{carr(1:n-1,1:n-1) = barr(1:n-1,1:n-1) + barr(2:n,2:n)}
\]

constructs in the \((n-1) \times (n-1)\) matrix \text{carr} the sum of each of the corresponding elements in \(n \times n\) \text{barr} added to its diagonally lower-right neighbor.

Pointers are often used as aliases for array sections, especially if the same array sections are used repeatedly. [M&R, §6.12] For example, with the setup

\[
\text{REAL(SP), DIMENSION(:,::), POINTER :: leftb, rightb}
\]
21.4 Fortran 90 Intrinsic Procedures

Much of Fortran 90’s power, both for parallel programming and for its concise expression of algorithmic ideas, comes from its rich set of intrinsic procedures. These have the effect of making the language “large,” hence harder to learn. However, effort spent on learning to use the intrinsics — particularly some of their more obscure, and more powerful, optional arguments — is often handsomely repaid.

This section summarizes the intrinsics that we find useful in numerical work. We omit, here, discussion of intrinsics whose exclusive use is for character and string manipulation. We intend only a summary, not a complete specification, which can be found in M&R’s Chapter 8, or other reference books.

If you find the sheer number of new intrinsic procedures daunting, you might want to start with our list of the “top 10” (with the number of different Numerical Recipes routines that use each shown in parentheses): size (254), sum (44), dot_product (31), merge (27), all (25), maxval (23), matmul (19), pack (18), any (17), and spread (15). (Later, in Chapter 23, you can compare these numbers with our frequency of using the short utility functions that we define in a module named nrutil, — several of which we think ought to have been included as Fortran 90 intrinsic procedures.)

The type, kind, and shape of the value returned by intrinsic functions will usually be clear from the short description that we give. As an additional hint (though not necessarily a precise description), we adopt the following codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Integer</td>
</tr>
<tr>
<td>R</td>
<td>Real</td>
</tr>
<tr>
<td>C</td>
<td>Complex</td>
</tr>
<tr>
<td>A</td>
<td>Array</td>
</tr>
<tr>
<td>R</td>
<td>Logical</td>
</tr>
</tbody>
</table>

leftb=>barr(1:n-1,1:n-1)
rightb=>barr(2:n,2:n)

carr(1:n-1,1:n-1)=leftb+rightb

We should also mention that array sections, while powerful and concise, are sometimes not quite powerful enough. While any row or column of a matrix is easily accessible as an array section, there is no good way, in Fortran 90, to access (e.g.) the diagonal of a matrix, even though its elements are related by a linear progression in the Fortran storage order (by columns). These so-called skew-sections were much discussed by the Fortran 90 standards committee, but they were not implemented. We will see examples later in this volume of work-around programming tricks (none totally satisfactory) for this omission. (Fortran 95 corrects the omission; see §21.6.)
Numerical Elemental Functions

Little needs to be said about the numerical functions with identical counterparts in Fortran 77: \(\text{abs}, \text{acos}, \text{aimag}, \text{asin}, \text{atan}, \text{atan2}, \text{conjg}, \text{cos}, \text{cosh}, \text{dim}, \text{exp}, \text{log}, \text{log10}, \text{max}, \text{min}, \text{mod}, \text{sign}, \text{sin}, \text{sinh}, \text{sqrt}, \text{tan}, \text{and} \text{tanh}.\) In Fortran 90 these are all *elemental* functions, so that any plausible type, kind, and shape of argument may be used. Except for \(\text{aimag},\) which returns a real type from a complex argument, these all return \([\text{argTS}]\) (see table above).

Although Fortran 90 recognizes, for compatibility, Fortran 77’s so-called *specific names* for these functions (e.g., \(\text{iabs}, \text{dabs}, \text{and} \text{cabs}\) for the generic \(\text{abs}\)), these are entirely superfluous and should be avoided.

Fortran 90 corrects some ambiguity (or at least inconvenience) in Fortran 77’s \(\text{mod}(a,p)\) function, by introducing a new function \(\text{modulo}(a,p)\). The functions are essentially identical for positive arguments, but for negative \(a\) and positive \(p, \text{modulo}\) gives results more compatible with one’s mathematical expectation that the answer should always be in the positive range \(0\) to \(p\). E.g., \(\text{modulo}(11,5)=1\), and \(\text{modulo}(-11,5)=4\). [M&R, §8.3.2]

Conversion and Truncation Elemental Functions

Fortran 90’s conversion (or, in the language of C, casting) and truncation functions are generally modeled on their Fortran 77 antecedents, but with the addition of an optional second integer argument, \(\text{kind}\), that determines the kind of the result. Note that, if \(\text{kind}\) is omitted, you get a default kind — not necessarily related to the kind of your argument. The kind of the argument is of course known to the compiler by its previous declaration. Functions in this category (see below for explanation of arguments in slanted type) are:

- \([\text{Real}]\) \(\text{aint}(a,\text{kind})\)
 - Truncate to integer value, return as a real kind.
- \([\text{Real}]\) \(\text{anint}(a,\text{kind})\)
 - Nearest whole number, return as a real kind.
- \([\text{Cmplx}]\) \(\text{cmplx}(x,y,\text{kind})\)
Convert to complex kind. If y is omitted, it is taken to be 0.

[Int] \texttt{int}(a,kind)
Convert to integer kind, truncating towards zero.

[Int] \texttt{nint}(a,kind)
Convert to integer kind, choosing the nearest whole number.

[Real] \texttt{real}(a,kind)
Convert to real kind.

[Lgcl] \texttt{logical}(a,kind)
Convert one logical kind to another.

We must digress here to explain the use of \textit{optional arguments} and \textit{keywords} as Fortran 90 language features. [M&R, §5.13] When a routine (either intrinsic or user-defined) has arguments that are declared to be optional, then the dummy names given to them also become keywords that distinguish — independent of their position in a calling list — which argument is intended to be passed. (There are some additional rules about this that we will not try to summarize here.) In this section’s tabular listings, we indicate optional arguments in intrinsic routines by printing them in smaller slanted type. For example, the intrinsic function
\begin{verbatim}
\texttt{eoshift(array,shift,boundary,dim)}
\end{verbatim}

has two required arguments, \texttt{array} and \texttt{shift}, and two optional arguments, \texttt{boundary} and \texttt{dim}. Suppose we want to call this routine with the actual arguments \texttt{myarray}, \texttt{myshift}, and \texttt{mydim}, but omitting the argument in the \texttt{boundary} slot. We do this by the expression
\begin{verbatim}
\texttt{eoshift(myarray,myshift,dim=mydim)}
\end{verbatim}

Conversely, if we wanted a \texttt{boundary} argument, but no \texttt{dim}, we might write
\begin{verbatim}
\texttt{eoshift(myarray,myshift,boundary=myboundary)}
\end{verbatim}

It is always a good idea to use this kind of keyword construction when invoking optional arguments, even though the rules allow keywords to be omitted in some unambiguous cases. Now back to the lists of intrinsic routines.

A peculiarity of the \texttt{real} function derives from its use both as a type conversion and for extracting the real part of complex numbers (related, but not identical, usages): If the argument of \texttt{real} is complex, and \texttt{kind} is omitted, then the result \textit{isn’t} a default real kind, but rather \textit{is} (as one generally would want) the \texttt{real} kind type corresponding to the \texttt{kind} type of the complex argument, that is, single-precision \texttt{real} for single-precision complex, double-precision for double-precision, and so on. [M&R, §8.3.1] We recommend \textit{never} using \texttt{kind} when you intend to extract the real part of a complex, and \textit{always} using \texttt{kind} when you intend conversion of a real or integer value to a particular kind of \texttt{REAL}. (Use of the deprecated function \texttt{dble} is not recommended.)

The last two conversion functions are the exception in that they \textit{don’t} allow a \texttt{kind} argument, but rather return default integer kinds. (The X3J3 standards committee has fixed this in Fortran 95.)

[Int] \texttt{ceiling}(a)
Convert to integer, truncating towards more positive.
Chapter 21. Introduction to Fortran 90 Language Features

[Int] floor(a)
 Convert to integer, truncating towards more negative.

Reduction and Inquiry Functions on Arrays

These are mostly the so-called transformational functions that accept array arguments and return either scalar values or else arrays of lesser rank. [M&R, §8.11] With no optional arguments, such functions act on all the elements of their single array argument, regardless of its shape, and produce a scalar result. When the optional argument dim is specified, they instead act on all one-dimensional sections that span the dimension dim, producing an answer one rank lower than the first argument (that is, omitting the dim dimension from its shape). When the optional argument mask is specified, only the elements with a corresponding true value in mask are scanned.

[Lgcl] all(mask, dim)
 Returns true if all elements of mask are true, false otherwise.

[Lgcl] any(mask, dim)
 Returns true if any of the elements of mask are true, false otherwise.

[Int] count(mask, dim)
 Counts the true elements in mask.

[Num] maxval(array, dim, mask)
 Maximum value of the array elements.

[Num] minval(array, dim, mask)
 Minimum value of the array elements.

[Num] product(array, dim, mask)
 Product of the array elements.

[Int] size(array, dim)
 Size (total number of elements) of array, or its extent along dimension dim.

[Num] sum(array, dim, mask)
 Sum of the array elements.

The use of the dim argument can be confusing, so an example may be helpful. Suppose we have

\[
\begin{bmatrix}
 1 & 2 & 3 & 4 \\
 5 & 6 & 7 & 8 \\
 9 & 10 & 11 & 12 \\
\end{bmatrix}
\]

where, as always, the i index in array(i,j) numbers the rows while the j index numbers the columns. Then

\[
\text{sum(myarray, dim=1)} = (15, 18, 21, 24)
\]

that is, the i indices are “summed away” leaving only a j index on the result; while

\[
\text{sum(myarray, dim=2)} = (10, 26, 42)
\]
that is, the j indices are “summed away” leaving only an i index on the result. Of course we also have

$$\text{sum(myarray)} = 78$$

Two related functions return the location of particular elements in an array. The returned value is a one-dimensional integer array containing the respective subscript of the element along each dimension. Note that when the argument object is a one-dimensional array, the returned object is an integer array of length 1, not simply an integer. (Fortran 90 distinguishes between these.)

[Iarr] maxloc(array,mask)
Location of the maximum value in an array.

[Iarr] minloc(array,mask)
Location of the minimum value in an array.

Similarly returning a one-dimensional integer array are

[Iarr] shape(array)
Returns the shape of array as a one-dimensional integer array.

[Iarr] lbound(array,dim)
When dim is absent, returns an array of lower bounds for each dimension of subscripts of array. When dim is present, returns the value only for dimension dim, as a scalar.

[Iarr] ubound(array,dim)
When dim is absent, returns an array of upper bounds for each dimension of subscripts of array. When dim is present, returns the value only for dimension dim, as a scalar.

Array Unary and Binary Functions

The most powerful array operations are simply built into the language as operators. All the usual arithmetic and logical operators (+, −, *, /, **, .not., .and., .or., .eqv., .neqv.) can be applied to arrays of arbitrary shape or (for the binary operators) between two arrays of the same shape, or between arrays and scalars. The types of the arrays must, of course, be appropriate to the operator used. The result in all cases is to perform the operation element by element on the arrays.

We also have the intrinsic functions,

[Num] dot_product(veca,vecb)
Scalar dot product of two one-dimensional vectors veca and vecb.

[Num] matmul(mata,matb)
Result of matrix-multiplying the two two-dimensional matrices mata and matb. The shapes have to be such as to allow matrix multiplication.

Vectors (one-dimensional arrays) are additionally allowed as either the first or second argument, but not both; they are treated as row vectors in the first argument, and as column vectors in the second.

You might wonder how to form the outer product of two vectors, since matmul specifically excludes this case. (See §22.1 and §23.5 for answer.)
Array Manipulation Functions

These include many powerful features that a good Fortran 90 programmer should master.

[argTS] cshift(array, shift, dim)
If dim is omitted, it is taken to be 1. Returns the result of circularly left-shifting every one-dimensional section of array (in dimension dim) by shift (which may be negative). That is, for positive shift, values are moved to smaller subscript positions. Consult a Fortran 90 reference (e.g., [M&R, §8.13.5]) for the case where shift is an array.

[argTS] merge(tsource, fsource, mask)
Returns same shape object as tsource and fsource containing the former’s components where mask is true, the latter’s where it is false.

[argTS] eoshift(array, shift, boundary, dim)
If dim is omitted, it is taken to be 1. Returns the result of end-off left-shifting every one-dimensional section of array (in dimension dim) by shift (which may be negative). That is, for positive shift, values are moved to smaller subscript positions. If boundary is present as a scalar, it supplies elements to fill in the blanks; if it is not present, zero values are used. Consult a Fortran 90 reference (e.g., [M&R, §8.13.5]) for the case where boundary and/or shift is an array.

[argT] pack(array, mask, vector)
Returns a one-dimensional array containing the elements of array that pass the mask. Components of optional vector are used to pad out the result to the size of vector with specified values.

[argT] reshape(source, shape, pad, order)
Takes the elements of source, in normal Fortran order, and returns them (as many as will fit) as an array whose shape is specified by the one-dimensional integer array shape. If there is space remaining, then pad must be specified, and is used (as many sequential copies as necessary) to fill out the rest. For description of order, consult a Fortran 90 reference, e.g., [M&R, 8.13.3].

[argT] spread(source, dim, ncopies)
Returns an array whose rank is one greater than source, and whose dim dimension is of length ncopies. Each of the result’s ncopies array sections having a fixed subscript in dimension dim is a copy of source. (That is, it spreads source into the dimth dimension.)

[argT] transpose(matrix)
Returns the transpose of matrix, which must be two-dimensional.

[argT] unpack(vector, mask, field)
Returns an array whose type is that of vector, but whose shape is that of mask. The components of vector are put, in order, into the positions where mask is true. Where mask is false, components of field (which may be a scalar or an array with the same shape as mask) are used instead.

Bitwise Functions

Most of the bitwise functions should be familiar to Fortran 77 programmers as longstanding standard extensions of that language. Note that the bit positions number from zero to one less than the value returned by the `bit_size` function. Also note that bit positions number from right to left. Except for `bit_size`, the following functions are all elemental.

- **Int** `bit_size(i)`

 Number of bits in the integer type of i.

- **Lgcl** `btest(i,pos)`

 True if bit position pos is 1, false otherwise.

- **Int** `iand(i,j)`

 Bitwise logical and.

- **Int** `ibclr(i,pos)`

 Returns i but with bit position pos set to zero.

- **Int** `ibits(i,pos,len)`

 Extracts len consecutive bits starting at position pos and puts them in the low bit positions of the returned value. (The high positions are zero.)

- **Int** `ibset(i,pos)`

 Returns i but with bit position pos set to 1.

- **Int** `ieor(i,j)`

 Bitwise exclusive or.

- **Int** `ior(i,j)`

 Bitwise logical or.

- **Int** `ishft(i,shift)`

 Bitwise left shift by shift (which may be negative) with zeros shifted in from the other end.

- **Int** `ishftc(i,shift)`

 Bitwise circularly left shift by shift (which may be negative).

- **Int** `not(i)`

 Bitwise logical complement.

Some Functions Relating to Numerical Representations

- **Real** `epsilon(x)`

 Smallest nonnegligible quantity relative to 1 in the numerical model of x.

- **Num** `huge(x)`

 Largest representable number in the numerical model of x.

- **Int** `kind(x)`
Returns the kind value for the numerical model of x.

[Real] nearest(x,s)

Real number nearest to x in the direction specified by the sign of s.

[Real] tiny(x)

Smallest positive number in the numerical model of x.

Other Intrinsic Procedures

[Lgcl] present(a)

True, within a subprogram, if an optional argument is actually present, otherwise false.

[Lgcl] associated(pointer,target)

True if pointer is associated with target or (if target is absent) with any target, otherwise false.

[Lgcl] allocated(array)

True if the allocatable array is allocated, otherwise false.

There are some pitfalls in using associated and allocated, having to do with arrays and pointers that can find themselves in *undefined* status [see §21.5, and also M&R, §3.3 and §6.5.1]. For example, pointers are always “born” in an undefined status, where the associated function returns unpredictable values.

For completeness, here is a list of Fortran 90’s intrinsic procedures not already mentioned:

Other Numerical Representation Functions: digits, exponent, fraction, rrspacing, scale, set_exponent, spacing, maxexponent, minexponent, precision, radix, range, selected_int_kind, selected_real_kind.

Lexical comparison: lge, lgt, lle, llt.

Character functions: ichar, char, achar, iachar, index, adjustl, adjustr, len_trim, repeat, scan, trim, verify.

Other: mvbits, transfer, date_and_time, system_clock, random_seed, random_number. (We will discuss random numbers in some detail in Chapter B7.)

CITED REFERENCES AND FURTHER READING:
21.5 Advanced Fortran 90 Topics

Pointers, Arrays, and Memory Management

One of the biggest improvements in Fortran 90 over Fortran 77 is in the handling of arrays, which are the cornerstone of many numerical algorithms. In this subsection we will take a closer look at how to use some of these new array features effectively. We will look at how to code certain commonly occurring elements of program design, and we will pay particular attention to avoiding “memory leaks,” where — usually inadvertently — we keep cumulatively allocating new storage for an array, every time some piece of code is invoked.

Let’s first review some of the rules for using allocatable arrays and pointers to arrays. Recall that a pointer is born with an undefined status. Its status changes to “associated” when you make it refer to a target, and to “disassociated” when you nullify the pointer. [M&R, §3.3] You can also use nullify on a newly born pointer to change its status from undefined to disassociated; this allows you to test the status with the associated inquiry function. [M&R, §6.5.4] (While many compilers will not produce a run-time error if you test an undefined pointer with associated, you can’t rely on this laissez-faire in your programming.)

The initial status of an allocatable array is “not currently allocated.” Its status changes to “allocated” when you give it storage with allocate, and back to “not currently allocated” when you use deallocate. [M&R, §6.5.1] You can test the status with the allocated inquiry function. Note that while you can also give a pointer fresh storage with allocate, you can’t test this with allocated — only associated is allowed with pointers. Note also that nullifying an allocated pointer leaves its associated storage in limbo. You must instead deallocate, which gives the pointer a testable “disassociated” status.

While allocating an array that is already allocated gives an error, you are allowed to allocate a pointer that already has a target. This breaks the old association, and could leave the old target inaccessible if there is no other pointer associated with it. [M&R, §6.5.2] Deallocating an array or pointer that has not been allocated is always an error.

Allocated arrays that are local to a subprogram acquire the “undefined” status on exit from the subprogram unless they have the SAVE attribute. (Again, not all compilers enforce this, but be warned!) Such undefined arrays cannot be referenced in any way, so you should explicitly deallocate all allocated arrays that are not saved before returning from a subprogram. [M&R, §6.5.1] The same rule applies to arrays declared in modules that are currently accessed only by the subprogram. While you can reference undefined pointers (e.g., by first nullifying them), it is good programming practice to deallocate explicitly any allocated pointers declared locally before leaving a subprogram or module.

Now let’s turn to using these features in programs. The simplest example is when we want to implement global storage of an array that needs to be accessed by two or more different routines, and we want the size of the array to be determined at run time. As mentioned earlier, we implement global storage with a MODULE rather than a COMMON block. (We ignore here the additional possibility of passing
global variables by having one routine CONTainEd within the other.) There are
two good ways of handling the dynamical allocation in a MODULE. Method 1 uses
an allocatable array:

```
MODULE a
  REAL(SP), DIMENSION(:), ALLOCATABLE :: x
END MODULE a

SUBROUTINE b(y)
  USE a
  REAL(SP), DIMENSION(:) :: y
  ... allocate(x(size(y)))
  ... [other routines using x called here] ... 
END SUBROUTINE b
```

Here the global variable `x` gets assigned storage in subroutine `b` (in this case,
the same as the length of `y`). The length of `y` is of course defined in the procedure
that calls `b`. The array `x` is made available to any other subroutine called by `b` by
including a USE `a` statement. The status of `x` can be checked with an allocated
inquiry function on entry into either `b` or the other subroutine if necessary. As
discussed above, you must be sure to deallocate `x` before returning from subroutine
`b`. If you want `x` to retain its values between calls to `b`, you add the SAVE attribute
to its declaration in `a`, and don't deallocate it on returning from `b`. (Alternatively,
you could put a USE `a` in your main program, but we consider that bug-prone, since
forgetting to do so can create all manner of difficult-to-diagnose havoc.) To avoid
allocating `x` more than once, you test it on entry into `b`:

```
if (.not. allocated(x)) allocate(x(size(y)))
```

The second way to implement this type of global storage (Method 2) uses
a pointer:

```
MODULE a
  REAL(SP), DIMENSION(:), POINTER :: x
END MODULE a

SUBROUTINE b(y)
  USE a
  REAL(SP), DIMENSION(:) :: y
  REAL(SP), DIMENSION(size(y)), TARGET :: xx
  ... x=>xx
  ... [other routines using x called here] ... 
END SUBROUTINE b
```

Here the automatic array `xx` gets its temporary storage automatically on entry
into `b`, and automatically gets deallocated on exit from `b`. [M&R, §6.4] The global
pointer `x` can access this storage in any routine with a USE `a` that is called by `b`.
You can check that things are in order in such a called routine by testing `x` with
associated. If you are going to use `x` for some other purpose as well, you should
nullify it on leaving `b` so that it doesn't have undefined status. Note that this
implementation does not allow values to be saved between calls: You can't SAVE
automatic arrays — that's not what they're for. You would have to SAVE `x`
in the module, and allocate it in the subroutine instead of pointing it to a suitable
automatic array. But this is essentially Method 1 with the added complication of using
a pointer, so Method 1 is simpler when you want to save values. When you don't
need to save values between calls, we lean towards Method 2 over Method 1 because we like the automatic allocation and deallocation, but either method works fine.

An example of Method 1 (allocatable array) is in routine rkdumb on page 1297. An example of Method 1 with SAVE is in routine pwtset on p. 1265. Method 2 (pointer) shows up in routines newt (p. 1196), broydn (p. 1199), and fitexy (p. 1286). A variation is shown in routines linmin (p. 1211) and dlinmin (p. 1212): When the array that needs to be shared is an argument of one of the routines, Method 2 is better.

An extension of these ideas occurs if we allocate some storage for an array initially, but then might need to increase the size of the array later without losing the already-stored values. The function reallocate in our utility module nrutil will handle this for you, but it expects a pointer argument as in Method 2. Since no automatic arrays are used, you are free to SAVE the pointer if necessary. Here is a simple example of how to use reallocate to create a workspace array that is local to a subroutine:

```fortran
SUBROUTINE a
USE nrutil, ONLY : reallocate
REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
    init=.false.
    nullify(wksp)
    wksp=>reallocate(wksp,100)
end if
... if (nterm > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
END SUBROUTINE a
```

Here the workspace is initially allocated a size of 100. If the number of elements used (nterm) ever exceeds the size of the workspace, the workspace is doubled. (In a realistic example, one would of course check that the doubled size is in fact big enough.) Fortran 90 experts can note that the SAVE on init is not strictly necessary: Any local variable that is initialized is automatically saved. [M&R, §7.5]

You can find similar examples of reallocate (with some further discussion) in eulsum (p. 1070), hufenc (p. 1348), and arcode (p. 1350). Examples of reallocate used with global variables in modules are in odeint (p. 1300) and ran_state (p. 1144).

Another situation where we have to use pointers and not allocatable arrays is when the storage is required for components of a derived type, which are not allowed to have the allocatable attribute. Examples are in hufmak (p. 1346) and arcmak (p. 1349).

Turning away from issues relating to global variables, we now consider several other important programming situations that are nicely handled with pointers. The first case is when we want a subroutine to return an array whose size is not known in advance. Since dummy arguments are not allocatable, we must use a pointer. Here is the basic construction:

```fortran
SUBROUTINE a(x,nx)
REAL(SP), DIMENSION(:), POINTER :: x
INTEGER(I4B), INTENT(OUT) :: nx
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
```

Chapter 21. Introduction to Fortran 90 Language Features

Since the length of x can be found from $\text{size}(x)$, it is not absolutely necessary to pass nx as an argument. Note the use of the initial logic to avoid memory leaks. If a higher-level subroutine wants to recover the memory associated with x from the last call to SUBROUTINE a, it can do so by first deallocating it, and then nullifying the pointer. Examples of this structure are in zbrak (p. 1184), period (p. 1258), and fasper (p. 1259). A related situation is where we want a function to return an array whose size is not predetermined, such as in voltra (p. 1326). The discussion of voltra also explains the potential pitfalls of functions returning pointers to dynamically allocated arrays.

A final useful pointer construction enables us to set up a data structure that is essentially an array of arrays, independently allocatable on each part. We are not allowed to declare an array of pointers in Fortran 90, but we can do this indirectly by defining a derived type that consists of a pointer to the appropriate kind of array. [M&R, §6.11] We can then define a variable that is an allocatable array of the new type. For example,

```fortran
TYPE ptr_to_arr
  REAL(SP), DIMENSION(:), POINTER :: arr
END TYPE

TYPE(ptr_to_arr), DIMENSION(:), ALLOCATABLE :: x
...
allocate(x(n))
...
do i=1,n
  allocate(x(i)%arr(m))
end do
```

sets up a set x of n arrays of length m. See also the example in mglin (p. 1334).

There is a potential problem with dynamical memory allocation that we should mention. The Fortran 90 standard does not require that the compiler perform “garbage collection,” that is, it is not required to recover deallocated memory into nice contiguous pieces for reuse. If you enter and exit a subroutine many times, and each time a large chunk of memory gets allocated and deallocated, you could run out of memory with a “dumb” compiler. You can often alleviate the problem by deallocating variables in the reverse order that you allocated them. This tends to keep a large contiguous piece of memory free at the top of the heap.

Scope, Visibility, and Data Hiding

An important principle of good programming practice is modularization, the idea that different parts of a program should be insulated from each other as much as possible. An important subcase of modularization is data hiding, the principle that actions carried out on variables in one part of the code should not be able to
affect the values of variables in other parts of the code. When it is necessary for one “island” of code to communicate with another, the communication should be through a well-defined interface that makes it obvious exactly what communication is taking place, and prevents any other interchange from occurring. Otherwise, different sections of code should not have access to variables that they don’t need.

The concept of data hiding extends not only to variables, but also to the names of procedures that manipulate the variables: A program for screen graphics might give the user access to a routine for drawing a circle, but it might “hide” the names (and methods of operation) of the primitive routines used for calculating the coordinates of the points on the circumference. Besides producing code that is easier to understand and to modify, data hiding prevents unintended side effects from producing hard-to-find errors.

In Fortran, the principal language construction that effects data hiding is the use of subroutines. If all subprograms were restricted to have no more than ten executable statements per routine, and to communicate between routines only by an explicit list of arguments, the number of programming errors might be greatly reduced! Unfortunately few tasks can be easily coded in this style. For this and other reasons, we think that too much procedurization is a bad thing; one wants to find the right amount. Fortunately Fortran 90 provides several additional tools to help with data hiding.

Global variables and routine names are important, but potentially dangerous, things. In Fortran 90, global variables are typically encapsulated in modules. Access is granted only to routines with an appropriate USE statement, and can be restricted to specific identifiers by the ONLY option. [M&R, §7.10] In addition, variable and routine names within the module can be designated as PUBLIC or PRIVATE (see, e.g., quad3d on p. 1065). [M&R, §7.6]

The other way global variables get communicated is by having one routine CONTAINed within another. [M&R, §5.6] This usage is potentially lethal, however, because all the outer routine’s variables are visible to the inner routine. You can try to control the problem somewhat by passing some variables back and forth as arguments of the inner routine, but that still doesn’t prevent inadvertent side effects. (The most common, and most stupid, is inadvertent reuse of variables named i or j in the CONTAINed routine.) Also, a long list of arguments reduces the convenience of using an internal routine in the first place. We advise that internal subprograms be used with caution, and only to carry out simple tasks.

There are some good ways to use CONTAINS, however. Several of our recipes have the following structure: A principal routine is invoked with several arguments. It calls a subsidiary routine, which needs to know some of the principal routine’s arguments, some global variables, and some values communicated directly as arguments to the subsidiary routine. In Fortran 77, we have usually coded this by passing the global variables in a COMMON block and all other variables as arguments to the subsidiary routine. If necessary, we copied the arguments of the primary routine before passing them to the subsidiary routine. In Fortran 90, there is a more elegant way of accomplishing this, as follows:

```fortran
SUBROUTINE recipe(arg)
    REAL(SP) :: arg
    REAL(SP) :: global_var
    call recipe_private
    CONTAINS
```
SUBROUTINE recipe_private

... call subsidiary(local_arg)

END SUBROUTINE recipe_private

SUBROUTINE subsidiary(local_arg)
...
END SUBROUTINE subsidiary

END SUBROUTINE recipe

Notice that the principal routine (recipe) has practically nothing in it — only declarations of variables intended to be visible to the subsidiary routine (subsidiary). All the real work of recipe is done in recipe_private. This latter routine has visibility on all of recipe's variables, while any additional variables that recipe_private defines are not visible to subsidiary — which is the whole purpose of this way of organizing things. Obviously arg and global_var can be much more general data types than the example shown here, including function names. For examples of this construction, see amoeba (p. 1208), amebsa (p. 1222), mrqmin (p. 1292), and medfit (p. 1294).

Recursion

A subprogram is recursive if it calls itself. While forbidden in Fortran 77, recursion is allowed in Fortran 90. [M&R, §5.16–§5.17] You must supply the keyword RECURSIVE in front of the FUNCTION or SUBROUTINE keyword. In addition, if a FUNCTION calls itself directly, as opposed to calling another subprogram that in turn calls it, you must supply a variable to hold the result with the RESULT keyword.

Typical syntax for this case is:

RECURSIVE FUNCTION f(x) RESULT(g)
REAL(SP) :: x,g
if ...
g=...
else
g=f(...)
end if
END FUNCTION f

When a function calls itself directly, as in this example, there always has to be a “base case” that does not call the function; otherwise the recursion never terminates. We have indicated this schematically with the if...else...end if structure.

On serial machines we tend to avoid recursive implementations because of the additional overhead they incur at execution time. Occasionally there are algorithms for which the recursion overhead is relatively small, and the recursive implementation is simpler than an iterative version. Examples in this book are quad_3d (p. 1065), miser (p. 1164), and mglin (p. 1334). Recursion is much more important when parallelization is the goal. We will encounter in Chapter 22 numerous examples of algorithms that can be parallelized with recursion.

SAVE Usage Style

A quirk of Fortran 90 is that any variable with initial values acquires the SAVE attribute automatically. [M&R, §7.5 and §7.9] As a help to understanding
an algorithm, we have elected to put an explicit SAVE on all variables that really do need to retain their values between calls to a routine. We do this even if it is redundant because the variables are initialized. Note that we generally prefer to assign initial values with initialization expressions rather than with DATA statements. We reserve DATA statements for cases where it is convenient to use the repeat count feature to set multiple occurrences of a value, or when binary, octal, or hexadecimal constants are used. [M&R, §2.6.1]

Named Control Structures

Fortran 90 allows control structures such as do loops and if blocks to be named. [M&R, §4.3–§4.5] Typical syntax is

```
name:do i=1,n
    ...
end do name
```

One use of naming control structures is to improve readability of the code, especially when there are many levels of nested loops and if blocks. A more important use is to allow exit and cycle statements, which normally refer to the innermost do loop in which they are contained, to transfer execution to the end of some outer loop. This is effected by adding the name of the outer loop to the statement: exit name or cycle name.

There is great potential for misuse with named control structures, since they share some features of the much-maligned goto. We recommend that you use them sparingly. For a good example of their use, contrast the Fortran 77 version of simpox with the Fortran 90 version on p. 1216.

CITED REFERENCES AND FURTHER READING:

21.6 And Coming Soon: Fortran 95

One of the more positive effects of Fortran 90’s long gestation period has been the general recognition, both by the X3J3 committee and by the community at large, that Fortran needs to evolve over time. Indeed, as we write, the process of bringing forth a minor, but by no means insignificant, updating of Fortran 90 — named Fortran 95 — is well under way.

Fortran 95 will differ from Fortran 90 in about a dozen features, only a handful of which are of any importance to this book. Generally these are extensions that will make programming, especially parallel programming, easier. In this section we give a summary of the anticipated language changes. In §22.1 and §22.5 we will comment further on the implications of Fortran 95 to some parallel programming tasks; in §23.7 we comment on what differences Fortran 95 will make to our nrutil11 utility functions.

No programs in Chapters B1 through B20 of this book edition use any Fortran 95 extensions.
FORALL Statements and Blocks

Fortran 95 introduces a new forall control structure, somewhat akin to the where construct, but allowing for greater flexibility. It is something like a do-loop, but with the proviso that the indices looped over are allowed to be done in any order (ideally, in parallel). The forall construction comes in both single-statement and block variants. Instead of using the do-loop’s comma-separated triplets of lower-value, upper-value, and increment, it borrows its syntax from the colon-separated form of array sections. Some examples will give you the idea.

Here is a simple example that could alternatively be done with Fortran 90’s array sections and transpose intrinsic:

```fortran
forall (i=1:20, j=1:10:2) x(i,j)=y(j,i)
```

The block form allows more than one executable statement:

```fortran
forall (i=1:20, j=1:10:2)
  x(i,j)=y(j,i)
  z(i,j)=y(i,j)**2
end forall
```

Here is an example that cannot be done with Fortran 90 array sections:

```fortran
forall (i=1:20, j=1:20) a(i,j)=3*i+j**2
```

forall statements can also take optional masks that restrict their action to a subset of the loop index combinations:

```fortran
forall (i=1:100, j=1:100, (i>=j .and. x(i,j)/=0.0) ) x(i,j)=1.0/x(i,j)
```

forall constructions can be nested, or nested inside where blocks, or have where constructions inside them. An additional new feature in Fortran 95 is that where blocks can themselves be nested.

PURE Procedures

Because the inside iteration of a forall block can be done in any order, or in parallel, there is a logical difficulty in allowing functions or subroutines inside such blocks: If the function or subroutine has side effects (that is, if it changes any data elsewhere in the machine, or in its own saved variables) then the result of a forall calculation could depend on the order in which the iterations happen to be done. This can’t be tolerated, of course; hence a new PURE attribute for subprograms.

While the exact stipulations are somewhat technical, the basic idea is that if you declare a function or subroutine as PURE, with a syntax like,

```fortran
PURE FUNCTION myfunc(x,y,z)
```

or

```fortran
PURE SUBROUTINE mysub(x,y,z)
```

then you are guaranteeing to the compiler (and it will enforce) that the only values changed by mysub or myfunc are returned function values, subroutine arguments with the INTENT(OUT) attribute, and automatic (scratch) variables within the procedure.

You can then use your pure procedures within forall constructions. Pure functions are also allowed in some specification statements.
ELEMENTAL Procedures

Fortran 95 removes Fortran 90’s nagging restriction that only intrinsic functions are elemental. The way this works is that you write a pure procedure that operates on scalar values, but include the attribute `ELEMENTAL` (which automatically implies `PURE`). Then, as long as the function has an explicit interface in the referencing program, you can call it with any shape of argument, and it will act elementally. Here’s an example:

```fortran
ELEMENTAL FUNCTION myfunc(x,y,z)
REAL :: x,y,z,myfunc
...
myfunc = ...
END
```

In a program with an explicit interface for `myfunc` you could now have

```fortran
REAL, DIMENSION(10,20) :: x,y,z,w
...
w=myfunc(x,y,z)
```

Pointer and Allocatable Improvements

Fortran 95, unlike Fortran 90, requires that any allocatable variables (except those with `SAVE` attributes) that are allocated within a subprogram be automatically deallocated by the compiler when the subprogram is exited. This will remove Fortran 90’s “undefined allocation status” bugaboo.

Fortran 95 also provides a method for pointer variables to be born with disassociated association status, instead of the default (and often inconvenient) “undefined” status. The syntax is to add an initializing `=> NULL()` to the declaration, as:

```fortran
REAL, DIMENSION(:,,:), POINTER :: mypoint => NULL()
```

This does not, however, eliminate the possibility of undefined association status, because you have to remember to use the null initializer if you want your pointer to be disassociated.

Some Other Fortran 95 Features

In Fortran 95, `maxloc` and `minloc` have the additional optional argument `DIM`, which causes them to act on all one-dimensional sections that span through the named dimension. This provides a means for getting the locations of the values returned by the corresponding functions `maxval` and `minval` in the case that their `DIM` argument is present.

The `sign` intrinsic can now distinguish a negative from a positive real zero value:
\[\text{sign}(2.0,-0.0) = -2.0 \].

There is a new intrinsic subroutine `cpu_time(time)` that returns as a real value `time` a process’s elapsed CPU time.

There are some minor changes in the namelist facility, in defining minimum field widths for the I, B, O, Z, and F edit descriptors, and in resolving minor conflicts with some other standards.
Chapter 22. Introduction to Parallel Programming

22.0 Why Think Parallel?

In recent years we Numerical Recipes authors have increasingly become convinced that a certain revolution, cryptically denoted by the words “parallel programming,” is about to burst forth from its gestation and adolescence in the community of supercomputer users, and become the mainstream methodology for all computing.

Let’s review the past: Take a screwdriver and open up the computer (workstation or PC) that sits on your desk. (Don’t blame us if this voids your warranty; and be sure to unplug it first!) Count the integrated circuits — just the bigger ones, with more than a million gates (transistors). As we write, in 1995, even lowly memory chips have one or four million gates, and this number will increase rapidly in coming years. You’ll probably count at least dozens, and often hundreds, of such chips in your computer.

Next ask, how many of these chips are CPUs? That is, how many implement von Neumann processors capable of executing arbitrary, stored program code? For most computers, in 1995, the answer is: about one. A significant number of computers do have secondary processors that offload input-output and/or video functions. So, two or three is often a more accurate answer, but only one is usually under the user’s direct control.

Why do our desktop computers have dozens or hundreds of memory chips, but most often only one (user-accessible) CPU? Do CPU chips intrinsically cost more to manufacture? No. Are CPU chips more expensive than memory chips? Yes, primarily because fixed development and design costs must be distributed over a smaller number of units sold. We have been in a kind of economic equilibrium: CPU’s are relatively expensive because there is only one per computer; and there is only one per computer, because they are relatively expensive.

Stabilizing this equilibrium has been the fact that there has been no standard, or widely taught, methodology for parallel programming. Except for the special case of scientific computing on supercomputers (where large problems often have a regular or geometric character), it is not too much of an exaggeration to say that nobody really knows how to program multiprocessor machines. Symmetric multiprocessor
operating systems, for example, have been very slow in developing; and efficient, parallel methodologies for query-serving on large databases are even now a subject of continuing research.

However, things are now changing. We consider it an easy prognostication that, by the first years of the new century, the typical desktop computer will have 4 to 8 user-accessible CPUs; ten years after that, the typical number will be between 16 and 512. It is not coincidence that these numbers are characteristic of supercomputers (including some quite different architectures) in 1995. The rough rule of ten years’ lag from supercomputer to desktop has held firm for quite some time now.

Scientists and engineers have the advantage that techniques for parallel computation in their disciplines have already been developed. With multiprocessor workstations right around the corner, we think that now is the right time for scientists and engineers who use computers to start thinking parallel. We don’t mean that you should put an axe through the screen of your fast serial (single-CPU) workstation. We do mean, however, that you should start programming somewhat differently on that workstation, indeed, start thinking a bit differently about the way that you approach numerical problems in general.

In this volume of Numerical Recipes in Fortran, our pedagogical goal is to show you that there are conceptual and practical benefits in parallel thinking, even if you are using a serial machine today. These benefits include conciseness and clarity of code, reusability of code in wider contexts, and (not insignificantly) increased portability of code to today’s parallel supercomputers. Of course, on parallel machines, either supercomputers today or desktop machines tomorrow, the benefits of thinking parallel are much more tangible: They translate into significant improvements in efficiency and computational capability.

Thinking Parallel with Fortran 90

Until very recently, a strong inhibition to thinking parallel was the lack of any standard, architecture-independent, computer language in which to think. That has changed with the finalization of the Fortran 90 language standard, and with the availability of good, optimizing Fortran 90 compilers on a variety of platforms.

There is a significant body of opinion (with which we, however, disagree) that there is no such thing as architecture-independent parallel programming. Proponents of this view, who are generally committed wizards at programming on one or another particular architecture, point to the fact that algorithms that are optimized to one architecture can run hundreds of times more slowly on other architectures. And, indeed, they are correct!

Our opposing point of view is one of pragmatism. We think that it is not hard to learn, in a general way, what kinds of architectures are in general use, and what kinds of parallel constructions work well (or poorly) on each kind. With this knowledge (much of which we hope to develop in this book) the user can, we think, write good, general-purpose parallel code that works on a variety of architectures — including, importantly, on purely serial machines. Equally important, the user will be aware of when certain parts of a code can be significantly improved on some, but not other, architectures.

Fortran 90 is a good test-bench for this point of view. It is not the perfect language for parallel programming. But it is a language, and it is the only
cross-platform standard language now available. The committee that developed the language between 1978 and 1991 (known technically as X3J3) had strong representation from both a traditional “vectorization” viewpoint (e.g., from the Cray XMP and YMP series of computers), and also from the “data parallel” or “SIMD” viewpoints of parallel machines like the CM-2 and CM-5 from Thinking Machines, Inc. Language compromises were made, and a few (in our view) almost essential features were left out (see §22.5). But, by and large, the necessary tools are there: If you learn to think parallel in Fortran 90, you will easily be able to transfer the skill to future parallel standards, whether they are Fortran-based, C-based, or other.

CITED REFERENCES AND FURTHER READING:

22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics

The underlying model for parallel computation in Fortran 90 is data parallelism, implemented by the use of arrays of data, and by the provision of operations and intrinsic functions that act on those arrays in parallel, in a manner optimized by the compiler for each particular hardware architecture. We will not try to draw a fine definitional distinction between “data parallelism” and so-called SIMD (single instruction multiple data) programming. For our purposes the two terms mean about the same thing: The programmer writes a single operation, “+” say, and the compiler causes it to be carried out on multiple pieces of data in as parallel a manner as the underlying hardware allows.

Any kind of parallel computing that is not SIMD is generally called MIMD (multiple instruction multiple data). A parallel programming language with MIMD features might allow, for example, several different subroutines — acting on different parts of the data — to be called into execution simultaneously. Fortran 90 has few, if any, MIMD constructions. A Fortran 90 compiler might, on some machines, execute MIMD code in implementing some Fortran 90 intrinsic functions (pack or unpack, e.g.), but this will be hidden from the Fortran 90 user. Some extensions of Fortran 90, like HPF, do implement MIMD features explicitly; but we will not consider these in this book. Fortran 95’s forall and PURE extensions (see §21.6) will allow some significantly greater access to MIMD features (see §22.5).

Array Parallel Operations

We have already met the most basic, and most important, parallel facility of Fortran 90, namely, the ability to use whole arrays in expressions and assignments, with the indicated operations being effected in parallel across the array. Suppose, for example, we have the two-dimensional matrices a, b, and c,

```
REAL, DIMENSION(30,30) :: a, b, c
```
Then, instead of the serial construction,

\[
\begin{align*}
\text{do } j=1,30 \\
\text{do } k=1,30 \\
\quad c(j,k)=a(j,k)+b(j,k) \\
\text{end do} \\
\text{end do}
\end{align*}
\]

which is of course perfectly valid Fortran 90 code, we can simply write

\[c=a+b\]

The compiler deduces from the declaration statement that \(a\), \(b\), and \(c\) are matrices, and what their bounding dimensions are.

Let us dwell for a moment on the conceptual differences between the serial code and parallel code for the above matrix addition. Although one is perhaps used to seeing the nested do-loops as simply an idiom for “do-the-enclosed-on-all-components,” it in fact, according to the rules of Fortran, specifies a very particular time-ordering for the desired operations. The matrix elements are added by rows, in order \((j=1,30)\), and within each row, by columns, in order \((k=1,30)\).

In fact, the serial code above overspecified the desired task, since it is guaranteed by the laws of mathematics that the order in which the element operations are done is of no possible relevance. Over the 50 year lifetime of serial von Neuman computers, we programmers have been brainwashed to break up all problems into single executable streams in the time dimension only. Indeed, the major design problem for supercomputer compilers for the last 20 years has been to undo such serial constructions and recover the underlying “parallel thoughts,” for execution in vector or parallel processors. Now, rather than taking this expensive detour into and out of serial-land, we are asked simply to say what we mean in the first place, \(c=a+b\).

The essence of parallel programming is not to force “into the time dimension” (i.e., to serialize) operations that naturally extend across a span of data, that is, “in the space dimension.” If it were not for 50-year-old collective habits, and the languages designed to support them, parallel programming would probably strike us as more natural than its serial counterpart.

Broadcasts and Dimensional Expansion: SSP vs. MMP

We have previously mentioned the Fortran 90 rule that a scalar variable is conformable with any shape array. Thus, we can implement a calculation such as

\[
y_i = x_i + s, \quad i = 1, \ldots, n
\]

with code like

\[y=x+s\]

where we of course assume previous declarations like

\[
\begin{align*}
\text{REAL(SP) :: } & s \\
\text{REAL(SP), DIMENSION(n) :: } & x, y
\end{align*}
\]

with \(n\) a compile-time constant or dummy argument. (Hereafter, we will omit the declarations in examples that are this simple.)

This seemingly simple construction actually hides an important underlying parallel capability, namely, that of broadcast. The sums in \(y=x+s\) are done in parallel
on different CPUs, each CPU accessing different components of x and y. Yet, they all must access the same scalar value s. If the hardware has local memory for each CPU, the value of s must be replicated and transferred to each CPU’s local memory. On the other hand, if the hardware implements a single, global memory space, it is vital to do something that mitigates the traffic jam potentially caused by all the CPUs trying to access the same memory location at the same time. (We will use the term “broadcast” to refer equally to both cases.) Although hidden from the user, Fortran 90’s ability to do broadcasts is an essential feature of it as a parallel language.

Broadcasts can be more complicated than the above simple example. Consider, for example, the calculation

$$ w_i = \sum_{j=1}^{n} |x_i + x_j|, \quad i = 1, \ldots, n \quad (22.1.2) $$

Here, we are doing n^2 operations: For each of n values of i there is a sum over n values of j.

Serial code for this calculation might be

```fortran
  do i=1,n
    w(i)=0.
    do j=1,n
      w(i)=w(i)+abs(x(i)+x(j))
    end do
  end do
```

The obvious immediate parallelization in Fortran 90 uses the `sum` intrinsic function to eliminate the inner do-loop. This would be a suitable amount of parallelization for a small-scale parallel machine, with a few processors:

```fortran
  do i=1,n
    w(i)=sum(abs(x(i)+x))
  end do
```

Notice that the conformability rule implies that a new value of $x(i)$, a scalar, is being broadcast to all the processors involved in the `abs` and `sum`, with each iteration of the loop over i.

What about the outer do-loop? Do we need, or want, to eliminate it, too? That depends on the architecture of your computer, and on the tradeoff between time and memory in your problem (a common feature of all computing, no less so parallel computing). Here is an implementation that is free of all do-loops, in principle capable of being executed in a small number (independent of n) of parallel operations:

```fortran
  REAL(SP), DIMENSION(n,n) :: a
  ...
  a = spread(x,dim=2,ncopies=n)+spread(x,dim=1,ncopies=n)
  w = sum(abs(a),dim=1)
```

This is an example of what we call *dimensional expansion*, as implemented by the `spread` intrinsic. Although the above may strike you initially as quite a cryptic construction, it is easy to learn to read it. In the first assignment line, a matrix is constructed with all possible values of $x(i)+x(j)$. In the second assignment line, this matrix is collapsed back to a vector by applying the `sum` operation to the absolute value of its elements, across one of its dimensions.
22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics

More explicitly, the first line creates a matrix \(a \) by adding two matrices each constructed via `spread`. In `spread`, the \(\text{dim} \) argument specifies which argument is duplicated, so that the first term varies across its first (row) dimension, and vice versa for the second term:

\[
a_{ij} = x_i + x_j
\]

\[
\begin{pmatrix}
x_1 & x_1 & x_1 & \ldots \\
x_2 & x_2 & x_2 & \ldots \\
x_3 & x_3 & x_3 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} + \begin{pmatrix}
x_1 & x_2 & x_3 & \ldots \\
x_1 & x_2 & x_3 & \ldots \\
x_1 & x_2 & x_3 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

(22.1.3)

Since equation (22.1.2) above is symmetric in \(i \) and \(j \), it doesn’t really matter what value of \(\text{dim} \) we put in the `sum` construction, but the value \(\text{dim}=1 \) corresponds to summing across the rows, that is, down each column of equation (22.1.3).

Be sure that you understand that the `spread` construction changed an \(O(n) \) memory requirement into an \(O(n^2) \) one! If your values of \(n \) are large, this is an impossible burden, and the previous implementation with a single do-loop remains the only practical one. On the other hand, if you are working on a massively parallel machine, whose number of processors is comparable to \(n^2 \) (or at least much larger than \(n \)), then the `spread` construction, and the underlying broadcast capability that it invokes, leads to a big win: All \(n^2 \) operations can be done in parallel. This distinction between small-scale parallel machines — which we will hereafter refer to as **SSP machines** — and massively multiprocessor machines — which we will refer to as **MMP machines** — is an important one. A main goal of parallelism is to saturate the available number of processors, and algorithms for doing so are often different in the SSP and MMP opposite limits. Dimensional expansion is one method for saturating processors in the MMP case.

Masks and “Index Loss”

An instructive extension of the above example is the following case of a product that omits one term (the diagonal one):

\[
w_i = \prod_{j=1, j \neq i}^{n} (x_j - x_i), \quad i = 1, \ldots, n
\]

(22.1.4)

Formulas like equation (22.1.4) frequently occur in the context of interpolation, where all the \(x_i \)'s are known to be distinct, so let us for the moment assume that this is the case.

Serial code for equation (22.1.4) could be

```fortran
do i=1,n
    w(i)=1.0_sp
    do j=1,n
        if (j /= i) w(i)=w(i)*(x(j)-x(i))
    end do
end do
```

Parallel code for SSP machines, or for large enough \(n \) on MMP machines, could be
do i=1,n
 w(i)=product(x-x(i), mask=(x/=x(i)))
end do

Here, the mask argument in the product intrinsic function causes the diagonal term to be omitted from the product, as we desire. There are some features of this code, however, that bear commenting on.

First, notice that, according to the rules of conformability, the expression x/=x(i) broadcasts the scalar x(i) and generates a logical array of length n, suitable for use as a mask in the product intrinsic. It is quite common in Fortran 90 to generate masks “on the fly” in this way, particularly if the mask is to be used only once.

Second, notice that the j index has disappeared completely. It is now implicit in the two occurrences of x (equivalent to x(1:n)) on the right-hand side. With the disappearance of the j index, we also lose the ability to do the test on i and j, but must use, in essence, x(i) and x(j) instead! That is a very general feature in Fortran 90: when an operation is done in parallel across an array, there is no associated index available within the operation. This “index loss,” as we will see in later discussion, can sometimes be quite an annoyance.

A language construction present in CM [Connection Machine] Fortran, the so-called forall, which would have allowed access to an associated index in many cases, was eliminated from Fortran 90 by the X3J3 committee, in a controversial decision. Such a construction will come into the language in Fortran 95.

What about code for an MMP machine, where we are willing to use dimensional expansion to achieve greater parallelism? Here, we can write,

\[a = \text{spread}(x, \text{dim}=2, \text{ncopies}=n) - \text{spread}(x, \text{dim}=1, \text{ncopies}=n) \]
\[w = \text{product}(a, \text{dim}=1, \text{mask}=(a/=0.)) \]

This time it does matter that the value of dim in the product intrinsic is 1 rather than 2. If you write out the analog of equation (22.1.3) for the present example, you’ll see that the above fragment is the right way around. The problem of index loss is still with us: we have to construct a mask from the array a, not from its indices, both of which are now lost to us!

In most cases, there are workarounds (more, or less, awkward as they may be) for the problem of index loss. In the worst cases, which are quite rare, you have to create objects to hold, and thus bring back into play, the lost indices. For example,

\[\text{INTEGER}(14B), \text{DIMENSION}(n) :: jj \]
\[jj = (/(i,i=1,n)/) \]
\[\text{do } i=1,n \]
\[w(i)=\text{product}(x-x(i), \text{mask}=(jj/=i)) \]
\[\text{end do} \]

Now the array jj is filled with the “lost” j index, so that it is available for use in the mask. A similar technique, involving spreads of jj, can be used in the above MMP code fragment, which used dimensional expansion. (Fortran 95’s forall construction will make index loss much less of a problem. See §21.6.)

Incidentally, the above Fortran 90 construction, \(/(i,i=1,n)/\), is called an array constructor with implied do list. For reasons to be explained in §22.2, we almost never use this construction, in most cases substituting a Numerical Recipes utility function for generating arithmetical progressions, which we call arth.
Interprocessor Communication Costs

It is both a blessing and a curse that Fortran 90 completely hides from the user the underlying machinery of interprocessor communication, that is, the way that data values computed by (or stored locally near) one CPU make their way to a different CPU that might need them next. The blessing is that, by and large, the Fortran 90 programmer need not be concerned with how this machinery works. If you write
\[a(1:10,1:10) = b(1:10,1:10) + c(10:1:-1,10:1:-1) \]
the required upside-down-and-backwards values of the array \(c \) are just there, no matter that a great deal of routing and switching may have taken place. An ancillary blessing is that this book, unlike so many other (more highly technical) books on parallel programming (see references below) need not be filled with complex and subtle discussions of CPU connectivity, topology, routing algorithms, and so on.

The curse is, just as you might expect, that the Fortran 90 programmer can’t control the interprocessor communication, even when it is desirable to do so. A few regular communication patterns are “known” to the compiler through Fortran 90 intrinsic functions, for example \(b=\text{transpose}(a) \). These, presumably, are done in an optimal way. However, many other regular patterns of communication, which might also allow highly optimized implementations, don’t have corresponding intrinsic functions. (An obvious example is the “butterfly” pattern of communication that occurs in fast Fourier transforms.) These, if coded in Fortran 90 by using general vector subscripts (e.g., \(b_{ij}=a_{ii}(i_{arr}) \) or \(b_{i}=\text{arr}_{j}(j_{arr})=a_{i} \), where \(i_{arr} \) and \(j_{arr} \) are integer arrays), lose all possibility of being optimized. The compiler can’t distinguish a communication step with regular structure from one with general structure, so it must assume the worst case, potentially resulting in very slow execution.

About the only thing a Fortran 90 programmer can do is to start with a general awareness of the kind of apparently parallel constructions that might be quite slow on his/her parallel machine, and then to refine that awareness by actual experience and experiment. Here is our list of constructions most likely to cause interprocessor communication bottlenecks:
- vector subscripts, like \(b_{ij}=a_{ii}(i_{arr}) \) or \(b_{i}=\text{arr}_{j}(j_{arr})=a_{i} \) (that is, general gather/scatter operations)
- the \text{pack} and \text{unpack} intrinsic functions
- mixing positive strides and negative strides in a single expression (as in the above \(b(1:10,1:10)+c(10:1:-1,10:1:-1) \))
- the \text{reshape} intrinsic when used with the \text{order} argument
- possibly, the \text{cshift} and \text{eoshift} extrinsics, especially for nonsmall values of the shift.

On the other hand, the fact is that these constructions are parallel, and are there for you to use. If the alternative to using them is strictly serial code, you should almost always give them a try.

Linear Algebra

You should be alert for opportunities to use combinations of the \text{matmul}, \text{spread}, and \text{dot_product} intrinsics to perform complicated linear algebra calculations. One useful intrinsic that is not provided in Fortran 90 is the \text{outer product}
of two vectors,
\[c_{ij} = a_i b_j \]
(22.1.5)

We already know how to implement this (cf. equation 22.1.3):
\[c = \text{spread}(a, \text{dim}=2, \text{ncopies}=\text{size}(b)) \cdot \text{spread}(b, \text{dim}=1, \text{ncopies}=\text{size}(a)) \]

In fact, this operation occurs frequently enough to justify making it a utility function, \text{outerprod}, which we will do in Chapter 23. There we also define other “outer” operations between vectors, where the multiplication in the outer product is replaced by another binary operation, such as addition or division.

Here is an example of using these various functions: Many linear algebra routines require that a submatrix be updated according to a formula like
\[a_{jk} = a_{jk} + b_i a_{ji} \sum_{p=i}^m a_{pi} a_{pk}, \quad j = i, \ldots, m, \quad k = l, \ldots, n \]
(22.1.6)

where \(i, m, l, \) and \(n\) are fixed values. Using an array slice like \(a(:,i)\) to turn \(a_{pi}\) into a vector indexed by \(p\), we can code the sum with a \text{matmul}, yielding a vector indexed by \(k\):
\[\text{temp}(1:n) = b(i) \cdot \text{matmul}(a(i:m,i), a(i:m,1:n)) \]

Here we have also included the multiplication by \(b_i\), a scalar for fixed \(i\). The vector \(\text{temp}\), along with the vector \(a_{ji} = a(:,i)\), is then turned into a matrix by the \text{outerprod} utility and used to increment \(a_{jk}\):
\[a(i:m,1:n) = a(i:m,1:n) \cdot \text{outerprod}(a(i:m,i), \text{temp}(1:n)) \]

Sometimes the update formula is similar to (22.1.6), but with a slight permutation of the indices. Such cases can be coded as above if you are careful about the order of the quantities in the \text{matmul} and the \text{outerprod}.

CITED REFERENCES AND FURTHER READING:
22.2 Linear Recurrence and Related Calculations

We have already seen that Fortran 90’s array constructor with implied do list can be used to generate simple series of integers, like (/ (i, i=1,n) /). Slightly more generally, one might want to generate an arithmetic progression, by the formula

\[v_j = b + (j - 1)a, \quad j = 1, \ldots, n \] (22.2.1)

This is readily coded as

\[v(1:n) = (/ (b+(j-1)*a, j=1,n) /) \]

Although it is concise, and valid, we don’t like this coding. The reason is that it violates the fundamental rule of “thinking parallel”: it turns a parallel operation across a data vector into a serial do-loop over the components of that vector. Yes, we know that the compiler might be smart enough to generate parallel code for implied do lists; but it also might not be smart enough, here or in more complicated examples.

Equation (22.2.1) is also the simplest example of a linear recurrence relation. It can be rewritten as

\[\begin{align*}
 v_1 &= b, \\
 v_j &= v_{j-1} + a, \quad j = 2, \ldots, n
\end{align*} \] (22.2.2)

In this form (assuming that, in more complicated cases, one doesn’t know an explicit solution like equation 22.2.1) one can’t write an explicit array constructor. Code like

\[\begin{align*}
 v(1) &= b \\
 v(2:n) &= (/ (v(j-1)+a, j=2,n) /) \quad \text{! wrong}
\end{align*} \]

is legal Fortran 90 syntax, but illegal semantics; it does not do the desired recurrence! (The rules of Fortran 90 require that all the components of \(v \) on the right-hand side be evaluated before any of the components on the left-hand side are set.) Yet, as we shall see, techniques for accomplishing the evaluation in parallel are available.

With this as our starting point, we now survey some particular tricks of the (parallel) trade.
Subvector Scaling: Arithmetic and Geometric Progressions

For explicit arithmetic progressions like equation (22.2.1), the simplest parallel technique is subvector scaling [1]. The idea is to work your way through the desired vector in larger and larger parallel chunks:

\[
\begin{align*}
v_1 &= b \\
v_2 &= v_1 + a \\
v_{3\ldots4} &= v_{1\ldots2} + 2a \\
v_{5\ldots8} &= v_{1\ldots4} + 4a \\
v_{9\ldots16} &= v_{1\ldots8} + 8a
\end{align*}
\] (22.2.3)

And so on, until you reach the length of your vector. (The last step will not necessarily go all the way to the next power of 2, therefore.) The powers of 2, times \(a\), can of course be obtained by successive doublings, rather than the explicit multiplications shown above.

You can see that subvector scaling requires about \(\log_2 n\) parallel steps to process a vector of length \(n\). Equally important for serial machines, or SSP machines, the scalar operation count for subvector scaling is no worse than entirely serial code: each new component \(v_i\) is produced by a single addition.

If addition is replaced by multiplication, the identical algorithm will produce geometric progressions, instead of arithmetic progressions. In Chapter 23, we will use subvector scaling to implement our utility functions \(\text{arth}\) and \(\text{geop}\) for these two progressions. (You can then call one of these functions instead of recoding equation 22.2.3 every time you need it.)

Vector Reduction: Evaluation of Polynomials

Logically related to subvector scaling is the case where a calculation can be parallelized across a vector that shrinks by a factor of 2 in each iteration, until a desired scalar result is reached. A good example of this is the parallel evaluation of a polynomial [2]

\[
P(x) = \sum_{j=0}^{N} c_j x^j
\] (22.2.4)

For clarity we take the special case of \(N = 5\). Start with the vector of coefficients (imagining appended zeros, as shown):

\(c_0, c_1, c_2, c_3, c_4, c_5, 0, \ldots\)

Now, add the elements by pairs, multiplying the second of each pair by \(x\):

\(c_0 + c_1 x, c_2 + c_3 x, c_4 + c_5 x, 0, \ldots\)

Now, the same operation, but with the multiplier \(x^2\):

\((c_0 + c_1 x) + (c_2 + c_3 x)x^2, (c_4 + c_5 x) + (0)x^2, 0, \ldots\)
And a final time, with multiplier x^4:

$$[(c_0 + c_1 x) + (c_2 + c_3 x) x^2] + [(c_4 + c_5 x) + (0) x^2] x^4, \quad 0, \ldots$$

We are left with a vector of (active) length 1, whose value is the desired polynomial evaluation. (You can see that the zeros are just a bookkeeping device for taking account of the case where the active subvector has odd length.) The key point is that the combining by pairs is a parallel operation at each stage.

As in subvector scaling, there are about $\log_2 n$ parallel stages. Also as in subvector scaling, our total operations count is only negligibly different from purely scalar code: We do one add and one multiply for each original coefficient c_j. The only extra operations are $\log_2 n$ successive squarings of x; but this comes with the extra benefit of better roundoff properties than the standard scalar coding. In Chapter 23 we use vector reduction to implement our utility function poly for polynomial evaluation.

Recursive Doubling: Linear Recurrence Relations

Please don’t confuse our use of the word “recurrence” (as in “recurrence relation,” “linear recurrence,” or equation 22.2.2) with the words “recursion” and “recursive,” which both refer to the idea of a subroutine calling itself to obtain an efficient or concise algorithm. There are ample grounds for confusion, because recursive algorithms are in fact a good way of obtaining parallel solutions to linear recurrence relations, as we shall now see!

Consider the general first order linear recurrence relation

$$u_j = a_j + b_j u_{j-1}, \quad j = 2, 3, \ldots, n \quad (22.2.5)$$

with initial value $u_1 = a_1$. On a serial machine, we evaluate such a recurrence with a simple do-loop. To parallelize the recurrence, we can employ the powerful general strategy of recursive doubling. Write down equation (22.2.5) for $2j$ and for $2j - 1$:

$$u_{2j} = a_{2j} + b_{2j-1} u_{2j-1} \quad (22.2.6)$$
$$u_{2j-1} = a_{2j-1} + b_{2j-2} u_{2j-2} \quad (22.2.7)$$

Substitute equation (22.2.7) in equation (22.2.6) to eliminate u_{2j-1} and get

$$u_{2j} = (a_{2j} + a_{2j-1} b_{2j-1}) + (b_{2j-2} b_{2j-1}) u_{2j-2} \quad (22.2.8)$$

This is a new recurrence of the same form as (22.2.5) but over only the even u_j, and hence involving only $n/2$ terms. Clearly we can continue this process recursively, halving the number of terms in the recurrence at each stage, until we are left with a recurrence of length 1 or 2 that we can do explicitly. Each time we finish a subpart of the recursion, we fill in the odd terms in the recurrence, using equation (22.2.7). In practice, it’s even easier than it sounds. Turn to Chapter B5 to see a straightforward implementation of this algorithm as the recipe recur1.

On a machine with more processors than n, all the arithmetic at each stage of the recursion can be done simultaneously. Since there are of order $\log n$ stages in the
recursion, the execution time is $O(\log n)$. The total number of operations carried out is of order $n + n/2 + n/4 + \cdots = O(n)$, the same as for the obvious serial do-loop.

In the utility routines of Chapter 23, we will use recursive doubling to implement the routines `polyterm`, `cumsum`, and `cumprod`. We could use recursive doubling to implement parallel versions of `arth` and `geop` (arithmetic and geometric progressions), and `zrootsunity` (complex nth roots of unity), but these can be done slightly more efficiently by subvector scaling, as discussed above.

Cyclic Reduction: Linear Recurrence Relations

There is a variant of recursive doubling, called *cyclic reduction*, that can be implemented with a straightforward iteration loop, instead of a recursive procedure call. Here we start by writing down the recurrence (22.2.5) for all adjacent terms u_j and u_{j-1} (not just the even ones, as before). Eliminating u_{j-1}, just as in equation (22.2.8), gives

$$u_j = (a_j + a_{j-1}b_{j-1}) + (b_{j-2}b_{j-1})u_{j-2}$$

which is a first order recurrence with new coefficients a'_j and b'_j. Repeating this process gives successive formulas for u_j in terms of u_{j-2}, u_{j-4}, u_{j-8}, etc. The procedure terminates when we reach u_{j-n} (for n a power of 2), which is zero for all j. Thus the last step gives u_j equal to the last set of a'_j's.

Here is a code fragment that implements cyclic reduction by direct iteration. The quantities a'_j are stored in the variable `recur1`.

```plaintext
recur1=a
bb=b
j=1
do
  if (j >= n) exit
  recur1(j+1:n)=recur1(j+1:n)+bb(j:n-1)*recur1(1:n-j)
  bb(2*j:n-1)=bb(2*j:n-1)*bb(j:n-j-1)
  j=2*j
endo
```

In cyclic reduction the length of the vector u_j that is updated at each stage does not decrease by a factor of 2 at each stage, but rather only decreases from $\sim n$ to $\sim n/2$ during all $\log_2 n$ stages. Thus the total number of operations carried out is $O(n \log n)$, as opposed to $O(n)$ for recursive doubling. For a serial machine or SSP machine, therefore, cyclic reduction is rarely superior to recursive doubling when the latter can be used. For an MMP machine, however, the issue is less clear cut, because the pattern of communication in cyclic reduction is quite different (and, for some parallel architectures, possibly more favorable) than that of recursive doubling.

Second Order Recurrence Relations

Consider the second order recurrence relation

$$y_j = a_j + b_{j-2}y_{j-1} + c_{j-2}y_{j-2}, \quad j = 3, 4, \ldots, n$$

with initial values

$$y_1 = a_1, \quad y_2 = a_2$$
Our labeling of subscripts is designed to make it easy to enter the coefficients in a computer program: You need to supply a_1, \ldots, a_n, b_1, \ldots, b_{n-2}, and c_1, \ldots, c_{n-2}. Rewrite the recurrence relation in the form (22.2.12)

$$
\begin{pmatrix}
y_j \\
y_{j+1}
\end{pmatrix} = \begin{pmatrix} 0 & 1 \\ a_{j+1} & c_{j-1} \end{pmatrix} \begin{pmatrix} y_{j-1} \\
y_j
\end{pmatrix}, \quad j = 2, \ldots, n-1
$$

that is,

$$
u_j = a_j + b_{j-1} \cdot u_{j-1}, \quad j = 2, \ldots, n-1
$$

(22.2.13)

where

$$
u_j = \begin{pmatrix} y_j \\
y_{j+1}
\end{pmatrix}, \quad a_j = \begin{pmatrix} 0 \\
a_{j+1}
\end{pmatrix}, \quad b_{j-1} = \begin{pmatrix} 0 & 1 \\ c_{j-1} & b_{j-1}
\end{pmatrix}, \quad j = 2, \ldots, n-1
$$

(22.2.14)

and

$$
u_1 = a_1 = \begin{pmatrix} y_1 \\
y_2
\end{pmatrix} = \begin{pmatrix} a_1 \\
a_2
\end{pmatrix}
$$

(22.2.15)

This is a first order recurrence relation for the vectors u_j, and can be solved by the algorithm described above (and implemented in the recipe recur1). The only difference is that the multiplications are matrix multiplications with the 2×2 matrices b_j. After the first recursive call, the zeros in a and b are lost, so we have to write the routine for general two-dimensional vectors and matrices.

Note that this algorithm does not avoid the potential instability problems associated with second order recurrences that are discussed in §5.5 of Volume 1. Also note that the algorithm generalizes in the obvious way to higher-order recurrences: An nth order recurrence can be written as a first order recurrence involving n-dimensional vectors and matrices.

Parallel Solution of Tridiagonal Systems

Closely related to recurrence relations, recursive doubling, and cyclic reduction is the parallel solution of tridiagonal systems. Since Fortran 90 vectors “know their own size,” it is most logical to number the components of both the sub- and super-diagonals of the tridiagonal matrix from 1 to $N-1$. Thus equation (22.4.1), here written in the special case of $N = 7$, becomes (blank elements denoting zero),

$$
\begin{pmatrix}
b_1 & c_1 \\
a_1 & b_2 & c_2 \\
a_2 & b_3 & c_3 \\
a_3 & b_4 & c_4 \\
a_4 & b_5 & c_5 \\
a_5 & b_6 & c_6 \\
a_6 & b_7
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_6 \\
u_7
\end{pmatrix}
=
\begin{pmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
r_5 \\
r_6 \\
r_7
\end{pmatrix}
$$

(22.2.16)

The basic idea for solving equation (22.2.16) on a parallel computer is to partition the problem into even and odd elements, recurse to solve the former, and
then solve the latter in parallel. Specifically, we first rewrite (22.2.16), by permuting its rows and columns, as

\[
\begin{bmatrix}
 b_1 & c_1 \\
 b_3 & a_2 & c_3 \\
 b_5 & a_4 & c_5 \\
 a_1 & c_2 \\
 a_3 & c_4 \\
 a_5 & c_6 & b_6
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_3 \\
 u_5 \\
 u_7 \\
 u_2 \\
 u_4 \\
 u_6
\end{bmatrix}
= \begin{bmatrix}
 r_1 \\
 r_3 \\
 r_5 \\
 r_7 \\
 r_2 \\
 r_4 \\
 r_6
\end{bmatrix}
\] (22.2.17)

Now observe that, by row operations that subtract multiples of the first four rows from each of the last three rows, we can eliminate all nonzero elements in the lower-left quadrant. The price we pay is bringing some new elements into the lower-right quadrant, whose nonzero elements we now call \(x \)'s, \(y \)'s, and \(z \)'s. We call the modified right-hand sides \(q \)'s. The transformed problem is now

\[
\begin{bmatrix}
 b_1 & c_1 \\
 b_3 & a_2 & c_3 \\
 b_5 & a_4 & c_5 \\
 b_7 \\
 a_1 & c_2 \\
 a_3 & c_4 \\
 a_5 & c_6 & b_6
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_3 \\
 u_5 \\
 u_7 \\
 u_2 \\
 u_4 \\
 u_6
\end{bmatrix}
= \begin{bmatrix}
 r_1 \\
 r_3 \\
 r_5 \\
 q_1 \\
 q_2 \\
 q_3 \end{bmatrix}
\] (22.2.18)

Notice that the last three rows form a new, smaller, tridiagonal problem, which we can solve simply by recursing! Once its solution is known, the first four rows can be solved by a simple, parallelizable, substitution. This algorithm is implemented in \texttt{tridag} in Chapter B2.

The above method is essentially cyclic reduction, but in the case of the tridiagonal problem, it does not “unwind” into a simple iteration; on the contrary, a recursive subroutine is required. For discussion of this and related methods for parallelizing tridiagonal systems, and references to the literature, see Hockney and Jesshope [3].

Recursive doubling can also be used to solve tridiagonal systems, the method requiring the parallel solution (as above) of both a first order recurrence and a second order recurrence [3,4]. For tridiagonal systems, however, cyclic reduction is usually more efficient than recursive doubling.

CITED REFERENCES AND FURTHER READING:
Hockney, R.W., and Jesshope, C.R. 1988, \textit{Parallel Computers 2: Architecture, Programming, and Algorithms} (Bristol and Philadelphia: Adam Hilger), §5.2.4 (cyclic reduction); §5.4.2 (second order recurrences); §5.4 (tridiagonal systems). [3]
22.3 Parallel Synthetic Division and Related Algorithms

There are several techniques for parallelization that relate to synthetic division but that can also find application in wider contexts, as we shall see.

Cumulants of a Polynomial

Suppose we have a polynomial

\[P(x) = \sum_{j=0}^{N} c_j x^{N-j} \]

(Note that, here, the \(c_j \)'s are indexed from highest degree to lowest, the reverse of the usual convention.) Then we can define the *cumulants* of the polynomial to be partial sums that occur in the polynomial’s usual, serial evaluation,

\[P_0 = c_0 \]
\[P_1 = c_0 x + c_1 \]
\[\ldots \]
\[P_N = c_0 x^N + \cdots + c_N = P(x) \]

Evidently, the cumulants satisfy a simple, linear first order recurrence relation,

\[P_0 = c_0, \quad P_j = c_j + x P_{j-1}, \quad j = 2, \ldots, N \]

This is slightly simpler than the general first order recurrence, because the value of \(x \) does not depend on \(j \). We already know, from §22.2’s discussion of recursive doubling, how to parallelize equation (22.3.3) via a recursive subroutine. In Chapter 23, the utility routine `polyterm` will implement just such a procedure. An example of a routine that calls `polyterm` to evaluate a recurrence equivalent to equation (22.3.3) is `eulsum` in Chapter B5.

Notice that while we could use equation (22.3.3), parallelized by recursive doubling, simply to evaluate the polynomial \(P(x) = P_N \), this is likely somewhat slower than the alternative technique of vector reduction, also discussed in §22.2, and implemented in the utility function `poly`. Equation (22.3.3) should be saved for cases where the rest of the \(P_j \)'s (not just \(P_N \)) can be put to good use.

Synthetic Division by a Monomial

We now show that evaluation of the cumulants of a polynomial is equivalent to synthetic division of the polynomial by a monomial, also called *deflation* (see §9.5 in Volume 1). To review briefly, and by example, here is a standard tableau from high school algebra for the (long) division of a polynomial \(2x^3 - 7x^2 + x + 3 \) by the monomial factor \(x - 3 \).
Chapter 22. Introduction to Parallel Programming

Now, here is the same calculation written as a synthetic division, really the same procedure as tableau (22.3.4), but with unnecessary notational baggage omitted (and also a changed sign for the monomial’s constant, so that subtractions become additions):

\[
\begin{array}{c|ccc}
3 & 6 & -3 & -6 \\
2 & -7 & +1 & +3 \\
\hline
2 & -1 & -2 & -3 \\
\end{array}
\] (22.3.5)

If we substitute symbols for the above quantities with the correspondence

\[
x | c_0 \ c_1 \ c_2 \ c_3 \\
P_0 \ P_1 \ P_2 \ P_3
\] (22.3.6)

then it is immediately clear that the \(P_j \)’s in equation (22.3.6) are simply the \(P_j \)’s of equation (22.3.3); the calculation is thus parallelizable by recursive doubling. In this context, the utility routine polyterm is used by the routine zroots in Chapter B9.

Repeated Synthetic Division

It is well known from high-school algebra that repeated synthetic division of a polynomial yields, as the remainders that occur, first the value of the polynomial, next the value of its first derivative, and then (up to multiplication by the factorial of an integer) the values of higher derivatives.

If you want to parallelize the calculation of the value of a polynomial and one or two of its derivatives, it is not unreasonable to evaluate equation (22.3.3), parallelized by recursive doubling, two or three times. Our routine ddpoly in Chapter B5 is meant for such use, and it does just this, as does the routine laguer in Chapter B9.

There are other cases, however, for which you want to perform repeated synthetic division and “go all the way,” until only a constant remains. For example, this is the preferred way of “shifting a polynomial,” that is, evaluating the coefficients of a polynomial in a variable \(y \) that differs from the original variable \(x \) by an additive constant. (The recipe pshift has this as its assigned task.) By way of example, consider the polynomial \(3x^3 + x^2 + 4x + 7 \), and let us perform repeated synthetic division by a general monomial \(x - a \). The conventional calculation then proceeds according to the following tableau, reading it in conventional lexical order (left-to-right and top-to-bottom):
Here, each row (after the first) shows a synthetic division or, equivalently, evaluation of the cumulants of the polynomial whose coefficients are the preceding row. The results at the right edge of the rows are the values of the polynomial and (up to integer factorials) its three nonzero derivatives, or (equivalently, without factorials) coefficients of the shifted polynomial.

We could parallelize the calculation of each row of tableau (22.3.7) by recursive doubling. That is a lot of recursion, which incurs a nonnegligible overhead. A much better way of doing the calculation is to deform tableau (22.3.7) into the following equivalent tableau,

\[
\begin{array}{cccc}
3 & 1 & 4 & 7 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
3 & \rightarrow 3a + 1 & \rightarrow 3a^2 + a + 4 & \rightarrow 3a^3 + a^2 + 4a + 7 \\
\downarrow & \downarrow & \downarrow & \\
3 & \rightarrow 6a + 1 & \rightarrow 9a^2 + 2a + 4 \\
\downarrow & \downarrow & \\
3 & \rightarrow 9a + 1 \\
\downarrow & \\
3
\end{array}
\] (22.3.7)

Now each row explicitly depends on only the previous row (and the given first column), so the rows can be calculated in turn by an explicit parallel expression, with no recursive calls needed. An example of coding (22.3.8) in Fortran 90 can be found in the routine `pcshft` in Chapter B5. (It is also possible to eliminate most of the multiplications in (22.3.8), at the expense of a much smaller number of divisions. We have not done this because of the necessity for then treating all possible divisions by zero as special cases. See [1] for details and references.)

Actually, the deformation of (22.3.7) into (22.3.8) is the same trick as was used in Volume 1, p. 167, for evaluating a polynomial and its derivative simultaneously, also generalized in the Fortran 77 implementation of the routine `ddpol` (Chapter 5). In the Fortran 90 implementation of `ddpol` (Chapter B5) we don't use this trick, but instead use `pol` and `term`, because, there, we want to parallelize over the length of the polynomial, not over the number of desired derivatives.
Don’t confuse the cases of iterated synthetic division, discussed here, with the simpler case of doing many simultaneous synthetic divisions. In the latter case, you can simply implement equation (22.3.3) serially, exactly as written, but with each operation being data-parallel across your problem set. (This case occurs in our routine polcoe in Chapter B3.)

Polynomial Coefficients from Roots

A parallel calculation algorithmically very similar to (22.3.7) or (22.3.8) occurs when we want to find the coefficients of a polynomial \(P(x) \) from its roots \(r_1, \ldots, r_N \). For this, the tableau is

\[
\begin{array}{c}
r_1 \\
r_2 : \\
r_1 + r_2 \\
r_3 : \\
r_1 + r_2 + r_3 \\
r_1r_2 \\
r_1r_2 + r_3(r_1 + r_2) \\
r_1r_2r_3
\end{array}
\]

(22.3.9)

As before, the rows are computed consecutively, from top to bottom. Each row is computed via a single parallel expression. Note that values moving on vertical arrows are simply added in, while values moving on diagonal arrows are multiplied by a new root before adding. Examples of coding (22.3.9) in Fortran 90 can be found in the routines vander (Chapter B2) and polcoe (Chapter B3).

An equivalent deformation of (22.3.9) is

\[
\begin{array}{c}
r_1 \\
r_2 : \\
r_1r_2 \\
r_3 : \\
r_1r_2r_3 \\
r_1r_2 + r_3(r_1 + r_2) \\
r_1 + r_2 + r_3
\end{array}
\]

(22.3.10)

Here the diagonal arrows are simple additions, while the vertical arrows represent multiplication by a root value. Note that the coefficient answers in (22.3.10) come out in the opposite order from (22.3.9). An example of coding (22.3.10) in Fortran 90 can be found in the routine fixrts in Chapter B13.

CITED REFERENCES AND FURTHER READING:
22.4 Fast Fourier Transforms

Fast Fourier transforms are beloved by computer scientists, especially those who are interested in parallel algorithms, because the FFT’s hierarchical structure generates a complicated, but analyzable, set of requirements for interprocessor communication on MMPs. Thus, almost all books on parallel algorithms (e.g., [1–3]) have a chapter on FFTs.

Unfortunately, the resulting algorithms are highly specific to particular parallel architectures, and therefore of little use to us in writing general purpose code in an architecture-independent parallel language like Fortran 90.

Luckily there is a good alternative that covers almost all cases of both serial and parallel machines. If, for a one-dimensional FFT of size \(N \), one is satisfied with parallelism of order \(\sqrt{N} \), then there is a good, general way of achieving a parallel FFT with quite minimal interprocessor communication; and the communication required is simply the matrix transpose operation, which Fortran 90 implements as an intrinsic. That is the approach that we discuss in this section, and implement in Chapter B12.

For a machine with \(M \) processors, this approach will saturate the processors (the desirable condition where none are idle) when the size of a one-dimensional Fourier transform, \(N \), is large enough: \(N > M^2 \). Smaller \(N \)'s will not achieve maximum parallelism. But such \(N \)'s are in fact so small for one-dimensional problems that they are unlikely to be the rate-determining step in scientific calculations. If they are, it is usually because you are doing many such transforms independently, and you should recover “outer parallelism” by doing them all at once.

For two or more dimensions, the adopted approach will saturate \(M \) processors when each dimension of the problem is larger than \(M \).

Column- and Row-Parallel FFTs

The basic building block that we assume (and implement in Chapter B12) is a routine for simultaneously taking the FFT of each row of a two-dimensional matrix. The method is exactly that of Volume 1’s \texttt{four1} routine, but with array sections like \texttt{data(:,j)} replacing scalars like \texttt{data(j)}. Chapter B12’s implementation of this is a routine called \texttt{fourrow}. If all the data for one column (that is, all the values \texttt{data(i,:)}, for some \(i \)) are local to a single processor, then the parallelism involves no interprocessor communication at all: The independent FFTs simply proceed, data parallel and in lockstep. This is architecture-independent parallelism with a vengeance.

We will also need to take the FFT of each column of a two-dimensional matrix. One way to do this is to take the transpose (a Fortran 90 intrinsic that hides a lot of interprocessor communication), then take the FFT of the rows using \texttt{fourrow}, then take the transpose again. An alternative method is to recode the \texttt{four1} routine with array sections in the other dimension (\texttt{data(j,:)} replacing \texttt{four1}'s scalars (\texttt{data(j)}). This scheme, in Chapter B12, is a routine called \texttt{fourcol}. In this case, good parallelism will be achieved only if the values \texttt{data(:,i)}, for some \(i \), are local to a single processor. Of course, Fortran 90 does not give the user direct control over how data are distributed over the machine; but extensions such as HPF are designed to give just such control.
On a serial machine, you might think that \texttt{fourrow} and \texttt{fourcol} should have identical timings (acting on a square matrix, say). The two routines do exactly the same operations, after all. Not so! On modern serial computers, \texttt{fourrow} and \texttt{fourcol} can have timings that differ by a factor of 2 or more, even when their detailed arithmetic is made identical (by giving to one a data array that is the transpose of the data array given to the other). This effect is due to the multilevel cache architecture of most computer memories, and the fact that serial Fortran always stores matrices by columns (first index changing most rapidly). On our workstations, \texttt{fourrow} is significantly faster than \texttt{fourcol}, and this is likely the generic behavior. However, we do not exclude the possibility that some machines, and some sizes of matrices, are the other way around.

One-Dimensional FFTs

Turn now to the problem of how to do a single, one-dimensional, FFT. We are given a complex array \(f \) of length \(N \), an integer power of 2. The basic idea is to address the input array as if it were a two-dimensional array of size \(m \times M \), where \(m \) and \(M \) are each integer powers of 2. Then the components of \(f \) can be addressed as

\[
f(Jm + j), \quad 0 \leq j < m, \quad 0 \leq J < M
\]

where the \(j \) index changes more rapidly, the \(J \) index more slowly, and parentheses denote Fortran-style subscripts.

Now, suppose we had some magical (parallel) method to compute the discrete Fourier transform

\[
F(kM + K) \equiv \sum_{J,j} e^{2\pi i (kM + K)(Jm + j)/(Mm)} f(Jm + j),
\]

\[
0 \leq k < m, \quad 0 \leq K < M
\]

Then, you can see that the indices \(k \) and \(K \) would address the desired result (FFT of the original array), with \(K \) varying more rapidly.

Starting with equation (22.4.2) it is easy to verify the following identity,

\[
F(kM + K) = \sum_j \left[e^{2\pi i j/k/m} \left(e^{2\pi i K/(Mm)} \sum_j e^{2\pi i j K/M} f(Jm + j) \right) \right]
\]

But this, reading it from the innermost operation outward, is just the magical method that we need:

- Reshape the original array to \(m \times M \) in Fortran normal order (storage by columns).
- FFT on the second (column) index for all values of the first (row) index, using the routine \texttt{fourrow}.
- Multiply each component by a phase factor \(\exp[2\pi i K/(Mm)] \).
- Transpose.
• Again FFT on the second (column) index for all values of the first (row) index, using the routine fourrow.
• Reshape the two-dimensional array back into one-dimensional output.

The above scheme uses fourrow exclusively, on the assumption that it is faster than its sibling fourcol. When that is the case (as we typically find), it is likely that the above method, implemented as four1 in Chapter B12, is faster, even on scalar machines, than Volume 1’s scalar version of four1 (Chapter 12). The reason, as already mentioned, is that fourrow’s parallelism is taking better advantage of cache memory locality.

If fourrow is not faster than fourcol on your machine, then you should instead try the following alternative scheme, using fourcol only:
• Reshape the original array to \(m \times M \) in Fortran normal order (storage by columns).
• Transpose.
• FFT on the first (row) index for all values of the second (column) index, using the routine fourcol.
• Multiply each component by a phase factor \(\exp\left[2\pi i j K/(Mm)\right] \).
• Transpose.
• Again FFT on the first (row) index for all values of the second (column) index, using the routine fourcol.
• Transpose.
• Reshape the two-dimensional array back into one-dimensional output.

In Chapter B12, this scheme is implemented as four1_alt. You might wonder why four1_alt has three transpose operations, while four1 had only one. Shouldn’t there be a symmetry here? No. Fortran makes the arbitrary, but consistent, choice of storing two-dimensional arrays by columns, and this choice favors four1 in terms of transposes. Luckily, at least on our serial workstations, fourrow (used by four1) is faster than fourcol (used by four1_alt), so it is a double win.

For further discussion and references on the ideas behind four1 and four1_alt see [4], where these algorithms are called the four-step and six-step frameworks, respectively.

CITED REFERENCES AND FURTHER READING:
Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam Hilger), §5.5. [3]

22.5 Missing Language Features

A few facilities that are fairly important to parallel programming are missing from the Fortran 90 language standard. On scalar machines this lack is not a
problem, since one can readily program the missing features by using do-loops. On parallel machines, both SSP machines and MMP machines, one must hope that hardware manufacturers provide library routines, callable from Fortran 90, that provide access to the necessary facilities, or use extensions of Fortran 90, such as High Performance Fortran (HPF).

Scatter-with-Combine Functions

Fortran 90 allows the use of *vector subscripts* for so-called *gather* and *scatter* operations. For example, with the setup

```fortran
REAL(SP), DIMENSION(6) :: arr, barr, carr
INTEGER(I4B), DIMENSION(6) :: iarr, jarr
... iarr = (/ 1, 3, 5, 2, 4, 6 /)
jarr = (/ 3, 2, 3, 2, 1, 1 /)
```

Fortran 90 allows both the *one-to-one* gather and the *one-to-many* gather,

```fortran
barr=arr(iarr)
carr=arr(jarr)
```

It also allows the one-to-one scatter,

```fortran
barr(iarr)=carr
```

where the elements of *carr* are “scattered” into *barr* under the direction of the vector subscript *iarr*.

Fortran 90 does *not* allow the *many-to-one* scatter

```fortran
barr(jarr)=carr ! illegal for this jarr
```

because the repeated values in *jarr* try to assign different components of *carr* to the same location in *barr*. The result would not be deterministic.

Sometimes, however, one would in fact like a many-to-one construction, where the colliding elements get combined by a (commutative and associative) operation, like + or *, or max(). These so-called *scatter-with-combine* functions are readily implemented on serial machines by a do-loop, for example,

```fortran
barr=0.
do j=1,size(carr)
   barr(jarr(j))=barr(jarr(j))+carr(j)
end do
```

Fortran 90 unfortunately provides no means for effecting scatter-with-combine functions in parallel. Luckily, almost all parallel machines do provide such a facility as a library program, as does HPF, where the above facility is called **SUM-SCATTER**. In Chapter 23 we will define utility routines **scatter_add** and **scatter_max** for scatter-with-combine functionalities, but the implementation given in Fortran 90 will be strictly serial, with a do-loop.
22.5 Missing Language Features

Skew Sections

Fortran 90 provides no good, parallel way to access the diagonal elements of a matrix, either to read them or to set them. Do-loops will obviously serve this need on serial machines. In principle, a construction like the following bizarre fragment could also be utilized,

```fortran
REAL(SP), DIMENSION(n,n) :: mat
REAL(SP), DIMENSION(n*n) :: arr
REAL(SP), DIMENSION(n) :: diag
...
arr = reshape(mat,shape(arr))
diag = arr(1:n*n:n+1)
```

which extracts every \((n+1)\)st element from a one-dimensional array derived by reshaping the input matrix. However, it is unlikely that any foreseeable parallel compiler will implement the above fragment without a prohibitive amount of unnecessary data movement; and code like the above is also exceedingly slow on all serial machines that we have tried.

In Chapter 23 we will define utility routines `get_diag`, `put_diag`, `diagadd`, `diagmult`, and `unit_matrix` to manipulate diagonal elements, but the implementation given in Fortran 90 will again be strictly serial, with do-loops.

Fortran 95 (see §21.6) will essentially fix Fortran 90’s skew sections deficiency. For example, using its `forall` construction, the diagonal elements of an array can be accessed by a statement like

```fortran
forall (j=1:20) diag(j) = arr(j,j)
```

SIMD vs. MIMD

Recall that we use “SIMD” (single-instruction, multiple data) and “data parallel” as interchangeable terms, and that “MIMD” (multiple-instruction, multiple data) is a more general programming model. (See §22.1.)

You should not be too quick to jump to the conclusion that Fortran 90’s data parallel or SIMD model is “bad,” and that MIMD features, absent in Fortran 90, are therefore “good.” On the contrary, Fortran 90’s basic data-parallel paradigm has a lot going for it. As we discussed in §22.1, most scientific problems naturally have a “data dimension” across which the time ordering of the calculation is irrelevant. Parallelism across this dimension, which is by nature most often SIMD, frees the mind to think clearly about the computational steps in an algorithm that actually need to be sequential. SIMD code has advantages of clarity and predictability that should not be taken lightly. The general MIMD model of “lots of different things all going on at the same time and communicating data with each other” is a programming and debugging nightmare.

Having said this, we must at the same time admit that a few MIMD features — most notably the ability to go through different logical branches for calculating different data elements in a data-parallel computation — are badly needed in certain programming situations. Fortran 90 is quite weak in this area.

Note that the `where...elsewhere...end where` construction is not a MIMD construction. Fortran 90 requires that the `where` clause be executed completely before the `elsewhere` is started. (This allows the results of any calculations in the former...
clause to be available for use in the latter.) So, this construction cannot be used to allow two logical branches to be calculated in parallel.

Special functions, where one would like to calculate function values for an array of input quantities, are a particularly compelling example of the need for some MIMD access. Indeed, you will find that Chapter B6 contains a number of intricate, and in a few cases truly bizarre, workarounds, using allowed combinations of \texttt{merge}, \texttt{where}, and \texttt{CONTAINS} (the latter, for separating different logical branches into formally different subprograms).

Fortran 95’s \texttt{ELEMENTAL} and \texttt{PURE} constructions, and to some extent also \texttt{forall} (whose body will be able to include \texttt{PURE} function calls), will go a long way towards providing exactly the kind of MIMD constructions that are most needed. Once Fortran 95 becomes available and widespread, you can expect to see a new version of this volume, with a much-improved Chapter B6.

Conversely, the number of routines outside of Chapter B6 that can be significantly improved by the use of MIMD features is relatively small; this illustrates the underlying viability of the basic data-parallel SIMD model, even in a future language version with useful MIMD features.
Chapter 23. Numerical Recipes Utility Functions for Fortran 90

23.0 Introduction and Summary Listing

This chapter describes and summarizes the Numerical Recipes utility routines that are used throughout the rest of this volume. A complete implementation of these routines in Fortran 90 is listed in Appendix C1.

Why do we need utility routines? Aren’t there already enough of them built into the language as Fortran 90 intrinsics? The answers lie in this volume’s dual purpose: to implement the Numerical Recipes routines in Fortran 90 code that runs efficiently on fast serial machines, and to implement them, wherever possible, with efficient parallel code for multiprocessor machines that will become increasingly common in the future. We have found three kinds of situations where additional utility routines seem desirable:

1. Fortran 90 is a big language, with many high-level constructs — single statements that actually result in a lot of computing. We like this; it gives the language the potential for expressing algorithms very readably, getting them “out of the mud” of microscopic coding. In coding the 350+ Recipes for this volume, we kept a systematic watch for bits of microscopic coding that were repeated in many routines, and that seemed to be at a lower level of coding than that aspired to by good Fortran 90 style. Once these bits were identified, we pulled them out and substituted calls to new utility routines. These are the utilities that arguably ought to be new language intrinsics, equally useful for serial and parallel machines. (A prime example is swap.)

2. Fortran 90 contains many highly parallelizable language constructions. But, as we have seen in §22.5, it is also missing a few important constructions. Most parallel machines will provide these missing elements as machine-coded library subroutines. Some of our utility routines are provided simply as a standard interface to these common, but nonstandard, functionalities. Note that it is the nature of these routines that our specific implementation, in Appendix C1, will be serial, and therefore inefficient on parallel machines. If you have a parallel machine, you will need to recode these; this often involves no more than substituting a one-line library function call for the body of our implementation. Utilities in this category will likely become unnecessary over time, either as machine-dependent libraries converge to standard interfaces, or as the utilities get added to future Fortran 90.
versions. (Indeed, some routines in this category will be unnecessary in Fortran 95, once it is available; see §23.7.)

3. Some tasks should just be done differently in serial, versus parallel, implementation. Linear recurrence relations are a good example (§22.2). These are trivially coded with a do-loop on serial machines, but require a fairly elaborate recursive construction for good parallelization. Rather than provide separate serial and parallel versions of the Numerical Recipes, we have chosen to pull out of the Recipes, and into utility routines, some identifiable tasks of this kind. These are cases where some recoding of our implementation in Appendix C1 might result in improved performance on your particular hardware. Unfortunately, it is not so simple as providing a single “serial implementation” and another single “parallel implementation,” because even the seemingly simple word “serial” hides, at the hardware level, a variety of different degrees of pipelining, wide instructions, and so on. Appendix C1 therefore provides only a single implementation, although with some adjustable parameters that you can customize (by experiment) to maximize performance on your hardware.

The above three cases are not really completely distinct, and it is therefore not possible to assign any single utility routine to exactly one situation. Instead, we organize the rest of this chapter as follows: first, an alphabetical list, with short summary, of all the new utility routines; next, a series of short sections, grouped by functionality, that contain the detailed descriptions of the routines.

Alphabetical Listing

The following list gives an abbreviated mnemonic for the type, rank, and/or shape of the returned values (as in §21.4), the routine’s calling sequence (optional arguments shown in italics), and a brief, often incomplete, description. The complete description of the routine is given in the later section shown in square brackets.

For each entry, the number shown in parentheses is the approximate number of distinct Recipes in this book that make use of that particular utility function, and is thus a rough guide to that utility’s importance. (There may be multiple invocations of the utility in each such Recipe.) Where this number is small or zero, it is usually because the utility routine is a member of a related family of routines whose total usage was deemed significant enough to include, and we did not want users to have to “guess” which family members were instantiated.

call array_copy(src, dest, n_copied, n_not_copied)
Copy one-dimensional array (whose size is not necessarily known). [23.1] (9)

[Arr] arth(first, increment, n)
Return an arithmetic progression as an array. [23.4] (55)
call assert(n1, n2, ..., string)
Exit with error message if any logical arguments are false. [23.3] (50)

[Int] assert_eq(n1, n2, ..., string)
Exit with error message if all integer arguments are not equal; otherwise return common value. [23.3] (133)

[argTS] cumprod(arr, seed)
Cumulative products of one-dimensional array, with optional seed value. [23.4] (3)

```fortran
[argTS] cumsum(arr, seed)
Cumulative sums of one-dimensional array, with optional seed value. [23.4] (9)
```

call diagadd(mat, diag)
Adds vector to diagonal of a matrix. [23.7] (4)

call diagmult(mat, diag)
Multiplies vector into diagonal of a matrix. [23.7] (2)

```fortran
[Arr] geop(first, factor, n)
Return a geometrical progression as an array. [23.4] (7)
```

```fortran
[Arr] get_diag(mat)
Gets diagonal of a matrix. [23.7] (2)
```

```fortran
[Int] ifirstloc(arr)
Location of first true value in a logical array, returned as an integer. [23.2] (3)
```

```fortran
[Int]imaxloc(arr)
Location of array maximum, returned as an integer. [23.2] (11)
```

```fortran
[Int]iminloc(arr)
Location of array minimum, returned as an integer. [23.2] (8)
```

```fortran
[Mat] lower_triangle(j, k, extra)
Returns a lower triangular logical mask. [23.7] (1)
```

call nrerror(string)
Exit with error message. [23.3] (96)

```fortran
[Mat] outerand(a, b)
Returns the outer logical and of two vectors. [23.5] (1)
```

```fortran
[Mat]outerdiff(a, b)
Returns the outer difference of two vectors. [23.5] (4)
```

```fortran
[Mat]outerdiv(a, b)
Returns the outer quotient of two vectors. [23.5] (0)
```

```fortran
[Mat]outerprod(a, b)
Returns the outer product of two vectors. [23.5] (14)
```

```fortran
[Mat]outersum(a, b)
Returns the outer sum of two vectors. [23.5] (0)
```

```fortran
[argTS] poly(x, coeffs, mask)
Evaluate a polynomial \( P(x) \) for one or more values \( x \), with optional mask. [23.4] (15)
```

```fortran
[argTS] poly_term(a, x)
Returns partial cumulants of a polynomial, equivalent to synthetic
Comment on Relative Frequencies of Use

We find it interesting to compare our frequency of using the nrutil utility routines, with our most used language intrinsics (see §21.4). On this basis, the following routines are as useful to us as the top 10 language intrinsics: arth, assert, assert_eq, outerprod, poly, and swap. We strongly recommend that the X3J3 standards committee, as well as individual compiler library implementors, consider the inclusion of new language intrinsics (or library routines) that subsume the capabilities of at least these routines. In the next tier of importance, we would put some further cumulative operations (geop, cumsum), some other “outer” operations on vectors (e.g., outerdiff), basic operations on the diagonals of matrices (get_diag, put_diag, diag_add), and some means of access to an array of unknown size (array_copy).

23.1 Routines That Move Data

To describe our utility routines, we introduce two items of Fortran 90 pseudocode: We use the symbol T to denote some type and rank declaration (including
23.1 Routines That Move Data

Scalar rank, i.e., zero; and when we append a colon to a type specification, as in `INTEGER(I4B)(:)`, for example, we denote an array of the given type.

The routines `swap`, `array_copy`, and `reallocate` simply move data around in useful ways.

```
* * *

swap (swaps corresponding elements)

User interface (or, "USE nrutil"):

```fortran
SUBROUTINE swap(a,b,mask)
  T, INTENT(INOUT) :: a,b
  LOGICAL(LGT), INTENT(IN), OPTIONAL :: mask
END SUBROUTINE swap
```

Applicable types and ranks:
```
T ≡ any type, any rank
```

Types and ranks implemented (overloaded) in nrutil:
```
T ≡ INTEGER(I4B), REAL(SP), REAL(SP)(:), REAL(DP),
  COMPLEX(SPC), COMPLEX(SPC)(:), COMPLEX(SPC)(:,:),
  COMPLEX(DPC), COMPLEX(DPC)(:), COMPLEX(DPC)(:,:)
```

Action:
Swaps the corresponding elements of `a` and `b`. If `mask` is present, performs the swap only where `mask` is true. (Following code is the unmasked case. For speed at run time, the masked case is implemented by overloading, not by testing for the optional argument.)

Reference implementation:
```
T :: dum
dum=a
a=b
b=dum
```

```
*   *   *

array_copy (copy one-dimensional array)

User interface (or, "USE nrutil"):

```fortran
SUBROUTINE array_copy(src,dest,n_copied,n_not_copied)
 T, INTENT(IN) :: src
 T, INTENT(OUT) :: dest
 INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
END SUBROUTINE array_copy
```

Applicable types and ranks:
```
T ≡ any type, rank 1
```

Types and ranks implemented (overloaded) in nrutil:
```
T ≡ INTEGER(I4B)(:), REAL(SP)(:), REAL(DP)(:)
```

Action:
Copies to a destination array `dest` the one-dimensional array `src`, or as much of `src` as will fit in `dest`. Returns the number of components copied as `n_copied`, and the number of components not copied as `n_not_copied`.

The main use of this utility is where `src` is an expression that returns an array whose size is not known in advance, for example, the value returned by the `pack` intrinsic.
Reference implementation:
\[
\begin{align*}
    n_{\text{copied}} &= \min(\text{size}(\text{src}), \text{size}(\text{dest})) \\
    n_{\text{not\_copied}} &= \text{size}(\text{src}) - n_{\text{copied}} \\
    \text{dest}(1:n_{\text{copied}}) &= \text{src}(1:n_{\text{copied}})
\end{align*}
\]

`reallocate` (reallocate a pointer, preserving contents)

User interface (or, “USE nrutil”):
\[
\begin{align*}
    \text{FUNCTION } \text{reallocate}(p, n[, m, ...]) \\
    \text{INTEGER(I4B), Pointer } :: p, \text{ reallocate} \\
    \text{INTEGER(I4B), INTENT(IN) } :: n[, m, ...] \\
    \text{END FUNCTION reallocate}
\end{align*}
\]

Applicable types and ranks:
\( T \equiv \text{any type, rank } 1 \text{ or greater} \)

Types and ranks implemented (overloaded) in `nrutil`:
\( T \equiv \text{INTEGER(I4B)}(:,), \text{INTEGER(I4B)}(:,,:), \text{REAL(SP)}(:,), \text{REAL(SP)}(:,,:), \text{CHARACTER}(1)(:) \)

Action:
Allocates storage for a new array with shape specified by the integer(s) \( n, m, ... \) (equal in number to the rank of pointer \( p \)). Then, copies the contents of \( p \)'s target (or as much as will fit) into the new storage. Then, deallocates \( p \) and returns a pointer to the new storage.

The typical use is \( p = \text{reallocate}(p, n[, m, ...]) \), which has the effect of changing the allocated size of \( p \) while preserving the contents.

The reference implementation, below, shows only the case of rank 1.

Reference implementation:
\[
\begin{align*}
    \text{INTEGER(I4B)} :: nold, ierr \\
    \text{allocate}(\text{reallocate}(n), \text{stat} = \text{ierr}) \\
    \text{if } (\text{ierr} /= 0) \text{ call } & & \text{nrerror('reallocate: problem in attempt to allocate memory')} \\
    \text{if } (\text{.not. associated}(p)) \text{ RETURN} \\
    nold &= \text{size}(p) \\
    \text{reallocate}(1:\text{min}(nold, n)) &= p(1:\text{min}(nold, n)) \\
    \text{dealloate}(p)
\end{align*}
\]

23.2 Routines Returning a Location

Fortran 90’s intrinsics `maxloc` and `minloc` return rank-one arrays. When, in the most frequent usage, their argument is a one-dimensional array, the answer comes back in the inconvenient form of an array containing a single component, which cannot be itself used in a subscript calculation. While there are workaround tricks (e.g., use of the `sum` intrinsic to convert the array to a scalar), it seems clearer to define routines `imaxloc` and `iminloc` that return integers directly.

The routine `ifirstloc` adds a related facility missing among the intrinsics: Return the first true location in a logical array.
imaxloc  (location of array maximum as an integer)

User interface (or, “USE nrutil”):

FUNCTION imaxloc(arr)
  T, INTENT(IN) :: arr
  INTEGER(I4B) :: imaxloc
END FUNCTION imaxloc

Applicable types and ranks:
  T \equiv \text{any integer or real type, rank 1}

Types and ranks implemented (overloaded) in nrutil:
  T \equiv \text{INTEGER(I4B)(:), REAL(SP)(:)}

Action:
  For one-dimensional arrays, identical to the maxloc intrinsic, except returns
  its answer as an integer rather than as maxloc’s somewhat awkward rank-one
  array containing a single component.

Reference implementation:
  INTEGER(I4B), DIMENSION(1) :: imax
  imax=maxloc(arr(:))
  imaxloc=imax(1)

⋆⋆⋆

iminloc  (location of array minimum as an integer)

User interface (or, “USE nrutil”):

FUNCTION iminloc(arr)
  T, INTENT(IN) :: arr
  INTEGER(I4B) :: iminloc
END FUNCTION iminloc

Applicable types and ranks:
  T \equiv \text{any integer or real type, rank 1}

Types and ranks implemented (overloaded) in nrutil:
  T \equiv \text{REAL(SP)(:)}

Action:
  For one-dimensional arrays, identical to the minloc intrinsic, except returns
  its answer as an integer rather than as minloc’s somewhat awkward rank-one
  array containing a single component.

Reference implementation:
  INTEGER(I4B), DIMENSION(1) :: imin
  imin=minloc(arr(:))
  iminloc=imin(1)

⋆⋆⋆

ifirstloc  (returns location of first “true” in a logical vector)

User interface (or, “USE nrutil”):

FUNCTION ifirstloc(mask)
  T, INTENT(IN) :: mask
  INTEGER(I4B) :: ifirstloc
END FUNCTION ifirstloc
Applicable types and ranks:
\[ T \equiv \text{any logical type, rank 1} \]

Types and ranks implemented (overloaded) in \texttt{nrutil}:
\[ T \equiv \text{LOGICAL(LGT)} \]

Action:
Returns the index (subscript value) of the first location, in a one-dimensional logical mask, that has the value .TRUE., or returns \texttt{size(mask)+1} if all components of mask are .FALSE.

Note that while the reference implementation uses a do-loop, the function is parallelized in \texttt{nrutil} by instead using the \texttt{merge} and \texttt{maxloc} intrinsics.

Reference implementation:
\[
\text{INTEGER(I4B)} :: i \\
\text{do } i=1,\text{size(mask)} \\
\quad \text{if (mask(i)) then} \\
\quad \quad \text{ifirstloc}=i \\
\quad \text{return} \\
\text{end if} \\
\text{end do} \\
\text{ifirstloc}=i
\]

23.3 Argument Checking and Error Handling

It is good programming practice for a routine to check the assumptions ("assertions") that it makes about the sizes of input arrays, allowed range of numerical arguments, and so forth. The routines \texttt{assert} and \texttt{assert_eq} are meant for this kind of use. The routine \texttt{nrerror} is our default error reporting routine.

\[
\ast \ast \ast
\]

\texttt{assert} (exit with error message if any assertion is false)

\textit{User interface (or, “USE nrutil”):}
\[
\text{SUBROUTINE assert(n1,n2,...,string)} \\
\text{CHARACTER(LEN=*)}, \text{INTENT(IN)} :: string \\
\text{LOGICAL, INTENT(IN)} :: n1,n2,... \\
\text{END SUBROUTINE assert}
\]

\textit{Action:}
Embedding program dies gracefully with an error message if any of the logical arguments are false. Typical use is with logical expressions as the actual arguments. \texttt{nrutil} implements and overloads forms with 1, 2, 3, and 4 logical arguments, plus a form with a vector logical argument.

\texttt{LOGICAL, DIMENSION(:), INTENT(IN)} :: n
that is checked by the \texttt{all(n)} intrinsic.
Reference implementation:

```fortran
if (.not. (n1 .and. n2 .and. ...)) then
 write (*,*) 'nrerror: an assertion failed with this tag:', string
 STOP 'program terminated by assert'
end if

**

assert_eq (exit with error message if integer arguments not all equal)

User interface (or "USE nrutil"):
FUNCTION assert_eq(n1,n2,n3,...,string)
 CHARACTER(LEN=*) , INTENT(IN) :: string
 INTEGER, INTENT(IN) :: n1,n2,n3,...
 INTEGER :: assert_eq
END FUNCTION assert_eq

Action:
Embedding program dies gracefully with an error message if any of the integer arguments are not equal to the first. Otherwise, return the value of the first argument. Typical use is for enforcing equality on the sizes of arrays passed to a subprogram. nrutil implements and overloads forms with 1, 2, 3, and 4 integer arguments, plus a form with a vector integer argument, INTEGER, DIMENSION(:,), INTENT(IN) :: n that is checked by the conditional if (all(nn(2:)==nn(1))).

Reference implementation:

```fortran
if (n1==n2 .and. n2==n3 .and. ...) then
    assert_eq=n1
else
    write (*,*) 'nrerror: an assert_eq failed with this tag:', string
    STOP 'program terminated by assert_eq'
end if

**

nrerror  (report error message and stop)

User interface (or "USE nrutil"):  
SUBROUTINE nrerror(string)  
    CHARACTER(LEN=*) , INTENT(IN) :: string  
END SUBROUTINE nrerror

Action:  
This is the minimal error handler used in this book. In applications of any complexity, it is intended only as a placeholder for a user’s more complicated error handling strategy.

Reference implementation:

```fortran
write (*,*) 'nrerror: ',string
STOP 'program terminated by nrerror'
```
23.4 Routines for Polynomials and Recurrences

Apart from programming convenience, these routines are designed to allow for nontrivial parallel implementations, as discussed in §22.2 and §22.3.

* * *

arth (returns arithmetic progression as an array)

User interface (or, “USE nrutil”):

FUNCTION arth(first, increment, n)
  T, INTENT(IN) :: first, increment
  INTEGER(I4B), INTENT(IN) :: n
  T, DIMENSION(n) [or 1 rank higher than T] :: arth
END FUNCTION arth

Applicable types and ranks:

T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) in nrutil:

T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:

Returns an array of length n containing an arithmetic progression whose first value is first and whose increment is increment. If first and increment have rank greater than zero, returns an array of one larger rank, with the last subscript having size n and indexing the progressions. Note that the following reference implementation (for the scalar case) is definitionally only, and neither parallelized nor optimized for roundoff error. See §22.2 and Appendix C1 for implementation by subvector scaling.

Reference implementation:

INTEGER(I4B) :: k
if (n > 0) arth(1)=first
  do k=2,n
    arth(k)=arth(k-1)+increment
  end do

* * *

geop (returns geometric progression as an array)

User interface (or, “USE nrutil”):

FUNCTION geop(first, factor, n)
  T, INTENT(IN) :: first, factor
  INTEGER(I4B), INTENT(IN) :: n
  T, DIMENSION(n) [or 1 rank higher than T] :: geop
END FUNCTION geop

Applicable types and ranks:

T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) in nrutil:

T ≡ INTEGER(I4B), REAL(SP), REAL(DP), REAL(DP)(:), COMPLEX(SPC)
23.4 Routines for Polynomials and Recurrences

**Action:**

Returns an array of length $n$ containing a geometric progression whose first value is $first$ and whose multiplier is $factor$. If $first$ and $factor$ have rank greater than zero, returns an array of one larger rank, with the last subscript having size $n$ and indexing the progression. Note that the following reference implementation (for the scalar case) is definitional only, and neither parallelized nor optimized for roundoff error. See §22.2 and Appendix C1 for implementation by subvector scaling.

**Reference implementation:**

```fortran
INTEGER(I4B) :: k
if (n > 0) geop(1)=first
 do k=2,n
 geop(k)=geop(k-1)*factor
 end do
```

**cumsum** (cumulative sum on an array, with optional additive seed)

**User interface (or, "USE nrutil"):**

```fortran
FUNCTION cumsum(arr,seed)
 T, DIMENSION(:), INTENT(IN) :: arr
 T, OPTIONAL, INTENT(IN) :: seed
 T, DIMENSION(size(arr)), INTENT(OUT) :: cumsum
END FUNCTION cumsum
```

**Applicable types and ranks:**

$T \equiv$ any numerical type

**Types and ranks implemented (overloaded) in nrutil:**

$T \equiv$ INTEGER(I4B), REAL(SP)

**Action:**

Given the rank 1 array $arr$ of type $T$, returns an array of identical type and size containing the cumulative sums of $arr$. If the optional argument $seed$ is present, it is added to the first component (and therefore, by cumulation, all components) of the result. See §22.2 for parallelization ideas.

**Reference implementation:**

```fortran
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
 if (n == 0) return
 sd=0.0
 if (present(seed)) sd=seed
 cumsum(1)=arr(1)+sd
 do j=2,n
 cumsum(j)=cumsum(j-1)+arr(j)
 end do
```

**cumprod** (cumulative prod on an array, with optional multiplicative seed)

**User interface (or, "USE nrutil"):**

```fortran
FUNCTION cumprod(arr,seed)
 T, DIMENSION(:), INTENT(IN) :: arr
 T, OPTIONAL, INTENT(IN) :: seed
 T, DIMENSION(size(arr)), INTENT(OUT) :: cumprod
END FUNCTION cumprod
```
Applicable types and ranks:
\( T \equiv \) any numerical type

Types and ranks implemented (overloaded) in `nrutil`:
\( T \equiv \) REAL(SP)

Action:
Given the rank 1 array `arr` of type `T`, returns an array of identical type and size containing the cumulative products of `arr`. If the optional argument `seed` is present, it is multiplied into the first component (and therefore, by cumulation, into all components) of the result. See §22.2 for parallelization ideas.

Reference implementation:
```fortran
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=1.0
if (present(seed)) sd=seed
cumprod(1)=arr(1)*sd
do j=2,n
cumprod(j)=cumprod(j-1)*arr(j)
end do
```

### poly (polynomial evaluation)

**User interface** (or, “USE nrutil”):
```
FUNCTION poly(x,coeffs,mask)
 T, DIMENSION(,:,:), INTENT(IN) :: x
 T, DIMENSION(:), INTENT(IN) :: coeffs
 LOGICAL(LGT), DIMENSION(,:,:), OPTIONAL, INTENT(IN) :: mask
 T :: poly
END FUNCTION poly
```

Applicable types and ranks:
\( T \equiv \) any numerical type (\( x \) may be scalar or have any rank; \( x \) and \( \text{coeffs} \) may have different numerical types)

Types and ranks implemented (overloaded) in `nrutil`:
\( T \equiv \) various combinations of REAL(SP), REAL(SP)(:), REAL(DP), REAL(DP)(:), COMPLEX(SPC) (see Appendix C1 for details)

Action:
Returns a scalar value or array with the same type and shape as \( x \), containing the result of evaluating the polynomial with one-dimensional coefficient vector \( \text{coeffs} \) on each component of \( x \). The optional argument \( \text{mask} \), if present, has the same shape as \( x \), and suppresses evaluation of the polynomial where its components are .false.. The following reference code shows the case where \( \text{mask} \) is not present. (The other case can be included by overloading.)
Reference implementation:

```
INTEGER(I4B) :: i, n
n=size(coeffs)
if (n <= 0) then
 poly=0.0
else
 poly=coeffs(n)
 do i=n-1,1,-1
 poly=x*poly+coeffs(i)
 end do
end if
```

* * *

**poly_term** (partial cumulants of a polynomial)

**User interface (or, “USE nrutil”):**

```
FUNCTION poly_term(a,x)
 T, DIMENSION(:), INTENT(IN) :: a
 T, INTENT(IN) :: x
 T, DIMENSION(size(a)) :: poly_term
END FUNCTION poly_term
```

**Applicable types and ranks:**

\[ T \equiv \text{any numerical type} \]

**Types and ranks implemented (overloaded) in nrutil:**

\[ T \equiv \text{REAL(SP), COMPLEX(SPC)} \]

**Action:**

Returns an array of type and size the same as the one-dimensional array \( a \), containing the partial cumulants of the polynomial with coefficients \( a \) (arranged from highest-order to lowest-order coefficients, n.b.) evaluated at \( x \). This is equivalent to synthetic division, and can be parallelized. See §22.3. Note that the order of arguments is reversed in `poly` and `poly_term` — each routine returns a value with the size and shape of the first argument, the usual Fortran 90 convention.

Reference implementation:

```
INTEGER(I4B) :: n, j
n=size(a)
if (n <= 0) return
poly_term(1)=a(1)
do j=2,n
 poly_term(j)=a(j)+x*poly_term(j-1)
end do
```

* * *

**zroots_unity** (returns powers of complex \( n \)th root of unity)

**User interface (or, “USE nrutil”):**

```
FUNCTION zroots_unity(n,nn)
 INTEGER(I4B), INTENT(IN) :: n,nn
 COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
END FUNCTION zroots_unity
```
23.5 Routines for Outer Operations on Vectors

Outer operations on vectors take two vectors as input, and return a matrix as output. One dimension of the matrix is the size of the first vector, the other is the size of the second vector. Our convention is always the standard one,

\[ \text{result}(i,j) = \text{first_operand}(i) \ (\text{op}) \ \text{second_operand}(j) \]

where \( \text{(op)} \) is any of addition, subtraction, multiplication, division, and logical and. The reason for coding these as utility routines is that Fortran 90’s native construction, with two spreads (cf. §22.1), is difficult to read and thus prone to programmer errors.

* * *

**outerprod** (outer product)

*User interface (or, “USE nrutil”):*

```fortran
FUNCTION outerprod(a,b) T, DIMENSION(:), INTENT(IN) :: a,b T, DIMENSION(size(a),size(b)) :: outerprod END FUNCTION outerprod
```

**Applicable types and ranks:**

\( T \equiv \) any numerical type

**Types and ranks implemented (overloaded) in nrutil:**

\( T \equiv \) REAL(SP), REAL(DP)

**Action:**

Returns a matrix that is the outer product of two vectors.

**Reference implementation:**

```fortran
outerprod = spread(a,dim=2,ncopies=size(b)) * & spread(b,dim=1,ncopies=size(a))
```

* * *
23.5 Routines for Outer Operations on Vectors

outerdiv (outer quotient)

User interface (or, "USE nrutil"):

    FUNCTION outerdiv(a,b)
        T, DIMENSION(:), INTENT(IN) :: a,b
        T, DIMENSION(size(a),size(b)) :: outerdiv
    END FUNCTION outerdiv

Applicable types and ranks:
- T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:
- T ≡ REAL(SP)

Action:
- Returns a matrix that is the outer quotient of two vectors.

Reference implementation:
- outerdiv = spread(a,dim=2,ncopies=size(b)) / &
  spread(b,dim=1,ncopies=size(a))

outersum (outer sum)

User interface (or, "USE nrutil"):

    FUNCTION outersum(a,b)
        T, DIMENSION(:), INTENT(IN) :: a,b
        T, DIMENSION(size(a),size(b)) :: outersum
    END FUNCTION outersum

Applicable types and ranks:
- T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:
- T ≡ REAL(SP)

Action:
- Returns a matrix that is the outer sum of two vectors.

Reference implementation:
- outersum = spread(a,dim=2,ncopies=size(b)) + &
  spread(b,dim=1,ncopies=size(a))

outerdiff (outer difference)

User interface (or, "USE nrutil"):

    FUNCTION outerdiff(a,b)
        T, DIMENSION(:), INTENT(IN) :: a,b
        T, DIMENSION(size(a),size(b)) :: outerdiff
    END FUNCTION outerdiff

Applicable types and ranks:
- T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:
- T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
- Returns a matrix that is the outer difference of two vectors.
Reference implementation:

\[
\text{outerdiff} = \text{spread}(a, \text{dim}=2, \text{ncopies}=\text{size}(b)) - & \\
\text{spread}(b, \text{dim}=1, \text{ncopies}=\text{size}(a))
\]

⋆⋆⋆

\textbf{outerand} (outer logical and)

User interface (or, "USE nrutil"):

\begin{verbatim}
FUNCTION outerand(a,b) 
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b 
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand 
END FUNCTION outerand 
\end{verbatim}

Applicable types and ranks:

\[ T \equiv \text{any logical type} \]

Types and ranks implemented (overloaded) in \textit{nrutil}:

\[ T \equiv \text{LOGICAL(LGT)} \]

Action:

Returns a matrix that is the outer logical and of two vectors.

Reference implementation:

\[
\text{outerand} = \text{spread}(a, \text{dim}=2, \text{ncopies}=\text{size}(b)) \text{ .and.} & \\
\text{spread}(b, \text{dim}=1, \text{ncopies}=\text{size}(a))
\]

\section*{23.6 Routines for Scatter with Combine}

These are common parallel functions that Fortran 90 simply doesn’t provide a means for implementing. If you have a parallel machine, you should substitute library routines specific to your hardware.

⋆⋆⋆

\textbf{scatter_add} (scatter-add source to specified components of destination)

User interface (or, "USE nrutil"):

\begin{verbatim}
SUBROUTINE scatter_add(dest,source,dest_index) 
T, DIMENSION(:), INTENT(OUT) :: dest 
T, DIMENSION(:), INTENT(IN) :: source 
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index 
END SUBROUTINE scatter_add 
\end{verbatim}

Applicable types and ranks:

\[ T \equiv \text{any numerical type} \]

Types and ranks implemented (overloaded) in \textit{nrutil}:

\[ T \equiv \text{REAL(SP)}, \text{REAL(DP)} \]
23.6 Routines for Scatter with Combine

Action:

Adds each component of the array source into a component of dest specified by the index array dest_index. (The user will usually have zeroed dest before the call to this routine.) Note that dest_index has the size of source, but must contain values in the range from 1 to size(dest), inclusive. Out-of-range values are ignored. There is no parallel implementation of this routine accessible from Fortran 90; most parallel machines supply an implementation as a library routine.

Reference implementation:

```fortran
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),'scatter_add')
m=size(dest)
do j=1,n
 i=dest_index(j)
 if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)
end do
```

scatter_max (scatter-max source to specified components of destination)

User interface (or, "USE nrutil"):

```fortran
SUBROUTINE scatter_max(dest,source,dest_index)
 T, DIMENSION(:), INTENT(OUT) :: dest
 T, DIMENSION(:), INTENT(IN) :: source
 INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_max
```

Applicable types and ranks:

- T ≡ any integer or real type

Types and ranks implemented (overloaded) in nrutil:

- T ≡ REAL(SP), REAL(DP)

Action:

Takes the max operation between each component of the array source and a component of dest specified by the index array dest_index, replacing that component of dest with the value obtained ("maxing into" operation). (The user will often want to fill the array dest with the value −huge before the call to this routine.) Note that dest_index has the size of source, but must contain values in the range from 1 to size(dest), inclusive. Out-of-range values are ignored. There is no parallel implementation of this routine accessible from Fortran 90; most parallel machines supply an implementation as a library routine.

Reference implementation:

```fortran
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),'scatter_max')
m=size(dest)
do j=1,n
 i=dest_index(j)
 if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))
end do
```
23.7 Routines for Skew Operations on Matrices

These are also missing parallel capabilities in Fortran 90. In Appendix C1 they are coded serially, with one or more do-loops.

⋆⋆⋆
diagadd  (adds vector to diagonal of a matrix)

User interface (or, "USE nrutil"):

SUBROUTINE diagadd(mat,diag)
   T, DIMENSION(:,,:), INTENT(INOUT) :: mat
   T, DIMENSION(:,), INTENT(IN) :: diag
END SUBROUTINE diagadd

Applicable types and ranks:
   T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:
   T ≡ REAL(SP)

Action:

The argument diag, either a scalar or else a vector whose size must be the smaller of the two dimensions of matrix mat, is added to the diagonal of the matrix mat. The following shows an implementation where diag is a vector; the scalar case can be overloaded (see Appendix C1).

Reference implementation:

INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),'diagadd')
do j=1,n
   mat(j,j)=mat(j,j)+diag(j)
end do

⋆⋆⋆
diagmult  (multiplies vector into diagonal of a matrix)

User interface (or, "USE nrutil"):

SUBROUTINE diagmult(mat,diag)
   T, DIMENSION(:,,:), INTENT(INOUT) :: mat
   T, DIMENSION(:,), INTENT(IN) :: diag
END SUBROUTINE diagmult

Applicable types and ranks:
   T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:
   T ≡ REAL(SP)

Action:

The argument diag, either a scalar or else a vector whose size must be the smaller of the two dimensions of matrix mat, is multiplied onto the diagonal of the matrix mat. The following shows an implementation where diag is a vector; the scalar case can be overloaded (see Appendix C1).
23.7 Routines for Skew Operations on Matrices

Reference implementation:

```fortran
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),'diagmult')
do j=1,n
 mat(j,j)=mat(j,j)*diag(j)
end do
```

get_diag (gets diagonal of matrix)

User interface (or “USE nrutil”):

```fortran
FUNCTION get_diag(mat)
 T, DIMENSION(:,:), INTENT(IN) :: mat
 T, DIMENSION(min(size(mat,1),size(mat,2))) :: get_diag
END FUNCTION get_diag
```

Applicable types and ranks:

- \( T \equiv \text{any type} \)

Types and ranks implemented (overloaded) in nrutil:

- \( T \equiv \text{REAL(SP), REAL(DP)} \)

Action:

Returns a vector containing the diagonal values of the matrix \( \text{mat} \).

Reference implementation:

```fortran
INTEGER(I4B) :: j
do j=1,min(size(mat,1),size(mat,2))
 get_diag(j)=mat(j,j)
end do
```

put_diag (sets the diagonal elements of a matrix)

User interface (or “USE nrutil”):

```fortran
SUBROUTINE put_diag(diag,mat)
 T, DIMENSION(:), INTENT(IN) :: diag
 T, DIMENSION(:,:), INTENT(INOUT) :: mat
END SUBROUTINE put_diag
```

Applicable types and ranks:

- \( T \equiv \text{any type} \)

Types and ranks implemented (overloaded) in nrutil:

- \( T \equiv \text{REAL(SP)} \)

Action:

Sets the diagonal of matrix \( \text{mat} \) equal to the argument \( \text{diag} \), either a scalar or else a vector whose size must be the smaller of the two dimensions of matrix \( \text{mat} \). The following shows an implementation where \( \text{diag} \) is a vector; the scalar case can be overloaded (see Appendix C1).

Reference implementation:

```fortran
INTEGER(I4B) :: j,n
n=assert_eq(size(diag),min(size(mat,1),size(mat,2)),'put_diag')
do j=1,n
 mat(j,j)=diag(j)
end do
```
unit_matrix (returns a unit matrix)

User interface (or, "USE nrutil"):  
SUBROUTINE unit_matrix(mat)
    T, DIMENSION(:,,:), INTENT(OUT) :: mat
END SUBROUTINE unit_matrix

Applicable types and ranks:  
T ≡ any numerical type

Types and ranks implemented (overloaded) in nrutil:  
T ≡ REAL(SP)

Action:  
Sets the diagonal components of mat to unity, all other components to zero.  
When mat is square, this will be the unit matrix; otherwise, a unit matrix  
with appended rows or columns of zeros.

Reference implementation:
    INTEGER(I4B) :: i,n
    n=min(size(mat,1),size(mat,2))
    mat(:,:)=0.0
    do i=1,n
        mat(i,i)=1.0
    end do

upper_triangle (returns an upper triangular mask)

User interface (or, "USE nrutil"):  
FUNCTION upper_triangle(j,k,extra)
    INTEGER(I4B), INTENT(IN) :: j,k
    INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
    LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
END FUNCTION upper_triangle

Action:  
When the optional argument extra is zero or absent, returns a logical mask of  
shape (j, k) whose values are true above and to the right of the diagonal, false  
elsewhere (including on the diagonal). When extra is present and positive,  
a corresponding number of additional (sub-)diagonals are returned as true.  
(extra = 1 makes the main diagonal return true.) When extra is present  
and negative, it suppresses a corresponding number of superdiagonals.

Reference implementation:
    INTEGER(I4B) :: n,jj,kk
    n=0
    if (present(extra)) n=extra
    do jj=1,j
        do kk=1,k
            upper_triangle(jj,kk)= (jj-kk < n)
        end do
    end do
lower_triangle  (returns a lower triangular mask)

User interface (or, “USE nrutil”):

    FUNCTION lower_triangle(j,k,extra)
    INTEGER(I4B), INTENT(IN) :: j,k
    INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
    LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
    END FUNCTION lower_triangle

Action:

When the optional argument extra is zero or absent, returns a logical mask of shape (j,k) whose values are true below and to the left of the diagonal, false elsewhere (including on the diagonal). When extra is present and positive, a corresponding number of additional (super-)diagonals are returned as true. (extra = 1 makes the main diagonal return true.) When extra is present and negative, it suppresses a corresponding number of subdiagonals.

Reference implementation:

    INTEGER(I4B) :: n,jj,kk
    n=0
    if (present(extra)) n=extra
    do jj=1,j
       do kk=1,k
          lower_triangle(jj,kk)= (kk-jj < n)
       end do
    end do

Fortran 95’s forall construction will make the parallel implementation of all our skew operations utilities extremely simple. For example, the do-loop in diagadd will collapse to

    forall (j=1:n) mat(j,j)=mat(j,j)+diag(j)

In fact, this implementation is so simple as to raise the question of whether a separate utility like diagadd will be needed at all. There are valid arguments on both sides of this question: The “con” argument, against a routine like diagadd, is that it is just another reserved name that you have to remember (if you want to use it). The “pro” argument is that a separate routine avoids the “index pollution” (the opposite disease from “index loss” discussed in §22.1) of introducing a superfluous variable j, and that a separate utility allows for additional error checking on the sizes and compatibility of its arguments. We expect that different programmers will have differing tastes. The argument for keeping a routine like upper_triangle or lower_triangle, once Fortran 95’s masked forall constructions become available, is less persuasive. We recommend that you consider these two routines as placeholders for “remember to recode this in Fortran 95, someday.”

23.8 Other Routine(s)

You might argue that we don’t really need a routine for the idiom

    sqrt(dot_product(v,v))
You might be right. The ability to overload the complex case, with its additional complex conjugate, is an argument in its favor, however.

* * *

**vabs**  \( (L_2 \text{ norm of a vector}) \)

*User interface (or, “USE nrutil”):*

```fortran
FUNCTION vabs(v)
 T, DIMENSION(:,), INTENT(IN) :: v
 T :: vabs
END FUNCTION vabs
```

*Applicable types and ranks:*

\[ T = \text{any real or complex type} \]

*Types and ranks implemented (overloaded) in nrutil:*

\[ T = \text{REAL(SP)} \]

*Action:*

Returns the length of a vector \( v \) in \( L_2 \) norm, that is, the square root of the sum of the squares of the components. (For complex types, the \text{dot_product} should be between the vector and its complex conjugate.)

*Reference implementation:*

```
vabs=sqrt(dot_product(v,v))
```
Fortran 90 Code Chapters B1–B20

Fortran 90 versions of all the Numerical Recipes routines appear in the following Chapters B1 through B20, numbered in correspondence with Chapters 1 through 20 in Volume 1. Within each chapter, the routines appear in the same order as in Volume 1, but not broken out separately by section number within Volume 1’s chapters.

There are commentaries accompanying many of the routines, generally following the printed listing of the routine to which they apply. These are of two kinds: issues related to parallelizing the algorithm in question, and issues related to the Fortran 90 implementation. To distinguish between these two, rather different, kinds of discussions, we use the two icons,

![Parallel Note Icon](image1)
![Fortran 90 Tip Icon](image2)

the left icon (above) indicating a “parallel note,” and the right icon denoting a “Fortran 90 tip.” Specific code segments of the routine that are discussed in these commentaries are singled out by reproducing some of the code as an “index line” next to the icon, or at the beginning of subsequent paragraphs if there are several items that are commented on.

d=merge(FPMIN,d,abs(d)<FPMIN) This would be the start of a discussion of code that begins at the line in the listing containing the indicated code fragment.

* * *

A row of stars, like the above, is used between unrelated routines, or at the beginning and end of related groups of routines.

Some chapters contain discussions that are more general than commentary on individual routines, but that were deemed too specific for inclusion in Chapters 21 through 23. Here are some highlights of this additional material:

- Approximations to roots of orthogonal polynomials for parallel computation of Gaussian quadrature formulas (Chapter B4)
- Difficulty of, and tricks for, parallel calculation of special function values in a SIMD model of computation (Chapter B6)
- Parallel random number generation (Chapter B7)
- Fortran 90 tricks for dealing with ties in sorted arrays, counting things in boxes, etc. (Chapter B14)
- Use of recursion in implementing multigrid elliptic PDE solvers (Chapter B19)
Chapter B1. Preliminaries

SUBROUTINE flmoon(n, nph, jd, frac)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n, nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac

Our programs begin with an introductory comment summarizing their purpose and explaining their calling sequence. This routine calculates the phases of the moon. Given an integer \( n \) and a code \( nph \) for the phase desired (\( nph = 0 \) for new moon, 1 for first quarter, 2 for full, 3 for last quarter), the routine returns the Julian Day Number \( jd \), and the fractional part of a day \( frac \) to be added to it, of the \( n \)th such phase since January, 1900. Greenwich Mean Time is assumed.

REAL(SP), PARAMETER :: RAD=PI/180.0_sp
INTEGER(I4B) :: i
REAL(SP) :: am, as, c, t, t2, xtra

\[ c = n + nph / 4.0 \text{ sp} \]
\[ t = c / 1236.85 \text{ sp} \]
\[ t2 = t^2 \]
\[ as = 359.2242 \text{ sp} + 29.105356 \text{ sp} \cdot c \]

You aren’t really intended to understand this algorithm, but it does work!

\[ am = 306.0253 \text{ sp} + 385.816918 \text{ sp} \cdot c + 0.010730 \text{ sp} \cdot t^2 \]

jd = 2415020 + 28 \cdot n + 7 \cdot nph

\[ xtra = 0.75933 \text{ sp} + 1.53058868 \text{ sp} \cdot c + (1.178e-4 \text{ sp} - 1.55e-7 \text{ sp} \cdot t) \cdot t^2 \]

select case(nph)
\[ \text{case(0,2)} \]
\[ \text{xtra} = \text{xtra} + (0.1734 \text{ sp} - 3.93e-4 \text{ sp} \cdot t) \cdot \sin(RAD \cdot as) - 0.4068 \text{ sp} \cdot \sin(RAD \cdot am) \]
\[ \text{case(1,3)} \]
\[ \text{xtra} = \text{xtra} + (0.1721 \text{ sp} - 4.0e-4 \text{ sp} \cdot t) \cdot \sin(RAD \cdot as) - 0.6280 \text{ sp} \cdot \sin(RAD \cdot am) \]
\[ \text{case default} \]
\[ \text{call nrerror('flmoon: nph is unknown')} \]
end select

i = int(merge(xtra, xtra - 1.0_sp, xtra >= 0.0))
jd = jd + i
frac = xtra - i
END SUBROUTINE flmoon

select case(nph)...case(0,2)...end select

Fortran 90 includes a case construction that executes at most one of several blocks of code, depending on the value of an integer, logical, or character expression. Ideally, the case construction will execute more efficiently than a long sequence of cascaded if...else if...else if... constructions. C programmers should note that the Fortran 90 construction, perhaps mercifully, does not have C’s “drop-through” feature.

merge(xtra, xtra - 1.0_sp, xtra >= 0.0) The merge construction in Fortran 90, while intended primarily for use with vector arguments, is also a convenient way of generating conditional scalar expressions, that is, expressions with one value, or another, depending on the result of a logical test.
When the arguments of a `merge` are vectors, parallelization by the compiler is straightforward as an array parallel operation (see p. 964).

Less obvious is how the scalar case, as above, is handled. For small-scale parallel (SSP) machines, the natural gain is via speculative evaluation of both of the first two arguments simultaneously with evaluation of the test.

A good compiler should not penalize a scalar machine for use of either the scalar or vector `merge` construction. The Fortran 90 standard states that "it is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each operand, if the value of the expression can be determined otherwise." Therefore, for each test on a scalar machine, only one or the other of the first two argument components need be evaluated.

```fortran
FUNCTION julday(mm,id,iyyy)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
INTEGER(I4B) :: julday

In this routine julday returns the Julian Day Number that begins at noon of the calendar date specified by month mm, day id, and year iyyy, all integer variables. Positive year signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.
INTEGER(I4B), PARAMETER :: IGREG=15+31*(10+12*1582) Gregorian Calendar adopted Oct. 15, 1582.

jy=iyyy
if (jy == 0) call nrerror('julday: there is no year zero')
if (jy < 0) jy=jy+1
if (mm > 2) then Here is an example of a block IF-structure.
jm=mm+1
else
 jm=mm+13
end if
julday=int(365.25_sp*jy)+int(30.6001_sp*jm)+id+1720995
if (id+31*(mm+12*iyyy) >= IGREG) then Test whether to change to Gregorian Calendar.
 ja=int(0.01_sp*jy)
 julday=julday+2-ja+int(0.25_sp*ja)
end if
END FUNCTION julday
```

```fortran
PROGRAM badluk
USE nrtype
USE nr, ONLY : flmoon,julday
IMPLICIT NONE
INTEGER(I4B) :: ic,icon,idwk,ifrac,im,iyyy,jd,jday,n
INTEGER(I4B) :: iybeg=1900,iyend=2000
The range of dates to be searched.
REAL(SP) :: frac
REAL(SP), PARAMETER :: TIMZON=-5.0_sp/24.0_sp
Time zone −5 is Eastern Standard Time.
write (*,'(1x,a,i5,a,i5)') 'Full moons on Friday the 13th from',&
 'iybeg,' to',iyyend)
do iyyy=iybeg,iyend Loop over each year,
do im=1,12 and each month.
jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)
```

```
```
if (idwk == 5) then
    n=12.37_sp*(iyyy-1900+(im-0.5_sp)/12.0_sp)
    This value \( n \) is a first approximation to how many full moons have occurred since 1900. We will feed it into the phase routine and adjust it up or down until we determine that our desired 13th was or was not a full moon. The variable \( \text{icon} \) signals the direction of adjustment.

    icon=0
    do
        call flmoon(n,2,jd,frac)  Get date of full moon \( n \).
        ifrac=nint(24.0_sp*(frac+TIMZON))  Convert to hours in correct time zone.
        if (ifrac < 0) then
            jd=jd-1  Convert from Julian Days beginning at noon to civil days beginning at midnight.
            ifrac=ifrac+24
        end if
        if (ifrac > 12) then
            jd=jd+1
            ifrac=ifrac-12
        else
            ifrac=ifrac+12
        end if
        if (jd == jday) then
            Did we hit our target day?
            write (*,'(/1x,i2,a,i2,a,i4)') im,'/',13,'/',iyyy
            write (*,'(1x,a,i2,a)') 'Full moon ',ifrac,' hrs after midnight (EST).'
            Don't worry if you are unfamiliar with FORTRAN's esoteric input/output statements; very few programs in this book do any input/output.
        exit
            Part of the break-structure, case of a match.
        else
            ic=isign(1,jday-jd)
            if (ic == -icon) exit  Another break, case of no match.
            icon=ic
            n=n+ic
        end if
    end do
end if
end do
end do
END PROGRAM badluk

\( \ldots \text{IGREG} = 15+31*(10+12*1582) \) (in \text{julday}).  \( \ldots \text{TIMZON} = -5.0_sp/24.0_sp \) (in \text{badluk}) These are two examples of initialization expressions for “named constants” (that is, \text{PARAMETER}s). Because the initialization expressions will generally be evaluated at compile time, Fortran 90 puts some restrictions on what kinds of intrinsic functions they can contain. Although the evaluation of a real expression like \(-5.0_sp/24.0_sp \) \textit{ought} to give identical results at compile time and at execution time, all the way down to the least significant bit, in our opinion the conservative programmer shouldn’t count on strict identity at the level of floating-point roundoff error. (In the special case of cross-compilers, such roundoff-level discrepancies between compile time and run time are almost inevitable.)

\[ * * * \]
SUBROUTINE caldat(julian,mm,id,iyyy)
  USE nrtype
  IMPLICIT NONE
  INTEGER(I4B), INTENT(IN) :: julian
  INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy

  Inverse of the function julday given above. Here julian is input as a Julian Day Number,
  and the routine outputs mm, id, and iyyy as the month, day, and year on which the specified
  Julian Day started at noon.

  INTEGER(I4B) :: ja,jalpha,jb,jc,jd,je
  INTEGER(I4B), PARAMETER :: IGREG=2299161
  if (julian >= IGREG) then
    Cross-over to Gregorian Calendar produces this
    correction.
    jalpha=int(((julian-1867216)-0.25_sp)/36524.25_sp)
    ja=julian+1+jalpha-int(0.25_sp*jalpha)
  else if (julian < 0) then
    Make day number positive by adding integer number of Julian centuries, then subtract them
    off at the end.
    ja=julian+36525*(1-julian/36525)
  else
    ja=julian
  end if

  jb=ja+1524
  jc=int(6680.0_sp+((jb-2439870)-122.1_sp)/365.25_sp)
  jd=365*jc+int(0.25_sp*jc)
  je=int((jb-jd)/30.6001_sp)
  id=jb-jd-int(30.6001_sp*je)
  mm=je-1
  if (mm > 12) mm=mm-12
  iyyy=jc-4715
  if (mm > 2) iyyy=iyyy-1
  if (iyyy <= 0) iyyy=iyyy-1
  if (julian < 0) iyyy=iyyy-100*(1-julian/36525)
END SUBROUTINE caldat
Chapter B2. Solution of Linear Algebraic Equations

SUBROUTINE gaussj(a,b)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerand,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,::), INTENT(INOUT) :: a,b

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1). a is an \(N \times N\) input coefficient matrix. b is an \(N \times M\) input matrix containing \(M\) right-hand-side vectors. On output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of solution vectors.

INTEGER(I4B), DIMENSION(size(a,1)) :: ipiv,indxr,indxc
LOGICAL(LGT), DIMENSION(size(a,1)) :: lpiv
REAL(SP) :: pivinv
REAL(SP), DIMENSION(size(a,1)) :: dumc
INTEGER(I4B), TARGET :: irc(2)
INTEGER(I4B) :: i,l,n
INTEGER(I4B), POINTER :: irow,icol

n=assert_eq(size(a,1),size(a,2),size(b,1),'gaussj')
irow => irc(1)
icol => irc(2)
ipiv=0

do i=1,n  
  lpiv = (ipiv == 0)  
  Begin search for a pivot element.
  irc=maxloc(abs(a),outerand(lpiv,lpiv))
  ipiv(icol)=ipiv(icol)+1
  if (ipiv(icol) > 1) call nrerror('gaussj: singular matrix (1)')
  We now have the pivot element, so we interchange rows, if needed, to put the pivot element on the diagonal. The columns are not physically interchanged, only relabeled:
  indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
  indxr(i) is the row in which that pivot element was originally located. If indxr(i) ≠ indxc(i) there is an implied column interchange. With this form of bookkeeping, the solution b's will end up in the correct order, and the inverse matrix will be scrambled by columns.
  if (irow /= icol) then
    call swap(a(irow,:),a(icol,:))
    call swap(b(irow,:),b(icol,:))
  end if

  end if

  We are now ready to divide the pivot row by the pivot element, located at irow and icol.
  indxc(i)=icol
  if (a(icol,icol) == 0.0) &
    call nrerror('gaussj: singular matrix (2)')
  pivinv=1.0_sp/a(icol,icol)
  a(icol,icol)=1.0
  a(icol,:) = a(icol,:) * pivinv
  b(icol,:) = b(icol,:) * pivinv
  dumc=a(:,icol)
  Next, we reduce the rows, except for the pivot one, of course.
  
  a(:,icol)=0.0

  end do

1014
Chapter B2. Solution of Linear Algebraic Equations


Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

```fortran
a(icol,icol)=pivinv
a(1:icol-1,:)=a(1:icol-1,:)-outerprod(dumc(1:icol-1),a(icol,:))
b(1:icol-1,:)=b(1:icol-1,:)-outerprod(dumc(1:icol-1),b(icol,:))
a(icol+1:,:)=a(icol+1:,:)-outerprod(dumc(icol+1,:),a(icol,:))
b(icol+1:,:)=b(icol+1:,:)-outerprod(dumc(icol+1,:),b(icol,:))
end do

It only remains to unscramble the solution in view of the column interchanges. We do this
by interchanging pairs of columns in the reverse order that the permutation was built up.
do l=n,1,-1
 call swap(a(:,indxr(l)),a(:,indxc(l)))
end do
END SUBROUTINE gaussj
```

```fortran
irow => irc(1) ... icol => irc(2) The maxloc intrinsic returns
the location of the maximum value of an array as an integer array, in this
case of size 2. Pre-pointing pointer variables to components of the array
that will be thus set makes possible convenient references to the desired row and
column positions.

irc=maxloc(abs(a),outerand(lpiv,lpiv)) The combination of maxloc and
one of the outer... routines from nrutil allows for a very concise formulation.
If this task is done with loops, it becomes the ungainly “flying vee.”

aa=0.0
do i=1,n
 if (lpiv(i)) then
 do j=1,n
 if (lpiv(j)) then
 if (abs(a(i,j)) > aa) then
 aa=abs(a(i,j))
 irow=i
 icol=j
 endif
 endif
 end do
 endif
end do

call swap(a(irow,:),a(icol,:)) The swap routine (in nrutil) is concise
and convenient. Fortran 90’s ability to overload multiple routines onto a single name
is vital here: Much of the convenience would vanish if we had to remember variant
routine names for each variable type and rank of object that might be swapped.

Even better, here, than overflowing would be if Fortran 90 allowed user-written
elemental procedures (procedures with unspecified or arbitrary rank and shape),
like the intrinsic elemental procedures built into the language. Fortran 95 will,
but Fortran 90 doesn’t.

One quick (if superficial) test for how much parallelism is achieved in
a Fortran 90 routine is to count its do-loops, and compare that number
to the number of do-loops in the Fortran 77 version of the same routine.
Here, in gaussj, 13 do-loops are reduced to 2.
```

```fortran
```
Here the same operation is applied to every row of \( a \), and to every row of \( b \), except row number \( \text{icol} \). On a massively multiprocessor (MMP) machine it would be better to use a logical mask and do all of \( a \) in a single statement, all of \( b \) in another one. For a small-scale parallel (SSP) machine, the lines as written should saturate the machine’s concurrency, and they avoid the additional overhead of testing the mask.

This would be a good place to point out, however, that linear algebra routines written in Fortran 90 are likely never to be competitive with the hand-coded library routines that are generally supplied as part of MMP programming environments. If you are using our routines instead of library routines written specifically for your architecture, you are wasting cycles!

⋆⋆⋆

SUBROUTINE ludcmp(a,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,::), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:,::), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d

Given an \( N \times N \) input matrix \( a \), this routine replaces it by the \( LU \) decomposition of a rowwise permutation of itself. On output, \( a \) is arranged as in equation (2.3.14); \( \text{indx} \) is an output vector of length \( N \) that records the row permutation effected by the partial pivoting; \( \text{d} \) is output as \( \pm 1 \) depending on whether the number of row interchanges was even or odd, respectively. This routine is used in combination with lubksb to solve linear equations or invert a matrix.

REAL(SP), DIMENSION(size(a,1)) :: vv vv stores the implicit scaling of each row.
REAL(SP), PARAMETER :: TINY=1.0e-20_sp A small number.
REAL(SP), DIMENSION(size(a,1)) :: imaxloc
n=assert_eq(size(a,1),size(a,2),size(indx),'ludcmp')
d=1.0 No row interchanges yet.
nv=maxval(abs(a),dim=2) Loop over rows to get the implicit scaling
where

\[
\text{vv} = 1.0 \times \text{abs}(a) \quad \text{if any}(\text{vv} == 0.0) \text{ call nrerror('singular matrix in ludcmp')} \\
\text{vv} = 1.0 \times \text{abs}(a) / \text{abs}(a(1,1)) \quad \text{if } (a(1,1) == 0.0) \text{ a(1,1) = TINY}
\]

end do
END SUBROUTINE ludcmp

A single statement finds the maximum absolute value in each row. Fortran 90 intrinsics like maxval generally “do their thing” in the dimension specified by \( \text{dim} \) and return a result with a shape corresponding to the \textit{other} dimensions. Thus, here, \( \text{vv} \)’s size is that of the \textit{first} dimension of \( a \).
imax=(j-1)+imaxloc(vv(j:n)*abs(a(j:n,j)))  Here we see why the nrutil routine imaxloc is handy: We want the index, in the range 1:n of a quantity to be searched for only in the limited range j:n. Using imaxloc, we just add back the proper offset of j-1. (Using only Fortran 90 intrinsics, we could write max=(j-1)+sum(maxloc(vv(j:n)*abs(a(j:n,j))))), but the use of sum just to turn an array of length 1 into a scalar seems sufficiently confusing as to be avoided.)

a(j+1:n,j+1:n)=a(j+1:n,j+1:n)-outerprod(a(j+1:n,j),a(j,j+1:n))

The Fortran 77 version of ludcmp, using Crout's algorithm for the reduction, does not parallelize well: The elements are updated by $O(N^2)$ separate dot product operations in a particular order. Here we use a slightly different reduction, termed “outer product Gaussian elimination” by Golub and Van Loan [1], that requires just $N$ steps of matrix-parallel reduction. (See their §3.2.3 and §3.2.9 for the algorithm, and their §3.4.1 to understand how the pivoting is performed.)

We use nrutil’s routine outerprod instead of the more cumbersome pure Fortran 90 construction:

spread(a(j+1:n,j),dim=2,ncopies=n-j)*spread(a(j,j+1:n),dim=1,ncopies=n-j)

SUBROUTINE lubksb(a,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
Solves the set of $N$ linear equations $A \cdot X = B$. Here the $N \times N$ matrix $a$ is input, not as the original matrix $A$, but rather as its LU decomposition, determined by the routine ludcmp. indx is input as the permutation vector of length $N$ returned by ludcmp. $b$ is input as the right-hand-side vector $B$, also of length $N$, and returns with the solution vector $X$. $a$ and indx are not modified by this routine and can be left in place for successive calls with different right-hand sides $b$. This routine takes into account the possibility that $b$ will begin with many zero elements, so it is efficient for use in matrix inversion.

INTEGER(I4B) :: i,n,ii,ll
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(indx),'lubksb')
ii=0
When $ii$ is set to a positive value, it will become the index of the first nonvanishing element of $b$. We now do the forward substitution, equation (2.3.6). The only new wrinkle is to unscramble the permutation as we go.

do i=1,n
ll=indx(i)
sum=b(ii)
b(ii)=b(i)
if (ii /= 0) then
  summ=summ-dot_product(a(i,ii:i-1),b(ii:i-1))
else if (summ /= 0.0) then
  ii=i
  A nonzero element was encountered, so from now on we will have to do the dot product above.
  b(i)=summ
end if
end do
Now we do the backsubstitution, equation (2.3.7).
b(i) = (b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/a(i,i)
end do
END SUBROUTINE lubksb

Conceptually, the search for the first nonvanishing element of $b$ (index $ii$) should be moved out of the first do-loop. However, in practice, the need to unscramble the permutation, and also considerations of performance...
on scalar machines, cause us to write this very scalar-looking code. The performance penalty on parallel machines should be minimal.

⋆⋆⋆

Serial and parallel algorithms for tridiagonal problems are quite different. We therefore provide separate routines \texttt{tridag\_ser} and \texttt{tridag\_par}. In the \texttt{MODULE nr} interface file, one or the other of these (your choice) is given the generic name \texttt{tridag}. Of course, either version will work correctly on any computer; it is only a question of efficiency. See \S 22.2 for the numbering of the equation coefficients, and for a description of the parallel algorithm.

\begin{verbatim}
SUBROUTINE tridag\_ser(a,b,c,r,u)
  USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
  IMPLICIT NONE
  REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,c,r
  REAL(SP), DIMENSION(:,), INTENT(OUT) :: u

  Solves for a vector \( u \) of size \( N \) the tridiagonal linear set given by equation (2.4.1) using a serial algorithm. Input vectors \( b \) (diagonal elements) and \( r \) (right-hand sides) have size \( N \), while \( a \) and \( c \) (off-diagonal elements) are size \( N-1 \).

  REAL(SP), DIMENSION(size(b)) :: gam One vector of workspace, \( gam \) is needed.
  INTEGER(I4B) :: n,j
  REAL(SP) :: bet

  n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),'tridag\_ser')
  bet=b(1)
  if (bet == 0.0) call nrerror('tridag\_ser: Error at code stage 1')

  Decomposition and forward substitution.
  u(1)=r(1)/bet
  do j=2,n
    gam(j)=c(j-1)/bet
    bet=b(j)-a(j-1)*gam(j)
    if (bet == 0.0) &
      call nrerror('tridag\_ser: Error at code stage 2')
    u(j)=(r(j)-a(j-1)*u(j-1))/bet
  end do

  Backsubstitution.
  do j=n-1,1,-1
    u(j)=u(j)-gam(j+1)*u(j+1)
  end do

END SUBROUTINE tridag\_ser
\end{verbatim}

\begin{verbatim}
SUBROUTINE tridag\_par(a,b,c,r,u)
  USE nrtype; USE nrutil, ONLY : assert_eq,nrerror

  USE nr, ONLY : tridag\_ser

  IMPLICIT NONE
  REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,c,r
  REAL(SP), DIMENSION(:,), INTENT(OUT) :: u

  Solves for a vector \( u \) of size \( N \) the tridiagonal linear set given by equation (2.4.1) using a parallel algorithm. Input vectors \( b \) (diagonal elements) and \( r \) (right-hand sides) have size \( N \), while \( a \) and \( c \) (off-diagonal elements) are size \( N-1 \).

  INTEGER(I4B), PARAMETER :: NPAR\_TRIDAG=4

  INTEGER(I4B), PARAMETER :: npar\_tridag
  REAL(SP), DIMENSION(size(b)/2) :: y,q,piva
  REAL(SP), DIMENSION(size(b)/2-1) :: x,z
  REAL(SP), DIMENSION(size(a)/2) :: pivc

  n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),'tridag\_par')

  if (n < NPAR\_TRIDAG) then
    call tridag\_ser(a,b,c,r,u)
  else
    if (maxval(abs(b(1:n))) == 0.0) &
      Algorithm fails; see below routine in Vol. 1.
  end if

END SUBROUTINE tridag\_par
\end{verbatim}
call nrerror('tridag_par: possible singular matrix')

n2=size(y)

m=size(pivc)
x=size(x)

piva = a(1:n-1:2)/b(1:n-1:2)  
Zero the odd a's and even c's, giving x,  
pivc = c(2:n-1:2)/b(3:n-2)  
y, z, q.

y(1:mm) = b(2:n-1:2)-piva(1:mm)+c(1:n-2:2)-pivc*a(2:n-1:2)

q(1:mm) = r(2:n-1:2)-piva(1:mm)+r(1:n-2:2)-pivc*r(3:n-2)

if (nm < n2) then
  y(n2) = b(n)-piva(n2)*c(n-1)
  q(n2) = r(n)-piva(n2)*r(n-1)
end if

x = -piva(2:n2)*a(2:n-2:2)
z = -pivc(1:nx)*c(3:n-1:2)

if (nm < n2) then
  y(n2) = b(n)-piva(n2)*c(n-1)
  q(n2) = r(n)-piva(n2)*r(n-1)
end if

END SUBROUTINE tridag_par

The serial version tridag_ser is called when the routine has recursed its way down to sufficiently small subproblems. The point at which this occurs is determined by the parameter NPAR_TRIDAG whose optimal value is likely machine-dependent. Notice that tridag_ser must here be called by its specific name, not by the generic tridag (which might itself be overloaded with either tridag_ser or tridag_par).
What is going on becomes clearer if we imagine a temporary array $y$ with a declaration like
\[
\text{REAL(SP), DIMENSION(size(a,1),size(a,2)) :: y. Then, the above single line decomposes into}
\]
\[
y = \text{spread}(x, \text{dim}=2, \text{ncopies}=m) \quad \text{[Duplicate x into columns of y.]} \\
y = \text{eoshift}(y, \text{dim}=1, \text{shift}=\text{arth(-m1,1,m)}) \quad \text{[Shift columns by a linear progression.]} \\
b = \text{sum}(a*y, \text{dim}=2) \quad \text{[Multiply by the band-diagonal elements, and sum.]} 
\]

We use here a relatively rare subcase of the \text{eoshift} intrinsic, using a vector value for the shift argument to accomplish the simultaneous shifting of a bunch of columns, by different amounts (here specified by the linear progression returned by \text{arth}).

If you still don’t see how this accomplishes the multiplication of a band diagonal matrix by a vector, work through a simple example by hand.

SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap,arth
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: al
INTEGER(I4B), DIMENSION(:,), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given an $N \times N$ band diagonal matrix $A$ with $m_1$ subdiagonal rows and $m_2$ superdiagonal rows, compactly stored in the array $a(1:N,1:m1+m2+1)$ as described in the comment for routine banmul, this routine constructs an $LU$ decomposition of a rowwise permutation of $A$. The upper triangular matrix replaces $a$, while the lower triangular matrix is returned in $a(1:N,1:m1)$. $\text{indx}$ is an output vector of length $N$ that records the row permutation effected by the partial pivoting; $d$ is output as $\pm 1$ depending on whether the number of row interchanges was even or odd, respectively. This routine is used in combination with \text{banbks} to solve band-diagonal sets of equations.

INTEGER(I4B) :: i,k,l,mdum,mm,n
REAL(SP) :: dum
n=assert_eq(size(a,1),size(al,1),size(indx),'bandec: n')
mm=assert_eq(size(a,2),m1+m2+1,'bandec: mm')
mdum=assert_eq(size(al,2),m1,'bandec: mdum')

a(1:m1,:) = eoshift(a(1:m1,:),dim=2,shift=arth(m1,-1,m1)) \quad \text{Rearrange the storage a bit.}

d=1.0
DO k=1,n
   l=min(m1+k,n)
   i=imaxloc(abs(a(k:l,1)))+k-1 \quad \text{Find the pivot element.}
   dum=a(i,1)
   IF (dum == 0.0) a(k,1)=TINY \quad \text{Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some applications).}
   IF (i /= k) THEN
      d=-d \quad \text{Interchange rows.}
      CALL swap(a(k,1:mm),a(i,1:mm))
   END IF
   DO i=k+1,l
      dum=a(i,1)/a(k,1)
      al(k,i-k)=dum
      a(i,1:mm-1)=a(i,2:mm)-dum*a(k,2:mm)
      a(i,mm)=0.0
   END DO
   END DO
END SUBROUTINE bandec
a(1:m1,:) = eoshift(a(1:m1,:),...)  
See similar discussion of eoshift for banmul, just above.

i = imaxloc(abs(a(k:1,1)))+k-1  
See discussion of imaxloc on p. 1017.

Notice that the above is not well parallelized for MMP machines: the outer do-loop is done \( N \) times, where \( N \), the diagonal length, is potentially the largest dimension in the problem. Small-scale parallel (SSP) machines, and scalar machines, are not disadvantaged, because the parallelism of order \( mm = m1 + m2 + 1 \) in the inner loops can be enough to saturate their concurrency.

We don’t know of an \( N \)-parallel algorithm for decomposing band diagonal matrices, at least one that has any reasonably concise expression in Fortran 90. Conceptually, one can view a band diagonal matrix as a block tridiagonal matrix, and then apply the same recursive strategy as was used in tridag_par. However, the implementation details of this are daunting. (We would welcome a user-contributed routine, clear, concise, and with parallelism of order \( N \).)

SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq, swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,::), INTENT(IN) :: a,al
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,::), INTENT(INOUT) :: b

Given the arrays \( a \), \( al \), and \( indx \) as returned from bandec, and given a right-hand-side vector \( b \), solves the band diagonal linear equations \( A \cdot x = b \). The solution vector \( x \) overwrites \( b \). The other input arrays are not modified, and can be left in place for successive calls with different right-hand sides.

INTEGER(I4B) :: i,k,l,mdum,mm,n
n = assert_eq(size(a,1),size(al,1),size(b),size(indx),'banbks: n')
mm = assert_eq(size(a,2),m1+m2+1,'banbks: mm')
mdum = assert_eq(size(al,2),m1,'banbks: mdum')
do k=1,n  
Forward substitution, unscrambling the permuted rows as we go.
  l = min(n,m1+k)
  i = indx(k)
  if (i /= k) call swap(b(i),b(k))
  b(k+1:l) = b(k+1:l) - al(k,1:l-k) * b(k)
end do

do i=n,1,-1  
Backsubstitution.
  l = min(mm,n-i+1)
  b(i) = b(i) - dot_product(a(i,2:l),b(i:i+l-1))/a(i,1)
end do
END SUBROUTINE banbks

As for bandec, the routine banbks is not parallelized on the large dimension \( N \), though it does give the compiler the opportunity for ample small-scale parallelization inside the loops.

*   *   *

f90
SUBROUTINE mprove(a,alud,indx,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : lubksb
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(IN) :: b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Improves a solution vector x of the linear set of equations \( A \cdot X = B \). The \( N \times N \) matrix \( A \) and the \( N \)-dimensional vectors \( b \) and \( x \) are input. Also input is \( alud \), the \( LU \) decomposition of \( A \) as returned by \( ludcmp \), and the \( N \)-dimensional vector \( indx \) also returned by that routine. On output, only \( x \) is modified, to an improved set of values.

INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(a,1)) :: r
ndum=assert_eq((/size(a,1),size(a,2),size(alud,1),size(alud,2),size(b),&
size(x),size(indx)/),'mprove')
r=matmul(real(a,dp),real(x,dp))-real(b,dp)
Calculate the right-hand side, accumulating the residual in double precision.
call lubksb(alud,indx,r)
Solve for the error term,
x=x-r
and subtract it from the old solution.
END SUBROUTINE mprove

assert_eq((/.../),'mprove') This overloaded version of the \( nrutil \) routine \assert_eq\ makes use of a trick for passing a variable number of scalar arguments to a routine: Put them into an array constructor, \((/.../), and pass the array. The receiving routine can use the \size\ intrinsic to count them. The technique has some obvious limitations: All the arguments in the array must be of the same type; and the arguments are passed, in effect, by value, not by address, so they must be, in effect, \intent(IN).

\( r=\text{matmul}(\text{real}(a,\text{dp}),\text{real}(x,\text{dp}))-\text{real}(b,\text{dp}) \) Since Fortran 90's elemental intrinsics operate with the type of their arguments, we can use the \text{real}(\ldots,\text{dp})'s to force the \text{matmul} matrix multiplication to be done in double precision, which is what we want. In Fortran 77, we would have to do the matrix multiplication with temporary double precision variables, both inconvenient and (since Fortran 77 has no dynamic memory allocation) a waste of memory.

* * *

SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(SP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x

Solves \( A \cdot X = B \) for a vector \( X \), where \( A \) is specified by the arrays \( u, v \) as returned by \svdcmp\. Here \( u \) is \( M \times N \), \( v \) is \( N \times N \), and \( w \) is of length \( N \). \( b \) is the \( M \)-dimensional input right-hand side. \( x \) is the \( N \)-dimensional output solution vector. No input quantities are destroyed, so the routine may be called sequentially with different \( b \)'s.

INTEGER(I4B) :: mdum,ndum
REAL(SP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),'svbksb_sp: mdum')
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),&
'svbksb_sp: ndum')
where (w /= 0.0)
tmp=matmul(u,b)/w
elsewhere
tmp=0.0
Calculate diag(1/wj)\( U^T B \),
end where
where \((w \neq 0.0)\)...

declaring...elsewhere...

declaring

\[
x = \text{matmul}(v, \text{tmp})
\]

Matrix multiply by \(V\) to get answer.

END SUBROUTINE svbksb_sp

Where (\(w \neq 0.0\))...tmp=...elsewhere...tmp=

Normally, when a where...

...elsewhere construction is used to set a variable (here \(\text{tmp}\)) to one...

or another value, we like to replace it with a merge expression. Here,

however, the where is required to guarantee that a division by zero doesn’t occur.

The rule is that where will never evaluate expressions that are excluded by the mask

in the where line, but other constructions, like merge, might perform speculative

evaluation of more than one possible outcome before selecting the applicable one.

Because singular value decomposition is something that one often wants to do

double precision, we include a double-precision version. In \(\text{nr}\), the single- and
double-precision versions are overloaded onto the name \(\text{svbksb}\).

SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:,), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:,), INTENT(OUT) :: x
INTEGER(14B) :: mdum,ndum
REAL(DP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),'svbksb_dp: mdum')
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),
    'svbksb_dp: ndum')
where (w /= 0.0)
tmp=matmul(b,u)/w
elsewhere;
tmp=0.0
end where
x=matmul(v,tmp)
END SUBROUTINE svbksb_dp

SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: v

Given an \(M \times N\) matrix \(a\), this routine computes its singular value decomposition,

\[
A = U \cdot W \cdot V^T.
\]

The matrix \(U\) replaces \(a\) on output. The diagonal matrix of singular values

\(W\) is output as the \(N\)-dimensional vector \(w\). The \(N \times N\) matrix \(V\) (not the transpose \(V^T\))

is output as \(v\).

INTEGER(14B) :: i,its,j,k,l,m,n,mm
REAL(SP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(SP), DIMENSION(size(a,1)) :: tempm
REAL(SP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,2),size(v,1),size(v,2),size(w),'svdcmp_sp')
g=0.0
scale=0.0
do i=1,n
    l=i+1
    rv1(i)=scale*g
g=0.0
    scale=0.0
    if (i <= m) then
        Householder reduction to bidiagonal form.
scale = sum(abs(a(i:m,i)))
if (scale /= 0.0) then
  a(i:m,i) = a(i:m,i)/scale
  s = dot_product(a(i:m,i), a(i:m,i))
  f = a(i,i)
  g = sign(sqrt(s), f)
  h = f*g - s
  a(i,i) = f - g
  tempn(l:n) = matmul(a(i:m,i), a(i:m,l:n))/h
  a(i:m,1:n) = a(i:m,1:n) + outerprod(a(i:m,i), tempn(l:n))
  a(i:m,i) = scale*a(i:m,i)
end if
end if
w(i) = scale*g
scale = 0.0
if ((i <= m) .and. (i /= n)) then
  scale = sum(abs(a(i,l:n)))
  if (scale /= 0.0) then
    a(i,l:n) = a(i,l:n)/scale
    s = dot_product(a(i,l:n), a(i,l:n))
    f = a(i,l)
    g = sign(sqrt(s), f)
    h = f*g - s
    a(i,l) = f - g
    rv1(l:n) = a(i,l:n)/h
    tempm(l:m) = matmul(a(l:m,l:n), a(i,l:n))
    a(l:m,l:n) = a(l:m,l:n) + outerprod(tempm(l:m), rv1(l:n))
    a(i,l:n) = scale*a(i,l:n)
  end if
end if
end do
anorm = maxval(abs(w) + abs(rv1))
do i = n, 1, -1
  Accumulation of right-hand transformations.
  if (i < n) then
    if (g /= 0.0) then
      v(l:n,i) = (a(i,l:n)/a(i,l))/g
      Double division to avoid possible underflow.
      temp(l:n) = matmul(a(l:n,i), v(l:n,1:n))
      v(l:n,1:n) = v(l:n,1:n) + outerprod(temp(l:n), v(l:n,i), temp(l:n))
    end if
    v(l:n,i) = 0.0
    v(l:n,l:n) = 0.0
  end if
  v(i,i) = 1.0
  g = rv1(i)
l = i
end do

do i = min(m, n), 1, -1
  Accumulation of left-hand transformations.
  if (i > n) then
    if (g /= 0.0) then
      g = 1.0_sp/g
      temp(l:n) = matmul(a(l:m,i), a(l:m,1:n))/a(i,i)*g
      a(l:m,1:n) = a(l:m,1:n) + outerprod(a(l:m,i), temp(l:n))
      a(i,m,i) = a(i,m,i)*g
    else
      a(i,m,i) = 0.0
    end if
    a(i,i) = a(i,i) + 1.0_sp
  end if
end do

Diagonalization of the bidiagonal form: Loop over singular values, and over allowed iterations.

do k = n, 1, -1
do its = 1, 30
  do l = k, 1, -1
    Test for splitting.
nm=l-1
if ((abs(rv1(l))+anorm) == anorm) exit
    Note that rv1(l) is always zero, so can never fall through bottom of loop.
if ((abs(w(nm))+anorm) == anorm) then
    Cancellation of rv1(l), if l > 1.
s=1.0
    do i=l,k
        f=s*rv1(i)
        rv1(i)=c*rv1(i)
        if ((abs(f)+anorm) == anorm) exit
        g=w(i)
        h=pythag(f,g)
        w(i)=h
        h=1.0_sp/h
        c= (g*h)
        s=-(f*h)
        tempm(1:m)=a(1:m,nm)
        a(1:m,nm)=a(1:m,nm)*c+a(1:m,i)*s
        a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c
    end do
    exit
    end if
end do
z=w(k)
if (l == k) then
    Convergence.
    if (z < 0.0) then
        Singular value is made nonnegative.
        w(k)=-z
        v(1:n,k)=-v(1:n,k)
    end if
    exit
    end if
if (its == 30) call nrerror('svdcmp_sp: no convergence in svdcmp')
x=w(l)
    Shift from bottom 2-by-2 minor.
    nm=k-1
    y=w(nm)
    g=rv1(nm)
    h=rv1(k)
    f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0_sp*h*y)
    g=pythag(f,1.0_sp)
    f=((x-z)*(x+z)+h*((y/(f*sign(g,f)))-h))/x
    c=1.0
    Next QR transformation:
    s=1.0
    do j=l,nm
        i=j+1
        g=rv1(i)
        y=w(i)
        h=s*g
        g=c*g
        z=pythag(f,h)
        rv1(j)=z
        c=f/z
        s=h/z
        f= (x*c)+(g*s)
        g=-(x*s)+(g*c)
        h=y*s
        y=y*c
        tempn(1:n)=v(1:n,i)
        v(1:n,i)=v(1:n,i)*c+v(1:n,j)*s
        v(1:n,j)=-tempn(1:n)*s+v(1:n,i)*c
        z=pythag(f,h)
        w(j)=z
    end do
    Rotation can be arbitrary if z = 0.
if (z /= 0.0) then
    z=1.0_sp/z
    c=f*z
The SVD algorithm implemented above does not parallelize very well. There are two parts to the algorithm. The first, reduction to bidiagonal form, can be parallelized. The second, the iterative diagonalization of the bidiagonal form, uses QR transformations that are intrinsically serial. There have been proposals for parallel SVD algorithms [2], but we do not have sufficient experience with them yet to recommend them over the well-established serial algorithm.

Here is an example of an update as in equation (22.1.6). In this case \( b_i \) is independent of \( i \): It is simply \( 1/h \).

As with svbksb, single- and double-precision versions of the routines are overloaded onto the name svdcmp in nr.

```fortran
SUBROUTINE svdcmp_dp(a,v,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(DP), DIMENSION(,:,:,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:,), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,,:), INTENT(OUT) :: v
INTEGER(I4B) :: i,its,j,k,l,m,n,nm
REAL(DP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(DP), DIMENSION(size(a,1)) :: tempm
REAL(DP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,1),size(v,1),size(v,2),size(w),'svdcmp_dp')
g=0.0
scale=0.0
do i=1,n
 l=i+1
 rv1(i)=scale*g
 g=0.0
 scale=0.0
 if (i <= m) then
 scale=abs(dot_product(a(i:m,i),a(i:m,i)))
 if (scale /= 0.0) then
 a(i:m,i)=a(i:m,i)/scale
 s=dot_product(a(i:m,i),a(i:m,i))
 f=a(i,i)
 g=sign(sqrt(s),f)
 end if
 end if
end do
```

---

*SOLVED*

Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
Chapter B2. Solution of Linear Algebraic Equations

\[ h = f \cdot g - s \]
\[ a(i,i) = f - g \]
\[ \text{tempn}(l:n) = \text{matmul}(a(i:m,i), a(i:m,l:n)) / h \]
\[ a(i:m,1:n) = a(i:m,1:n) + \text{outerprod}(a(i:m,i), \text{tempn}(1:n)) \]

end if
end if

\[ v(i) = \text{scale} \cdot g \]
\[ g = 0.0 \]
\[ \text{scale} = 0.0 \]

if \((i <= m) \text{ and } (i \neq n)) \text{ then} \]
\[ \text{scale} = \text{sum}(\text{abs}(a(i,1:n))) \]
if \((\text{scale} \neq 0.0)) \text{ then} \]
\[ a(i,1:n) = a(i,1:n) / \text{scale} \]
\[ s = \text{dot_product}(a(i,1:n), a(i,1:n)) \]
\[ f = a(i,1) \]
\[ g = \text{sign}(\text{sqrt}(s), f) \]
\[ h = f \cdot g - s \]
\[ \text{rv1}(1:n) = a(i,1:n) / h \]
\[ \text{tempn}(1:m) = \text{matmul}(a(1:m,1:n), a(i,1:n)) \]
\[ a(1:m,1:n) = a(1:m,1:n) + \text{outerprod}(\text{tempn}(1:m), \text{rv1}(1:n)) \]
\[ a(i,1:n) = \text{scale} \cdot a(i,1:n) \]
end if
end if

end do

\[ \text{anorm} = \text{maxval}(\text{abs}(w) + \text{abs}(\text{rv1})) \]

\[ \text{do } i = n, 1, -1 \]
\[ \text{if } (i < n) \text{ then} \]
\[ \text{if } (g \neq 0.0) \text{ then} \]
\[ v(1:n,i) = (a(1,i) / a(1,1:n)) / g \]
\[ \text{tempn}(1:n) = \text{matmul}(a(1,n), v(1:n,1:n)) \]
\[ v(1:n,1:n) = v(1:n,1:n) + \text{outerprod}(v(1:n,i), \text{tempn}(1:n)) \]
end if
\[ v(1:n,1:n) = 0.0 \]
\[ v(1:n,1:n) = 0.0 \]
end if
\[ v(i,1:i) = 1.0 \]
\[ g = \text{rv1}(i) \]
\[ l = 1 \]
end do

\[ \text{do } i = \text{min}(m,n), 1, -1 \]
\[ l = 1 + 1 \]
\[ g = w(i) \]
\[ a(1,1:n) = 0.0 \]
if \((g \neq 0.0)) \text{ then} \]
\[ g = 1.0 / g \]
\[ \text{tempn}(1:n) = \text{matmul}(a(1:m,1), a(1:m,1:n)) / a(1,1) \cdot g \]
\[ a(i,1:m) = a(i,1:m) + \text{outerprod}(a(1:m,i), \text{tempn}(1:n)) \]
\[ a(1:m,i) = a(1:m,i) \cdot g \]
end if
\[ a(1,i) = a(1,i) + 1.0 \cdot dp \]
end do

\[ \text{do } k = n, 1, -1 \]
\[ \text{do } \text{its} = 1, 30 \]
\[ l = k, 1, -1 \]
\[ \text{nm} = l - 1 \]
if \((\text{abs}(\text{rv1}(1:l)) + \text{anorm}) \neq \text{anorm}) \text{ exit} \]
if \((\text{abs}(w(nm)) + \text{anorm}) \neq \text{anorm}) \text{ then} \]
\[ c = 0.0 \]
\[ s = 1.0 \]
\[ do i = 1, k \]

end do

end do

end do

end do

end do

end do

end do
Chapter B2. Solution of Linear Algebraic Equations

\[ f = s \times \text{rv1}(i) \]
\[ \text{rv1}(i) = c \times \text{rv1}(i) \]
if \((\text{abs}(f) + \text{anorm}) = \text{anorm})\) exit
\[ g = \text{w}(i) \]
\[ h = \text{pythag}(f, g) \]
\[ w(i) = h \]
\[ h = 1.0 \times \text{dp}/h \]
\[ c = (g \times h) \]
\[ s = -(f \times h) \]
\[ \text{tempm}(1:m) = a(1:m,nm) \]
\[ a(1:m,nm) = a(1:m,nm) \times c + a(1:m,i) \times s \]
\[ a(1:m,i) = -\text{tempm}(1:m) \times s + a(1:m,i) \times c \]
end do
exit
end if
end do
\[ z = \text{w}(k) \]
if \((l = k)\) then
if \((z < 0.0)\) then
\[ \text{w}(k) = -z \]
\[ \text{v}(1:n,k) = -\text{v}(1:n,k) \]
end if
exit
end if
if \((\text{its} = 30)\) call nrerror('svdcmp_dp: no convergence in svdcmp')
\[ x = \text{w}(l) \]
\[ n = k - 1 \]
\[ y = \text{w}(n) \]
\[ g = \text{rv1}(nm) \]
\[ h = \text{rv1}(k) \]
\[ f = ((y-z) \times (y+z) + (g-h) \times (g+h))/(2.0 \times \text{dp} \times h \times y) \]
\[ g = \text{pythag}(f, 1.0 \times \text{dp}) \]
\[ f = ((x-z) \times (x+z) + h \times ((y/(f + \text{sign}(g, f))) - h))/x \]
\[ s = 1.0 \]
\[ d = 1.0 \]
\[ \text{do} \]
\[ j = 1, n, m \]
\[ i = j + 1 \]
\[ g = \text{rv1}(i) \]
\[ y = \text{w}(i) \]
\[ h = s \times g \]
\[ g = 1.0 \times g \]
\[ z = \text{pythag}(f, h) \]
\[ \text{rv1}(j) = z \]
\[ c = f/z \]
\[ s = h/z \]
\[ f = (x \times c) \times (g \times s) \]
\[ g = -(x \times s) \times (g \times c) \]
\[ h = y \times s \]
\[ y = y \times c \]
\[ \text{tempn}(1:n) = v(1:n,j) \]
\[ v(1:n,j) = v(1:n,j) \times c + v(1:n,i) \times s \]
\[ v(1:n,i) = -\text{tempn}(1:n) \times s + v(1:n,i) \times c \]
\[ z = \text{pythag}(f, h) \]
\[ w(j) = z \]
if \((z /= 0.0)\) then
\[ z = 1.0 \times \text{dp}/z \]
\[ c = f \times z \]
\[ s = h \times z \]
end if
\[ f = (c \times g) \times (a \times y) \]
\[ x = -(s \times g) \times (a \times y) \]
\[ \text{tempm}(1:m) = a(1:m,j) \]
\[ a(1:m,j) = a(1:m,j) \times c + a(1:m,i) \times s \]
\[ a(1:m,i) = -\text{tempm}(1:m) \times s + a(1:m,i) \times c \]
end do
rv1(l)=0.0
rv1(k)=f
w(k)=x
end do
end do

END SUBROUTINE svdcmp_dp

FUNCTION pythag_sp(a,b)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp
Computes \((a^2 + b^2)^{1/2}\) without destructive underflow or overflow.
IMPLICIT NONE
REAL(SP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then
  pythag_sp=absa*sqrt(1.0_sp+(absb/absa)**2)
else
  if (absb == 0.0) then
    pythag_sp=0.0
  else
    pythag_sp=absb*sqrt(1.0_sp+(absa/absb)**2)
  end if
end if
END FUNCTION pythag_sp

FUNCTION pythag_dp(a,b)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
IMPLICIT NONE
REAL(DP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then
  pythag_dp=absa*sqrt(1.0_dp+(absb/absa)**2)
else
  if (absb == 0.0) then
    pythag_dp=0.0
  else
    pythag_dp=absb*sqrt(1.0_dp+(absa/absb)**2)
  end if
end if
END FUNCTION pythag_dp

*   *   *
SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN):: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:,), INTENT(OUT):: x

Solves the “cyclic” set of linear equations given by equation (2.7.9). a, b, c, and r are input vectors, while x is the output solution vector, all of the same size. alpha and beta are the corner entries in the matrix. The input is not modified.

INTEGER(1B) :: n
REAL(SP) :: fact,gamma
REAL(SP), DIMENSION(size(x)) :: bb,u,z
n=assert_eq((/size(a),size(b),size(c),size(r),size(x)/),'cyclic')
call assert(n > 2, 'cyclic arg')
gamma=-b(1)
bb(1)=b(1)-gamma
Set up the diagonal of the modified tridiagonal system.
bb(n)=b(n)-alpha*beta/gamma
bb(2:n-1)=b(2:n-1)
call tridag(a(2:n),bb,c(1:n-1),r,x)
Solve A·x = r.

u(1)=gamma
Set up the vector u.
u(n)=alpha
u(2:n-1)=0.0
call tridag(a(2:n),bb,c(1:n-1),u,z)
Solve A·z = u.

fact=(x(1)+beta*x(n)/gamma)/(1.0_sp+z(1)+beta*z(n)/gamma)
Form v·x/(1+v·z).
x=x-fact*z
Now get the solution vector x.

END SUBROUTINE cyclic

The parallelism in cyclic is in tridag. Users with multiprocessor machines will want to be sure that, in nrutil, they have set the name tridag to be overloaded with tridag_par instead of tridag_ser.

⋆⋆⋆

The routines sprsin, sprsax, sprstx, sprstp, and sprdiag give roughly equivalent functionality to the corresponding Fortran 77 routines, but they are not plug compatible. Instead, they take advantage of (and illustrate) several Fortran 90 features that are not present in Fortran 77.

In the module nrtype we define a TYPE sprs2_sp for two-dimensional sparse, square, matrices, in single precision, as follows

TYPE sprs2_sp
  INTEGER(1B) :: n,len
  REAL(SP), DIMENSION(:,), POINTER :: val
  INTEGER(1B), DIMENSION(:,), POINTER :: irow
  INTEGER(1B), DIMENSION(:,), POINTER :: jcol
END TYPE sprs2_sp

This has much less structure to it than the “row-indexed sparse storage mode” used in Volume 1. Here, a sparse matrix is just a list of values, and corresponding lists giving the row and column number that each value is in. Two integers n and len give, respectively, the underlying size (number of rows or columns) in the full matrix, and the number of stored nonzero values. While the previously used row-indexed scheme can be somewhat more efficient for serial machines, it does not parallelize conveniently, while this one does (though with some caveats; see below).
SUBROUTINE sprsin_sp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: thresh
TYPE(sprs2_sp), INTENT(OUT) :: sa

Converts a square matrix \( a \) to sparse storage format as \( sa \). Only elements of \( a \) with magnitude \( \geq \) \( \text{thresh} \) are retained.

INTEGER(I4B) :: n,len
LOGICAL(LGT), DIMENSION(size(a,1),size(a,2)) :: mask
n=assert_eq(size(a,1),size(a,2),'sprsin_sp')
magnitude \( \geq \) \( \text{thresh} \)
len=count(mask)
allocate(sa%val(len),sa%irow(len),sa%jcol(len))
sa%n=n
sa%len=len
sa%val=pack(a,mask)

Grab the values, row, and column numbers.

sa%irow=pack(spread(arth(1,1,n),2,n),mask)

The trick here is to use the same mask, \( \text{abs}(a) > \text{thresh} \), in three consecutive pack expressions, thus guaranteeing that the corresponding elements of the array argument get selected for packing. The first time, we get the desired matrix element values. The second time (above code fragment), we construct a matrix with each element having the value of its row number. The third time, we construct a matrix with each element having the value of its column number.

END SUBROUTINE sprsin_sp

SUBROUTINE sprsin_dp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(DP), INTENT(IN) :: thresh
TYPE(sprs2_dp), INTENT(OUT) :: sa

Note that the routines \texttt{sprsin$_{\text{sp}}$} and \texttt{sprsin$_{\text{dp}}$} — single and double precision versions of the same algorithm — are overloaded onto the name \texttt{sprsin} in module \texttt{nr}. We supply both forms because the routine \texttt{linbcg}, below, works in double precision.

Reference: Thomas H. surveillance Computing Book (ISBN: 0-521-57439-0) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet usage to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, disks, or CD-ROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
SUBROUTINE sprsax_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq, scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply a matrix \( sa \) in sparse matrix format by a vector \( x \), giving a vector \( b \).

INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),'sprsax_sp')

b=0.0_sp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)

Each sparse matrix entry adds a term to some component of \( b \).
END SUBROUTINE sprsax_sp

SUBROUTINE sprsax_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq, scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b

INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),'sprsax_dp')

b=0.0_dp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)
END SUBROUTINE sprsax_dp

Since more than one component of the middle vector argument will, in general, need to be added into the same component of \( b \), we must resort to a call to the `nrutil` routine `scatter_add` to achieve parallelism. However, this parallelism is achieved only if a parallel version of `scatter_add` is available! As we have discussed previously (p. 984), Fortran 90 does not provide any scatter-with-combine (here, scatter-with-add) facility, insisting instead that indexed operations yield non-colliding addresses. Luckily, almost all parallel machines do provide such a facility as a library program. In HPF, for example, the equivalent of `scatter_add` is `SUM_SCATTER`.

The call to `scatter_add` above is equivalent to the do-loop

\[
b=0.0 \\
do \text{k}=1,sa\%\text{len} \\
b(sa%irow(k))=b(sa%irow(k))+sa\%\text{val}(k)*x(sa%jcol(k))
\]
end do

SUBROUTINE sprstx_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq, scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply the transpose of a matrix \( sa \) in sparse matrix format by a vector \( x \), giving a vector \( b \).

INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),'sprstx_sp')

b=0.0_sp
call scatter_add(b,sa%val+x(sa%irow),sa%jcol)

Each sparse matrix entry adds a term to some component of \( b \).
END SUBROUTINE sprstx_sp
SUBROUTINE sprstx_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq, scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),'sprstx_dp')
b=0.0_dp
CALL scatter_add(b,sa%val*x(sa%irow),sa%jcol)
END SUBROUTINE sprstx_dp

Precisely the same comments as for sprsax apply to sprstx. The call to scatter_add is here equivalent to

\[
\begin{align*}
\text{b} &= 0.0 \\
\text{do k=1,sa%len} & \\
\text{b}(\text{sa%jcol(k)}) &= \text{b}(\text{sa%jcol(k)}) + \text{sa%val(k)} \times \text{x}(\text{sa%irow(k)})
\end{align*}
\]

SUBROUTINE sprstx_s(sa)
USE nrtype
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(INOUT) :: sa
Replaces sa, in sparse matrix format, by its transpose.
INTEGER(I4B), DIMENSION(:), POINTER :: temp
temp=>sa%irow
We need only swap the row and column pointers.
sa%irow=>sa%jcol
sa%jcol=>temp
END SUBROUTINE sprstx_s

SUBROUTINE sprsdiag_sp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy, assert_eq
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
REAL(SP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,1,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),'sprsdiag_sp')
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l))  ! Find diagonal elements.
call array_copy(pack(sa%val(1:l),mask),val,k,nerr)  ! Grab the values...
i(1:k)=pack(sa%irow(1:l),mask)  ! ...and their locations.
deallocate(mask)
b=0.0  ! Zero b because zero values not stored in sa.
b(i(1:k))=val(1:k)  ! Scatter values into correct slots.
END SUBROUTINE sprsdiag_sp
SUBROUTINE sprsdiag_dp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy, assert_eq
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION(:), INTENT(OUT) :: b
REAL(DP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,l,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),'sprsdiag_dp')
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l))
call array_copy(pack(sa%val(1:l),mask),val,k,nerr)
i(1:k)=pack(sa%irow(1:l),mask)
deallocate(mask)
b=0.0
b(i(1:k))=val(1:k)
END SUBROUTINE sprsdiag_dp

We use the nrutil routine array_copy because we don’t know in advance how many nonzero diagonal elements will be selected by mask. Of course we could count them with a count(mask), but this is an extra step, and inefficient on scalar machines.

Using the same mask, we pick out the corresponding locations of the diagonal elements. No need to use array_copy now, since we know the value of k.

Finally, we can put each element in the right place. Notice that if the sparse matrix is ill-formed, with more than one value stored for the same diagonal element (which should not happen!) then the vector subscript i(1:k) is a “many-one section” and its use on the left-hand side is illegal.

* * *

SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : atimes,asolve,snrm
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,tol
INTEGER(I4B), INTENT(INOUT) :: itmax
REAL(DP), INTENT(IN) :: ndc,str,pthresh,thresh
REAL(DP), PARAMETER :: EPS=1.0e-14_dp
DOUBLE PRECISION A

Solves $A \cdot x = b$ for $x$, given $b$ of the same length, by the iterative biconjugate gradient method. On input $x$ should be set to an initial guess of the solution (or all zeros); $itol$ is 1,2,3, or 4, specifying which convergence test is applied (see text); $itmax$ is the maximum number of allowed iterations; and $tol$ is the desired convergence tolerance. On output, $x$ is reset to the improved solution, iter is the number of iterations actually taken, and err is the estimated error. The matrix $A$ is referenced only through the user-supplied routines atimes, which computes the product of either $A$ or its transpose on a vector; and asolve,
which solves $\tilde{A} \cdot x = b$ or $\tilde{A}^T \cdot x = b$ for some preconditioner matrix $\tilde{A}$ (possibly the trivial diagonal part of $A$).

\begin{verbatim}
INTEGER(I4B) :: n
REAL(DP) :: ak,akden,bk,bknum,bkden,bnrm,dxnrm,xnrm,zm1nrm,znrm
REAL(DP), DIMENSION(size(b)) :: p,pp,r,rr,z,zz
n=assert_eq(size(b),size(x),'linbcg')
iter=0
call atimes(x,r,0) Calculate initial residual. Input to atimes is 
x(1:n), output is r(1:n); the final 0 indicates that the matrix (not its trans-
pose) is to be used.
r=b-r
rr=r ! call atimes(r,rr,0) Uncomment this line to get the "minimum residual" variant of the algorithm.
select case(itol)
  case(1)
    bnrm=snrm(b,itol)
call asolve(r,z,0)
    Input to asolve is r(1:n), output is z(1:n); the final 0 indicates that the matrix $\tilde{A}$ (not its transpose) is to be used.
  case(2)
    call asolve(b,z,0)
    bnrm=snrm(z,itol)
call asolve(r,z,0)
  case(3:4)
    call asolve(b,z,0)
    bnrm=snrm(z,itol)
    call asolve(r,z,0)
    znrn=snrm(z,itol)
  case default
    call nrerror('illegal itol in linbcg')
end select
do
  if (iter > itmax) exit
  iter=iter+1
  call asolve(rr,zz,1) Final 1 indicates use of transpose matrix $\tilde{A}^T$.
call atimes(p,z,0)
  Calculate coefficient $bk$ and direction vectors p and pp.
  p*z
  ak=bknum/bkden
  p=bk*p+z
  pp=bk*pp+zz
end if
bkden=bknum
call atimes(p,z,0)
akden=dot_product(z,pp)
if (iter == 1) then
  p=z
  pp=zz
else
  bk=bknum/bkden
  p=bk*p+z
  pp=bk*pp+zz
end if
bknum=bknum
knum=bknum/bkden
call atimes(p,z,0)
pen=pen+ak*p
r=r-ak*z
rr=rr-ak*z
select case(itol)
  case (1)
    err=snrm(r,itol)/bnrm
  case(2)
    err=snrm(z,itol)/bnrm
  case(3:4)
    zm1nrm=znrm
    znrn=snrm(z,itol)
    if (abs(zm1nrm-znrm) > EPS*znrm) then
      dxnrm=abs(ak)*snrm(p,itol)
      err=znrm/abs(zm1nrm-znrm)*dxnrm
    else
      err=znrm/bnrm
    end if
the error may not be accurate, so loop again.
end select
end do
\end{verbatim}
end if
  xnrm=snrm(x,itol)
  if (err <= 0.5_dp*xnrm) then
    err=err/xnrm
  else
    err=znrm/bnrm
  cycle
  end if
end select
write (*,*) ' iter=',iter,' err=',err
if (err <= tol) exit
doit
END SUBROUTINE linbcg

case default...call nrerror('illegal itol in linbcg')  It's always a good idea to trap errors when the value of a case construction is supplied externally to the routine, as here.

FUNCTION snrm(sx,itol)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm
Compute one of two norms for a vector sx, as signaled by itol. Used by linbcg.
if (itol <= 3) then
  snrm=sqrt(dot_product(sx,sx))  Vector magnitude norm.
else
  snrm=maxval(abs(sx))  Largest component norm.
end if
END FUNCTION snrm

SUBROUTINE atimes(x,r,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : sprsax,sprstx  DOUBLE PRECISION versions of sprsax and sprstx.
USE xlinbcg_data  The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: itrnsp
INTEGER(I4B) :: n
n=assert_eq(size(x),size(r),'atimes')
if (itrnsp == 0) then
  call sprsax(sa,x,r)
else
  call sprstx(sa,x,r)
end if
END SUBROUTINE atimes
SUBROUTINE asolve(b,x,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : sprsdiag DOUBLE PRECISION
version of sprsdiag.
USE xlinbcg_data
The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
INTEGER(I4B) :: ndum
ndum=assert_eq(size(b),size(x),'asolve')
call sprsdiag(sa,x)
The matrix $A$ is taken to be the diagonal part of $A$. Since the transpose matrix has the same
diagonal, the flag $itrnsp$ is not used.
if (any(x == 0.0)) call nrerror('asolve: singular diagonal matrix')
x=b/x
END SUBROUTINE asolve

The routines atimes and asolve are examples of user-supplied routines
that interface linbcg to a user-supplied method for multiplying the
user’s sparse matrix by a vector, and for solving the preconditioner matrix
equation. Here, we have used these routines to connect linbcg to the sparse matrix
machinery developed above. If we were instead using the different sparse matrix
machinery of Volume 1, we would modify atimes and asolve accordingly.

USE xlinbcg_data This user-supplied module is assumed to have sa (the
sparse matrix) in it.

* * *

FUNCTION vander(x,q)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
REAL(DP), DIMENSION(size(x)) :: vander
Solves the Vandermonde linear system $\sum_{i=1}^{N} x_i^{k-1} u_i = q_k$ ($k = 1, \ldots, N$). Input consists
of the vectors $x$ and $q$ of length $N$. The solution $w$ (also of length $N$) is returned in vander.
REAL(DP), DIMENSION(size(x)) :: c
REAL(DP), DIMENSION(size(x),size(x)) :: a
INTEGER(I4B) :: i,n
n=assert_eq(size(x),size(q),'vander')
if (n == 1) then
  vander(1)=q(1)
else
  c(1)=0.0
  c(n)=x(1)
  do i=2,n
    c(n+1-i:n-1)=c(n+1-i:n-1)-x(i)*c(n+2-i:n)
    c(n)=c(n)-x(i)
  end do
  a(:,1)=-c(1)/x(:)
  do i=2,n
    a(:,i)=-(c(i)-a(:,i-1))/x(:)
  end do
  vander(:)=matmul(a,q)/vander(:)
  END FUNCTION vander
Here is an example of the coding of equation (22.1.4). Since in this case the product is over the second index \((n \in x_j \rightarrow x_n)\), we have \(\text{dim}=2\) in the product.

FUNCTION toeplz(r,y)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: r,y
REAL(SP), DIMENSION(size(y)) :: toeplz

Solves the Toeplitz system \(\sum_{j=1}^{N} R_{N+j-1} x_j = y_i \) \((i = 1, \ldots, N)\). The Toeplitz matrix need not be symmetric. \(y\) (of length \(N\)) and \(x\) (of length \(2N-1\)) are input arrays; the solution \(x\) (of length \(N\)) is returned in toeplz.

INTEGER(4B) :: m,m1,n,ndum
REAL(SP) :: sd,sgd,sgn,shn,sxn
REAL(SP), DIMENSION(size(y)) :: g,h,t

n=size(y)
ndum=assert_eq(2*n-1,size(r),'toeplz: ndum')
if (r(n) == 0.0) call nrerror('toeplz: initial singular minor')
toeplz(1)=y(1)/r(n)

if (n == 1) RETURN

g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do m=1,n

m1=m+1

sxn=-y(m1)+dot_product(r(n+1:n+m),toeplz(m:1:-1))
Compute numerator and denominator for \(x\),
sd=-r(n)+dot_product(r(n+1:n+m),g(1:m))
if (sd == 0.0) exit
toeplz(m1)=sxn/sd
whence \(x\).
toeplz(1:m)=toeplz(1:m)-toeplz(m1)*g(m:1:-1)
if (m1 == n) RETURN

sgn=-r(n-m1)+dot_product(r(n-m:n-1),g(1:m))
shn=-r(n+m1)+dot_product(r(n+m:n+1:-1),h(1:m))
sgd=-r(n)+dot_product(r(n-m:n-1),h(m:1:-1))
if (sd == 0.0 .or. sgd == 0.0) exit
g(m1)=sgn/sgd
h(m1)=shn/sgd

t(1:m)=g(1:m)
g(1:m)=g(1:m)-h(m:1:-1)
h(1:m)=h(1:m)-t(m:1:-1)
end do

Back for another recurrence.
if (m > n) call nrerror('toeplz: sanity check failed in routine')
call nrerror('toeplz: singular principal minor')
END FUNCTION toeplz

SUBROUTINE choldc(a,p)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(size(a,:)), INTENT(OUT) :: p

Given an \(N \times N\) positive-definite symmetric matrix \(a\), this routine constructs its Cholesky decomposition, \(A = L \cdot L^T\). On input, only the upper triangle of \(a\) need be given; it is not modified. The Cholesky factor \(L\) is returned in the lower triangle of \(a\), except for its diagonal elements, which are returned in \(p\), a vector of length \(N\).

INTEGER(4B) :: i,n
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(p),'choldc')
do i=1,n
**Chapter B2. Solution of Linear Algebraic Equations**

```
SUBROUTINE choldc(a,p,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Solves the set of \(N \) linear equations \(A \cdot x = b \), where \(a \) is a positive-definite symmetric \((N \times N) \) matrix and \(p \) (of length \(N \)) are input as the output of the routine choldc. Only the lower triangle of \(a \) is accessed. \(b \) is the input right-hand-side vector, of length \(N \). The solution vector, also of length \(N \), is returned in \(x \). \(a \) and \(p \) are not modified and can be left in place for successive calls with different right-hand sides \(b \). \(b \) is not modified unless you identify \(b \) and \(x \) in the calling sequence, which is allowed.

INTEGER(I4B) :: i,n
n=assert_eq((/size(a,1),size(a,2),size(p),size(b),size(x)/),'choldc')
do i=1,n
Solve \(L \cdot y = b \), storing \(y \) in \(x \).
 x(i)=(b(i)-dot_product(a(i,1:i-1),x(1:i-1)))/p(i)
end do
do i=n,1,-1
Solve \(L^T \cdot x = y \).
 x(i)=(x(i)-dot_product(a(i+1:n,i),x(i+1:n)))/p(i)
end do
END SUBROUTINE choldc
```

```
SUBROUTINE cholsl(a,p,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Solves the set of \(N \) linear equations \(A \cdot x = b \), where \(a \) is a positive-definite symmetric \((N \times N) \) matrix. \(a \) and \(p \) (of length \(N \)) are input as the output of the routine choldc. Only the lower triangle of \(a \) is accessed. \(b \) is the input right-hand-side vector, of length \(N \). The solution vector, also of length \(N \), is returned in \(x \). \(a \) and \(p \) are not modified and can be left in place for successive calls with different right-hand sides \(b \). \(b \) is not modified unless you identify \(b \) and \(x \) in the calling sequence, which is allowed.

INTEGER(I4B) :: i,n
n=assert_eq((/size(a,1),size(a,2),size(p),size(b),size(x)/),'cholsl')
do i=1,n
 Solve \(L \cdot y = b \), storing \(y \) in \(x \).
 x(i)=(b(i)-dot_product(a(i,1:i-1),x(1:i-1)))/p(i)
end do
do i=n,1,-1
 Solve \(L^T \cdot x = y \).
 x(i)=(x(i)-dot_product(a(i+1:n,i),x(i+1:n)))/p(i)
end do
END SUBROUTINE cholsl
```
SUBROUTINE qrsolv(a,c,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rsolv
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:,), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: b
!
Solves the set of \( n \) linear equations \( A \cdot x = b \). The \( n \times n \) matrix \( a \) and the \( n \)-dimensional vectors \( c \) and \( d \) are input as the output of the routine qrdcmp and are not modified. \( b \) is input as the right-hand-side vector of length \( n \), and is overwritten with the solution vector on output.
!
INTEGER(I4B) :: j,n
REAL(SP) :: tau
n=assert_eq((/size(a,1),size(a,2),size(b),size(c),size(d)/),'qrsolv')
do j=1,n-1
  Form \( Q^T \cdot b \).
  tau=dot_product(a(j:n,j),b(j:n))/c(j)
  b(j:n)=b(j:n)-tau*a(j:n,j)
end do
!
call rsolv(a,d,b) \hspace{1cm} Solve \( R \cdot x = Q^T \cdot b \).
END SUBROUTINE qrsolv

SUBROUTINE rsolv(a,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:,), INTENT(IN) :: d
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: b
!
Solves the set of \( n \) linear equations \( R \cdot x = b \), where \( R \) is an upper triangular matrix stored in \( a \) and \( d \). The \( n \times n \) matrix \( a \) and the vector \( d \) of length \( n \) are input as the output of the routine qrdcmp and are not modified. \( b \) is input as the right-hand-side vector of length \( n \), and is overwritten with the solution vector on output.
!
INTEGER(I4B) :: i,n
n=assert_eq((/size(a,1),size(a,2),size(b),size(d)/),'rsolv')
b(n)=b(n)/d(n)
do i=n-1,1,-1
  b(i)=(b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/d(i)
end do
END SUBROUTINE rsolv

\[ d(k) = -\text{scale} \cdot \sigma \]
\[ a(k:n,k+1:n) = a(k:n,k+1:n) - \text{outerprod}(a(k:n,k), \]
\[ \text{matmul}(a(k:n,k),a(k:n,k+1:n))) / c(k) \]
end if
d(n)=a(n,n)
if (d(n) == 0.0) sing=true.
END SUBROUTINE qrdcmp
SUBROUTINE qrupdt(r, qt, u, v)
USE nrtype; USE nrutil, ONLY : assert_eq, ifirstloc
USE nr, ONLY : rotate, pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:, :) , INTENT(INOUT) :: r, qt
REAL(SP), DIMENSION(:, :) , INTENT(INOUT) :: u
REAL(SP), DIMENSION(:, :) , INTENT(IN) :: v

Given the QR decomposition of some n × n matrix, calculates the QR decomposition of the matrix \( Q \cdot (R + u \otimes v) \). Here r and qt are n × n matrices, u and v are n-dimensional vectors. Note that \( Q^T \) is input and returned in qt.

INTEGER(I4B) :: i, k, n
n = +assert_eq((/size(r, 1), size(r, 2), size(qt, 1), size(qt, 2), size(u),
size(v)/), 'qrupdt')
k = n + 1 - ifirstloc(u(n:1:-1) /= 0.0)
if (k < 1) k = 1
   do i = k - 1, 1, -1
      Transform \( R + u \otimes v \) to upper Hessenberg.
      call rotate(r, qt, i, u(i), -u(i+1))
      u(i) = pythag(u(i), u(i+1))
   end do
   r(1,:) = r(1,:) + u(1)*v
   do i = 1, k - 1
      Transform upper Hessenberg matrix to upper triangular.
      call rotate(r, qt, i, r(i,i), -r(i+1,i))
   end do
END SUBROUTINE qrupdt

The function ifirstloc in nrutil returns the first occurrence of .true. in a logical vector. See the discussion of the analogous routine imaxloc on p. 1017.

SUBROUTINE rotate(r, qt, i, a, b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:, :) , TARGET, INTENT(INOUT) :: r, qt
INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a, b

Given n × n matrices r and qt, carry out a Jacobi rotation on rows i and i + 1 of each matrix. a and b are the parameters of the rotation: \( \cos \theta = a/\sqrt{a^2 + b^2}, \sin \theta = b/\sqrt{a^2 + b^2} \).

REAL(SP), DIMENSION(size(r, 1)) :: temp
INTEGER(I4B) :: n
REAL(SP) :: c, fact, s
n = +assert_eq((/size(r, 1), size(r, 2), size(qt, 1), size(qt, 2), 'rotate')
if (a == 0.0) then
   Avoid unnecessary overflow or underflow.
   c = 0.0
   s = sign(1.0_sp, b)
else if (abs(a) > abs(b)) then
   fact = b/a
   c = sign(1.0_sp/sqrt(1.0_sp+fact**2), a)
   s = fact*c
else
   fact = a/b
   s = sign(1.0_sp/sqrt(1.0_sp+fact**2), b)
   c = fact*s
end if
   temp(i:n) = r(i,i:n)  \ Premultiply r by Jacobi rotation.
   r(i,i:n) = c*temp(i:n) - s*r(i+1,i:n)
   r(i+1,i:n) = s*temp(i:n) + c*r(i+1,i:n)
   temp = qt(i,:)  \ Premultiply qt by Jacobi rotation.
   qt(i,:) = c*temp - s*qt(i+1,:)
   qt(i+1,:) = s*temp + c*qt(i+1,:)
END SUBROUTINE rotate
CITED REFERENCES AND FURTHER READING:
Chapter B3. Interpolation and Extrapolation

SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq, iminloc, nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N, and given a value x, this routine returns a value y, and an error estimate dy. If \( P(x) \) is the polynomial of degree \( N - 1 \) such that \( P(xa_i) = ya_i, \ i = 1, \ldots, N \), then the returned value \( y = P(x) \).

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,den,ho

n=assert_eq(size(xa),size(ya),'polint')
c=ya
Initialize the tableau of c's and d's.
d=ya
ho=xa-x
ns=iminloc(abs(x-xa))
Find index ns of closest table entry.
y=ya(ns)
This is the initial approximation to y.
ns=ns-1
do m=1,n-1
For each column of the tableau,
den(1:n-m)=ho(1:n-m)-ho(1+m:n)
we loop over the current c's and d's and up-
date them.
if (any(den(1:n-m) == 0.0)) &
call nrerror('polint: calculation failure')
This error can occur only if two input xa's are (to within roundoff) identical.

x=xa
y=ya
End subroutine polint

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq, iminloc, nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N, and given a value of x, this routine returns a value of y and an accuracy estimate dy. The value returned is that of the diagonal rational function, evaluated at x, that passes through the \( N \) points \( (xa_i, ya_i), \ i = 1 \ldots N \).

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,dd,h,t

1043
REAL(SP), PARAMETER :: TINY=1.0e-25_sp
A small number.
n=assert_eq(size(xa),size(ya),'ratint')
h=xa-x
ns=iminloc(abs(h))
y=ya(ns)
if (x == xa(ns)) then
  dy=0.0
  RETURN
end if
c=ya
The TINY part is needed to prevent
d=ya+TINY
a rare zero-over-zero condition.
ns=ns-1
h will never be zero, since this was
do m=1,n-1
determined in the initializing loop.
t(1:n-m)=(xa(1:n-m)-x)*d(1:n-m)/h(1+m:n) The error condition indicates that
dd(1:n-m)=t(1:n-m)-c(2:n-m+1) that the interpolating function has a
if (any(dd(1:n-m) == 0.0)) & pole at the requested value of
  call nrerror('failure in ratint')
This error condition indicates that
  dd(1:n-m)=(c(2:n-m+1)-d(1:n-m))/dd(1:n-m) the interpolating function has a
  d(1:n-m)=c(2:n-m+1)*dd(1:n-m) pole at the requested value of
  c(1:n-m)=t(1:n-m)*dd(1:n-m) x.
if (2*ns < n-m) then
  dy=c(ns+1) dy=c(1:n-m)
else
  dy=d(ns) c(1:n-m)+a(2:n-1)
  ns=ns-1
end if
y=y+dy
y=y+dy
end do
END SUBROUTINE ratint

*   *   *

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2

Given arrays x and y of length N containing a tabulated function, i.e., y_i = f(x_i), with x_1 < x_2 < ... < x_N, and given values yp1 and ypn for the first derivative of the interpolating function at points 1 and N, respectively, this routine returns an array y2 of length N that contains the second derivatives of the interpolating function at the tabulated points x_i. If yp1 and/or ypn are equal to 1 × 10^{30} or larger, the routine is signaled to set the corresponding boundary condition for a natural spline, with zero second derivative on that boundary.

INTEGER(4B) :: n
REAL(SP), DIMENSION(size(x)) :: a,b,c,r
n=assert_eq(size(x),size(y),size(y2),'spline')
c(1:n-1)=x(2:n)-x(1:n-1) Set up the tridiagonal equations.
r(1:n-1)=6.0_sp*((y(2:n)-y(1:n-1))/c(1:n-1))
r(2:n-1)=r(2:n-1)-r(1:n-2)
a(2:n-1)=c(1:n-2)
b(2:n-1)=2.0_sp*(c(2:n-1)+a(2:n-1))
b(1)=1.0
b(n)=1.0
if (yp1 > 0.99e30_sp) then The lower boundary condition is set either to be "nat-
r(1)=0.0 r(1)=0.0 or else to have a specified first derivative.
c(1)=0.0
else
  r(1)=(3.0_sp/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

Copyright (C) 1997 by Cambridge University Press. Programs Copyright (C) 1997 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable lists including this one to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
c(1)=0.5  
The upper boundary condition is set either to be
if (ypn > 0.99e30_sp) then  "natural"
  r(n)=0.0
  a(n)=0.0
else  or else to have a specified first derivative.
  r(n)=(-3.0_sp/(x(n)-x(n-1)))*((y(n)-y(n-1))/(x(n)-x(n-1))-ypn)
  a(n)=0.5
end if

FUNCTION splint(xa,ya,y2a,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY: locate
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint
!
Given the arrays xa and ya, which tabulate a function (with the xa,i's in increasing or
decreasing order), and given the array y2a, which is the output from spline above, and
given a value of x, this routine returns a cubic-spline interpolated value. The arrays xa, ya
and y2a are all the same size.
INTEGER(I4B) :: khi,klo,n
REAL(SP) :: a,b,h
n=assert_eq(size(xa),size(ya),size(y2a),'splint')
klo=max(min(locate(xa,x),n-1),1)
!
We will find the right place in the table by means of locate's bisection algorithm. This is
optimal if sequential calls to this routine are at random values of x. If sequential calls are in
order, and closely spaced, one would do better to store previous values of klo and khi and
test if they remain appropriate on the next call.

! khi=klo+1  klo and khi now bracket the input value of x.
!
h=xa(khi)-xa(klo)
if (h == 0.0) call nrerror('bad xa input in splint')  The xa's must be distinct.
a=(xa(khi)-x)/h  Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
splint=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.0_sp
END FUNCTION splint
!
klo=max(min(locate(xa,x),n-1),1)  In the Fortran 77 version of splint,
there is in-line code to find the location in the table by bisection. Here
we prefer an explicit call to locate, which performs the bisection. On
some massively multiprocessor (MMP) machines, one might substitute a different,
more parallel algorithm (see next note).

FUNCTION locate(xx,x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate
!
Given an array xx(1:N), and given a value x, returns a value j such that x is between
xx(j) and xx(j+1). xx must be monotonic, either increasing or decreasing. j = 0 or
j = N is returned to indicate that x is out of range.
INTEGER(I4B) :: n,j1,jm,ju
LOGICAL :: ascnd
n = size(xx)
ascd = (xx(n) >= xx(1))  \text{True if ascending order of table, false otherwise.}
jl = 0
ju = n + 1
do
  if (ju - jl <= 1) exit
  jm = (ju + jl) / 2
  if (ascnd .eqv. (x >= xx(jm))) then
    jl = jm
  else
    ju = jm
  end if
end do
if (x == xx(1)) then
  locate = 1
else if (x == xx(n)) then
  locate = n - 1
else
  locate = jl
end if
END FUNCTION locate

The use of bisection is perhaps a sin on a genuinely parallel machine, but
(since the process takes only logarithmically many sequential steps) it is at
most a small sin. One can imagine a “fully parallel” implementation like,
k = iminloc(abs(x-xx))
if ((x < xx(k)) .eqv. (xx(1) < xx(n))) then
  locate = k - 1
else
  locate = k
end if

Problem is, unless the number of physical (not logical) processors participating in
the iminloc is larger than \(N\), the length of the array, this “parallel” code turns a
\(\log N\) algorithm into one scaling as \(N\), quite an unacceptable inefficiency. So we
prefer to be small sinners and bisect.

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
  Given an array xx(1:N), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx must be monotonic, either increasing or decreasing. jlo = 0
or jlo = N is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.
INTEGER(I4B) :: n, inc, jhi, jm
LOGICAL :: ascnd
n = size(xx)
ascd = (xx(n) >= xx(1))  \text{True if ascending order of table, false otherwise.}
if (jlo <= 0 .or. jlo > n) then
  Input guess not useful. Go immediately to bisection.
  jlo = 0
else
  inc = 1
  if (x >= xx(jlo) .eqv. ascnd) then
    Hunt up:
    do
      jhi = jlo + inc
      if (jhi > n) then
        Done hunting, since off end of table.
      else
        if (ascnd .eqv. (x >= xx(jhi))) then
          jlo = jhi
        else
          jhi = jhi + inc
        end if
      end do
    end if
  end if
  if (x == xx(jlo)) then
    locate = jlo
  else if (x == xx(jlo+1)) then
    locate = jlo + 1
  else
    locate = (jlo + jhi) / 2
  end if
end if
END SUBROUTINE hunt
jhi=n+1
exit
else
  if (x < xx(jhi) .eqv. ascnd) exit
  jlo=jhi
  inc=inc+inc
  so double the increment
end if
end do
else
  Hunt down:
  jhi=jlo
do
    jlo=jhi-inc
    if (jlo < 1) then
      Done hunting, since off end of table.
      jlo=0
      exit
    else
      if (x >= xx(jlo) .eqv. ascnd) exit
      jhi=jlo
      Not done hunting.
      inc=inc+inc
      so double the increment
    end if
  end do
end if
end if
end if
Done hunting, value bracketed.
do
  Hunt is done, so begin the final bisection phase:
  if (jhi-jlo <= 1) then
    if (x == xx(n)) jlo=n-1
    if (x == xx(1)) jlo=1
    exit
  else
    jm=(jhi+jlo)/2
    if (x >= xx(jm) .eqv. ascnd) then
      jlo=jm
    else
      jhi=jm
    end if
  end if
  s(n)=x(1)
do i=2,n
    s(n+1-i:n-1)=s(n+1-i:n-1)-x(i)*s(n+2-i:n)
end do
a=outerdiff(x,x)
FUNCTION polcoe(x,y)
  USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe
Given same-size arrays x and y containing a tabulated function y_i = f(x_i),
this routine returns a same-size array of coefficients c_j, such that y_i = \sum_j c_j x_i^{j-1}.
INTEGER(I4B) :: i,k,n
REAL(SP), DIMENSION(size(x)) :: s
REAL(SP), DIMENSION(size(x),size(x)) :: a
n=assert_eq(size(x),size(y),'polcoe')
s=0.0
Coefficient s_i of the master polynomial P(x) are found by
s(n)=x(1)
do i=2,n
  s(n+1-i:n-1)=s(n+1-i:n-1)-x(i)*s(n+2-i:n)
  s(n)=s(n)-x(i)
end do
a=outerdiff(x,x)
  Make vector w_j = \prod_{k \neq n} (x_j - x_k), using polcoe for temporary storage.
Now do synthetic division by \( x - x_j \). The division for all \( x_j \) can be done in parallel (on a parallel machine), since the : in the loop below is over \( j \).

\[
a(:,1) = -s(1)/x(:)
do k=2,n
\quad a(:,k) = -(s(k)-a(:,k-1))/x(:)
end do
s = y/polcoe
polcoe = matmul(s,a)
\]

Solve linear system.

END FUNCTION polcoe

For a description of the coding here, see §22.3, especially equation (22.3.9). You might also want to compare the coding here with the Fortran 77 version, and also look at the description of the method on p. 84 in Volume I. The Fortran 90 implementation here is in fact much closer to that description than is the Fortran 77 method, which goes through some acrobatics to roll the synthetic division and matrix multiplication into a single set of two nested loops. The price we pay, here, is storage for the matrix \( a \). Since the degree of any useful polynomial is not a very large number, this is essentially no penalty.

Also worth noting is the way that parallelism is brought to the required synthetic division. For a single such synthetic division (e.g., as accomplished by the \texttt{nrutil \_term}) parallelism can be obtained only by recursion. Here things are much simpler, because we need a whole bunch of simultaneous and independent synthetic divisions; so we can just do them in the obvious, data-parallel, way.

```fortran
FUNCTION polcof(xa,ya)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof

Given same-size arrays \(xa \) and \(ya \) containing a tabulated function \(ya_i = f(xa_i) \), this routine returns a same-size array of coefficients \(c_j \) such that \(ya_i = \sum_j c_j xa_i^{j-1} \).

INTEGER(I4B) :: j,k,m,n
REAL(SP) :: dy
REAL(SP), DIMENSION(size(xa)) :: x,y
n=assert_eq(size(xa),size(ya),'polcof')
x=xa
y=ya
do j=1,n
\text{call polint(x(1:m),y(1:m),0.0_sp,polcof(j),dy)}
Use the polynomial interpolation routine of §3.1 to extrapolate to \(x = 0 \).
\quad k=iminloc(abs(x(1:m))) Find the remaining \(x_k \) of smallest absolute value, where \((x(1:m) /= 0.0) y(1:m)=(y(1:m)-polcof(j))/x(1:m) \) and eliminate \(x_k \).
\quad y(k:m-1)=y(k+1:m)
\quad x(k:m-1)=x(k+1:m)
end do
END FUNCTION polcof
```

★  ★  ★
SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy

Given arrays x1a of length M and x2a of length N of independent variables, and an M × N array of function values ya, tabulated at the grid points defined by x1a and x2a, and given values x1 and x2 of the independent variables, this routine returns an interpolated function value y, and an accuracy indication dy (based only on the interpolation in the x1 direction, however).

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: ymtmp
REAL(SP), DIMENSION(size(x2a)) :: yntmp
m=assert_eq(size(x1a),size(ya,1),'polin2: m')
ndum=assert_eq(size(x2a),size(ya,2),'polin2: ndum')
do j=1,m
   yntmp=ya(j,:)
   call polint(x2a,yntmp,x2,ymtmp(j),dy)
end do
call polint(x1a,ymtmp,x1,y,dy)
END SUBROUTINE polin2

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c

Given arrays y, y1, y2, and y12, each of length 4, containing the function, gradients, and cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-directions, this routine returns the 4 × 4 table c that is used by routine bcuint for bicubic interpolation.

REAL(SP), DIMENSION(16) :: x
REAL(SP), DIMENSION(16,16) :: wt
DATA wt /1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,&
8*0,3,0,-9,6,-2,0,6,-4,10*0,9,-6,2,0,-6,4,2*0,3,-2,6*0,-9,6,&
2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,&
2,10*0,-3,2,2,0,3,-2,6*0,3,-2,2,0,-6,4,2*0,3,-2,0,1,-2,1,5*0,&
-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2,10*0,-3,3,2*0,-2,2,2*0,&
-1,1,6*0,3,-3,2,0,-2,2,5*0,1,-2,1,0,-2,4,2,0,1,-2,1,9*0,-1,2,2*0,&
-1,0,1,-2,1,10*0,1,-1,12*0,-1,1,6*0,-1,1,2,0,2,-2,2,0,-1,1/ x(1:4)=y Pack a temporary vector x.
x(5:8)=y1=d1 x(9:12)=y2=d2 x(13:16)=y12=d1*d2
x=matmul(wt,x) Matrix multiply by the stored table.
c=reshape(x,(/4,4/),order=(/2,1/)) Unpack the result into the output table.
END SUBROUTINE bcucof
It is a powerful technique to combine the matmul intrinsic with reshape's of the input or output. The idea is to use matmul whenever the calculation can be cast into the form of a linear mapping between input and output objects. Here the order=(/2,1/) parameter specifies that we want the packing to be by rows, not by Fortran's default of columns. (In this two-dimensional case, it's the equivalent of applying transpose.)

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,ansy1,ansy2)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : bcucof
IMPLICIT NONE
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2

bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-direction; x2l and x2u likewise for the 2-direction; and x1 and x2, the coordinates of the desired point for the interpolation. The interpolated function value is returned as ansy, and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER(I4B) :: i
REAL(SP) :: t,u
REAL(SP), DIMENSION(4,4) :: c

! Get the c's.
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c)

if (x1u == x1l .or. x2u == x2l) call &
nrerror('bcuint: problem with input values - boundary pair equal?')

t=(x1-x1l)/(x1u-x1l)
quadratic interpolation. Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.0
ansy2=0.0
ansy1=0.0
do i=4,1,-1
    ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
    ansy2=t*ansy2+(3.0_sp*c(i,4)*u+2.0_sp*c(i,3))*u+c(i,2)
    ansy1=u*ansy1+(3.0_sp*c(4,i)*t+2.0_sp*c(3,i))*t+c(2,i)
end do
ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)

END SUBROUTINE bcuint

SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a

Given an M × N tabulated function ya, and N tabulated independent variables x2a, this routine constructs one-dimensional natural cubic splines of the rows of ya and returns the second derivatives in the M × N array y2a. (The array x1a is included in the argument list merely for consistency with routine splin2.)

INTEGER(I4B) :: j,m,ndum
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),'splie2: m')
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),'splie2: ndum')
do j=1,m
call spline(x2a,ya(j,:),1.0e30_sp,1.0e30_sp,y2a(j,:))
Values $1 \times 10^{30}$ signal a natural spline.

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline,splint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2

Given $x_1a, x_2a, y_a$ as described in splie2 and $y_2a$ as produced by that routine; and given a desired interpolating point $x_1, x_2$; this routine returns an interpolated function value by bicubic spline interpolation.

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: yytmp,y2tmp2
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),'splin2: m')
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),'splin2: ndum')
do j=1,m
  yytmp(j)=splint(x2a,ya(j,:),y2a(j,:),x2)
end do

Perform m evaluations of the row splines constructed by splie2, using the one-dimensional spline evaluator splint.

call spline(x1a,yytmp,1.0e30_sp,1.0e30_sp,y2tmp2)
Construct the one-dimensional column spline and evaluate it.
splin2=splint(x1a,yytmp,y2tmp2,x1)
END FUNCTION splin2
Chapter B4. Integration of Functions

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
  FUNCTION func(x)
  USE nrtype
  REAL(SP), DIMENSION(:), INTENT(IN) :: x
  REAL(SP), DIMENSION(size(x)) :: func
  END FUNCTION func
END INTERFACE

This routine computes the $n$th stage of refinement of an extended trapezoidal rule. func is input as the name of the function to be integrated between limits $a$ and $b$, also input. When called with $n=1$, the routine returns as $s$ the crudest estimate of $\int_a^b f(x)dx$. Subsequent calls with $n=2,3,...$ (in that sequential order) will improve the accuracy of $s$ by adding $2^{n-2}$ additional interior points. $s$ should not be modified between sequential calls.

REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then
  s=0.5_sp*(b-a)*sum(func( (/ a,b / )))
else
  it=2**(n-2)
del=(b-a)/it
  fsum=sum(func(arth(a+0.5_sp*del,del,it)))
  s=0.5_sp*(s+del*fsum)
end if
END SUBROUTINE trapzd

While most of the quadrature routines in this chapter are coded as functions, trapzd is a subroutine because the argument $s$ that returns the function value must also be supplied as an input parameter. We could change the subroutine into a function by declaring $s$ to be a local variable with the SAVE attribute. However, this would prevent us from being able to use the routine recursively to do multidimensional quadrature (see quad3d on p. 1065). When $s$ is left as an argument, a fresh copy is created on each recursive call. As a SAVE’d variable, by contrast, its value would get overwritten on each call, and the code would not be properly “re-entrant.”

\[ s=0.5_sp*(b-a)*sum(func( (/ a,b / ))) \]

Note how we use the (/.../) construct to supply a set of scalar arguments to a vector function.
FUNCTION qtrap(func,a,b)  
USE nrtype; USE nrutil, ONLY : nrerror  
USE nr, ONLY : trapzd  
IMPLICIT NONE  
REAL(SP), INTENT(IN) :: a,b  
REAL(SP) :: qtrap  
INTERFACE  
FUNCTION func(x)  
USE nrtype  
REAL(SP), DIMENSION(:), INTENT(IN) :: x  
REAL(SP), DIMENSION(size(x)) :: func  
END FUNCTION func  
END INTERFACE  
INTEGER(I4B), PARAMETER :: JMAX=20  
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp  
Returns the integral of the function func from a to b. The parameter EPS should be set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed number of steps. Integration is performed by the trapezoidal rule.  
REAL(SP) :: olds  
INTEGER(I4B) :: j  
olds=UNLIKELY  
Any number that is unlikely to be the average of the function at its endpoints will do here.  
do j=1,JMAX  
call trapzd(func,a,b,qtrap,j)  
if (j > 5) then  
Avoid spurious early convergence.  
if (abs(qtrap-olds) < EPS*abs(olds) .or. &  
(qtrap == 0.0 .and. olds == 0.0)) RETURN  
end if  
olds=qtrap  
end do  
call nrerror('qtrap: too many steps')  
END FUNCTION qtrap

FUNCTION qsimp(func,a,b)  
USE nrtype; USE nrutil, ONLY : nrerror  
USE nr, ONLY : trapzd  
IMPLICIT NONE  
REAL(SP), INTENT(IN) :: a,b  
REAL(SP) :: qsimp  
INTERFACE  
FUNCTION func(x)  
USE nrtype  
REAL(SP), DIMENSION(:), INTENT(IN) :: x  
REAL(SP), DIMENSION(size(x)) :: func  
END FUNCTION func  
END INTERFACE  
INTEGER(I4B), PARAMETER :: JMAX=20  
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp  
Returns the integral of the function func from a to b. The parameter EPS should be set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum allowed number of steps. Integration is performed by Simpson’s rule.  
INTEGER(I4B) :: j  
REAL(SP) :: os,ost,st  
os=UNLIKELY  
ost=UNLIKELY  
do j=1,JMAX  
call trapzd(func,a,b,qsimp,j)  
qsimp=(4.0_sp*st-ost)/3.0_sp  
Compare equation (4.2.4).  
if (j > 5) then  
Avoid spurious early convergence.  
if (abs(qsimp-os) < EPS*abs(os) .or. &  
(qsimp == 0.0 .and. os == 0.0)) RETURN  
end if  
os=qsimp
FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint,trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Returnsthe integral of the function func from a to b. Integration is performed by Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.

Parameters:
EPS is the fractional accuracy desired, as determined by the extrapolation error estimate;
JMAX limits the total number of steps; K is the number of points used in the extrapolation.

REAL(SP), DIMENSION(JMAXP) :: h,s
These store the successive trapezoidal approximations and their relative stepsizes.
REAL(SP) :: dqromb
INTEGER(I4B) :: j

h(1)=1.0
do j=1,JMAX
   call trapzd(func,a,b,s(j),j)
   if (j >= K) then
      call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
      if (abs(dqromb) <= EPS*abs(qromb)) RETURN
   end if
   s(j+1)=s(j)
   h(j+1)=0.25_sp*h(j)
end do
call nrerror(‘qromb: too many steps’)
END FUNCTION qromb

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE

This routine computes the nth stage of refinement of an extended midpoint rule. func is input as the name of the function to be integrated between limits a and b, also input. When
Chapter B4.  Integration of Functions

called with \( n=1 \), the routine returns as \( s \) the crudest estimate of \( \int_a^b f(x) \, dx \). Subsequent calls with \( n=2,3,... \) (in that sequential order) will improve the accuracy of \( s \) by adding \( (2/3) \times 3^{n-1} \) additional interior points. \( s \) should not be modified between sequential calls.

\[
\begin{align*}
\text{REAL(SP)} & \quad :: \quad \text{del} \\
\text{INTEGER(I4B)} & \quad :: \quad \text{it} \\
\text{REAL(SP)}, \text{DIMENSION}(2*3^{(n-2)}) & \quad :: \quad \text{x}
\end{align*}
\]

if \( n == 1 \) then
\[
s = \frac{(b-a)}{3} \sum f\left( \frac{(a+b)}{2} \right)
\]
else
\[
\text{it}=3^{(n-2)} \\
\text{del}=(b-a)/(3.0 \times \text{it}) \\
\text{x}(1:2*\text{it}-1:2)=\text{arh}(a+0.5 \times \text{del},3.0 \times \text{del},\text{it}) \\
\text{x}(2:2*\text{it}:2)=\text{x}(1:2*\text{it}-1:2)+2.0 \times \text{del} \\
s=s/3.0 \times \text{del} \times \sum f(\text{x})
\]
\[
\text{The new sum is combined with the old integral}
\]
end if

** END SUBROUTINE midpnt **

\textit{midpnt} is a subroutine and not a function for the same reasons as \textit{trapzd}. This is also true for the other \textit{mid...} routines below.

\[
s = \frac{(b-a)}{3} \sum f\left( \frac{(a+b)}{2} \right)
\]

Here we use \textit{/.../} to pass a single scalar argument to a vector function.

\begin{verbatim}
FUNCTION qromo(func,a,b,choose)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
FUNCTION funk(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk
END INTERFACE
END SUBROUTINE choose
END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=14, JMAXP=JMAX+1, K=5, KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6
Romberg integration on an open interval. Returns the integral of the function \textit{func} from \( a \) to \( b \), using any specified integrating subroutine \textit{choose} and Romberg's method. Normally choose will be an open formula, not evaluating the function at the endpoints. It is assumed that choose triples the number of steps on each call, and that its error series contains only
\end{verbatim}
even powers of the number of steps. The routines midpnt, midinf, midsq1, midsqu, and midsqf are all possible choices to choose. The parameters have the same meaning as in qromb.

```fortran
REAL(SP), DIMENSION(JMAXP) :: h, s
REAL(SP) :: dqromo
INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX
 call choose(func,a,b,s(j),j)
 if (j >= K) then
 call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromo,dqromo)
 if (abs(dqromo) <= EPS*abs(qromo)) RETURN
 end if
 s(j+1)=s(j)
 h(j+1)=h(j)/9.0_sp
 This is where the assumption of step tripling and an even
 error series is used.
end do
call nrerror('qromo: too many steps')
END FUNCTION qromo
```

⋆⋆⋆

```fortran
SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth, assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
 FUNCTION funk(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: funk
 END FUNCTION funk
END INTERFACE

This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced points in 1/x rather than in x. This allows the upper limit bb to be as large and positive as the computer allows, or the lower limit aa to be as large and negative, but not both. aa and bb must have the same sign.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
call assert(aa*bb > 0.0, 'midinf args')
b=1.0_sp/aa
These two statements change the limits of integration accordingly.
a=1.0_sp/bb
if (n == 1) then
 From this point on, the routine is exactly identical to midpnt.
 s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else
 it=3**(n-2)
 del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,0.0_sp,0)
x(2:2*it-1:2)=x(1:2*it-1:2)+2.0_sp*del
 s=s/3.0_sp+del*sum(func(x))
end if
CONTAINS
 FUNCTION func(x)
 This internal function effects the change of variable.
 REAL(SP), DIMENSION(:,), INTENT(INOUT) :: x
 REAL(SP), DIMENSION(size(x)) :: :: func
 func=funk(1.0_sp/x)/x**2
 END FUNCTION func
END SUBROUTINE midinf
```
**FUNCTION func(x)**  The change of variable could have been effected by a statement function in midinf itself. However, the statement function is a Fortran 77 feature that is deprecated in Fortran 90 because it does not allow the benefits of having an explicit interface, i.e., a complete set of specification statements. Statement functions can always be coded as internal subprograms instead.

```
SUBROUTINE midsq(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
 FUNCTION funk(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: funk
 END FUNCTION funk
END INTERFACE
 This routine is an exact replacement for midpnt, i.e., returns as s the n
 th stage of refinement of the integral of funk from aa to bb, except that it
 allows for an inverse square-root singularity in the integrand at the upper
 limit bb.
 REAL(SP) :: a,b,del
 INTEGER(I4B) :: it
 REAL(SP), DIMENSION(2*3**(n-2)) :: x
 b=sqrt(bb-aa) These two statements change the limits of integration ac-
 cordingly.
 a=0.0
 if (n == 1) then From this point on, the routine is exactly identical to midpnt.
 s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
 else
 it=3**(n-2)
 del=(b-a)/(3.0_sp*it)
 x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
 x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
 s=s/3.0_sp+del*sum(func(x))
 end if
CONTAINS
 FUNCTION func(x) This internal function effects the change of variable.
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 func=2.0_sp*x*funk(aa+x**2)
 END FUNCTION func
END SUBROUTINE midsq
```

---

**Chapter B4. Integration of Functions**
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa)  These two statements change the limits of integration ac-
a=0.0  cordingly.
if (n == 1) then  From this point on, the routine is exactly identical to midpnt.
s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else
  it=3**(n-2)
  del=(b-a)/(3.0_sp*it)
  x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del, it)
  x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
  s=s/3.0_sp+del*sum(func(x))
end if
CONTAINS
  FUNCTION func(x)  This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(bb-x**2)
END FUNCTION func
END SUBROUTINE midsqu

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP) :: aa,bb
REAL(SP) :: s
INTEGER(I4B) :: n
INTERFACE
  FUNCTION funk(x)
    USE nrtype
    REAL(SP), DIMENSION(:), INTENT(IN) :: x
    REAL(SP), DIMENSION(size(x)) :: funk
  END FUNCTION funk
END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that bb is assumed to be infinite (value passed
not actually used). It is assumed that the function funk decreases exponentially rapidly at
infinity.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=exp(-aa)  These two statements change the limits of integration ac-
a=0.0  cordingly.
if (n == 1) then  From this point on, the routine is exactly identical to midpnt.
s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else
  it=3**(n-2)
  del=(b-a)/(3.0_sp*it)
  x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del, it)
  x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
  s=s/3.0_sp+del*sum(func(x))
end if
CONTAINS
  FUNCTION func(x)  This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(-log(x))/x
END FUNCTION func
END SUBROUTINE midexp
SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth, assert_eq, nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(dp), PARAMETER :: EPS=3.0e-14_dp

Given the lower and upper limits of integration \( x_1 \) and \( x_2 \), this routine returns arrays \( x \) and \( w \) of length \( N \) containing the abscissas and weights of the Gauss-Legendre \( N \)-point quadrature formula. The parameter EPS is the relative precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(dp) :: xl,xm
REAL(dp), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2 :: unfinished

\( n=\text{assert_eq}(\text{size}(x),\text{size}(w),\text{"gauleg")} \)
\( m=(n+1)/2 \)
\( x_m=0.5\_dp*(x_2+x_1) \)
\( x_l=0.5\_dp*(x_2-x_1) \)
\( z=\cos(\pi\_D(\text{arth}(1,1,m)-0.25\_dp)/(n+0.5\_dp)) \)
\( \text{unfinished}=.true. \)
\( \text{do its}=1,\text{MAXIT} \)

where \( \text{unfinished} \)
\( p_1=1.0 \)
\( p_2=0.0 \)
end where
\( \text{do j}=1,n \)

Loop up the recurrence relation to get the Legendre polynomials evaluated at \( z \).
\( p_3=p_2 \)
\( p_2=p_1 \)
\( p_1=((2.0\_dp*j-1.0\_dp)*z*p_2-(j-1.0\_dp)*p_3)/j \)
end where
\( p_1 \) now contains the desired Legendre polynomials. We next compute \( pp \), the derivatives, by a standard relation involving also \( p_2 \), the polynomials of one lower order.
where \( \text{unfinished} \)
\( pp=n*(z*p_1-p_2)/(z*z-1.0\_dp) \)
\( z_1=z \)
\( z=z_1-p_1/pp \)
Newton's method.
\( \text{unfinished}=(abs(z-z_1) > EPS) \)
end where
\( \text{if } (\text{not. any(unfinished)}) \text{ exit} \)
end do
if (its == MAXIT+1) call nrerror('too many iterations in gauleg')
\( x(1:m)=x_m-xl*z \)
\( x(n:m+1:-1)=x_m+x_l*z \)
\( w(1:m)=2.0\_dp*p_2/(1.0\_dp-z*z2)*pp*p_2 \)
\( w(n:m+1:-1)=w(1:m) \)
END SUBROUTINE gauleg

Often we have an iterative procedure that has to be applied until all components of a vector have satisfied a convergence criterion. Some components of the vector might converge sooner than others, and it is inefficient on a small-scale parallel (SSP) machine to continue iterating on those components. The general structure we use for such an iteration is exemplified by the following lines from gauleg:

LOGICAL(LGT), DIMENSION((size(x)+1)/2 :: unfinished

\( \text{unfinished}=.true. \)
\( \text{do its}=1,\text{MAXIT} \)
We use the logical mask unfinished to control which vector components are processed inside the where. The mask gets updated on each iteration by testing whether any further vector components have converged. When all have converged, we exit the iteration loop. Finally, we check the value of its to see whether the maximum allowed number of iterations was exceeded before all components converged.

The logical expression controlling the where block (in this case unfinished) gets evaluated completely on entry into the where, and it is then perfectly fine to modify it inside the block. The modification affects only the next execution of the where.

On a strictly serial machine, there is of course some penalty associated with the above scheme: after a vector component converges, its corresponding component in unfinished is redundantly tested on each further iteration, until the slowest-converging component is done. If the number of iterations required does not vary too greatly from component to component, this is a minor, often negligible, penalty. However, one should be on the alert against algorithms whose worst-case convergence could differ from typical convergence by orders of magnitude. For these, one would need to implement a more complicated packing-unpacking scheme. (See discussion in Chapter B6, especially introduction, p. 1083, and notes for factrl, p. 1087.)
Chapter B4. Integration of Functions

Page 1 of 1

The key difficulty in parallelizing this routine starting from the Fortran 77 version is that the initial guesses for the roots of the Laguerre polynomials were given in terms of previously determined roots. This prevents one from finding all the roots simultaneously. The solution is to come up with a new approximation to the roots that is a simple explicit formula, like the formula we used for the Legendre roots in gaulag.

We start with the approximation to $L_\alpha^n(x)$ given in equation (10.15.8) of [1]. We keep only the first term and ask when it is zero. This gives the following prescription for the $k$th root $x_k$ of $L_\alpha^n(x)$: Solve for $\theta$ the equation

$$2\theta - \sin 2\theta = \frac{4n - 4k + 3}{4n + 2\alpha + 2}\pi \quad (B4.1)$$

Since $1 \leq k \leq n$ and $\alpha > -1$, we can always find a value such that $0 < \theta < \pi/2$. Then the approximation to the root is

$$x_k = (4n + 2\alpha + 2) \cos^2 \theta \quad (B4.2)$$

This typically gives 3-digit accuracy, more than enough for the Newton iteration to be able to refine the root. Unfortunately equation (B4.1) is not an explicit formula for $\theta$. (You may recognize it as being of the same form as Kepler’s equation in mechanics.) If we call the right-hand side of (B4.1) $y$, then we can get an explicit formula by working out the power series for $y^{1/3}$ near $\theta = 0$ (using a computer algebra program). Next invert the series to give $\theta$ as a function of $y^{1/3}$. Finally, economize the series (see §5.11). The result is the concise approximation

$$\theta = 0.9084064y^{1/3} + 5.214976 \times 10^{-2}y + 2.579930 \times 10^{-3}y^{5/3} + 3.986126 \times 10^{-3}y^{7/3} \quad (B4.3)$$
SUBROUTINE gauher(x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp,PIM4=0.7511255444649425_dp

This routine returns arrays x and w of length N containing the abscissas and weights of the N-point Gauss-Hermite quadrature formula. The abscissas are returned in descending order. Note that internal computations are done in double precision.

Parameters: EPS is the relative precision, PIM4 = 1/π\(^{1/4}\).

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&
  C3=3.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION((size(x)+1)/2) :: rhs,r2,r3,theta
REAL(SP), DIMENSION((size(x)+1)/2) :: anu, p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished

m=(n+1)/2

the roots are symmetric about the origin, so we have to find only half of them.

Do its=1,MAXIT
Newton’s method carried out simultaneously on the roots.
   where (unfinished)
      p1=PIM4
      p2=0.0
   end where
   do j=1,n
Loop up the recurrence relation to get the Hermite polynomials evaluated at z.
      where (unfinished)
         p2=p1
         p1=z*sqrt(2.0_dp/j)*p2-sqrt(real(j-1,dp)/real(j,dp))*p3
      end where
   end do
   p1 now contains the desired Hermite polynomials. We next compute pp, the derivatives, by the relation (4.5.21) using p2, the polynomials of one lower order.
   where (unfinished)
      pp=sqrt(2.0_dp*n)*p2
      z1=z
      z=z1-p1/pp
Newton’s formula.
   unfinished=(abs(z-z1) > EPS)
   end where
   if (.not. any(unfinished)) exit
end do

x(1:m)=z Store the root
x(n:n-m+1:-1)=-z and its symmetric counterpart.
w(1:m)=2.0_dp/pp**2 Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauher

Once again we need an explicit approximation for the polynomial roots, this time for \( H_n(x) \). We can use the same approximation scheme as for \( L_n(x) \), since

\[
H_{2m}(x) \propto L_m^{-1/2}(x^2), \quad H_{2m+1}(x) \propto xL_m^{1/2}(x^2) \quad (B4.4)
\]
Equations (B4.1) and (B4.2) become
\[
2\theta - \sin 2\theta = \frac{4k - 1}{2n + 1} \pi \quad (B4.5)
\]
\[
x_k = \sqrt{2n + 1} \cos \theta
\]

Here \( k = 1, 2, \ldots, m \) where \( m = \lfloor (n + 1)/2 \rfloor \), and \( k = 1 \) is the largest root. The negative roots follow from symmetry. The root at \( x = 0 \) for odd \( n \) is included in this approximation.

**SUBROUTINE gaujac(x,w,alf,bet)**

*USE nrtype; USE nrutil, ONLY : arith,assert_eq,nrerror*

*USE nr, ONLY : gammln*

*IMPLICIT NONE*

*REAL(SP), INTENT(IN) :: alf,bet*

*REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w*

*REAL(DP), PARAMETER :: EPS=3.0e-14_dp*

*Given alf and bet, the parameters \( \alpha \) and \( \beta \) of the Jacobi polynomials, this routine returns arrays \( x \) and \( w \) of length \( N \) containing the abscissas and weights of the \( N \)-point Gauss-Jacobi quadrature formula. The abscissas are returned in descending order. The parameter EPS is the relative precision. Note that internal computations are done in double precision.*

*INTEGER(I4B) :: its,j,n*

*INTEGER(I4B), PARAMETER :: MAXIT=10*

*REAL(DP) :: alfbet,a,c,temp*

*REAL(DP), DIMENSION(size(x)) :: b,p1,p2,p3,pp,z,z1*

*LOGICAL(LGT), DIMENSION(size(x)) :: unfinished*


\[n=\text{assert_eq(size(x),size(w),'gaujac')}
\]

\[z=\cos(\pi*(\text{arth}(1,1,n)-0.25_dp+0.5_dp*\text{alf})/(n+0.5_dp*(\text{alfbet}+1.0_dp)))
\]

\[\text{unfinished}=.true.
\]

*do its=1,MAXIT Newton's method carried out simultaneously on the roots.*

\[\text{temp}=2.0_dp+\text{alfbet}
\]

\[\text{where (unfinished) Start the recurrence with } P_0 \text{ and } P_1 \text{ to avoid a division by zero when } \alpha + \beta = 0 \text{ or } -1.
\]

\[p1=(\text{alf}-\text{bet}+\text{temp}*z)/2.0_dp
\]

*end where*

*do j=2,n Loop up the recurrence relation to get the Jacobi polynomials evaluated at } z.

\[a=2*j*(j+\text{alfbet})*\text{temp}
\]

\[\text{temp=2.o_dp}
\]

\[c=2.0_dp*(j-1.0_dp+\text{alf})*(j-1.0_dp+\text{bet})*\text{temp}
\]

*where (unfinished)*

\[p3=p2
\]

\[p2=p1
\]

\[b=(\text{temp}-1.0_dp)*(\text{alf}-\text{alfbet}+\text{temp}*)
\]

\[(\text{temp}-2.0_dp)*z
\]

\[p1=(b*p2-c*p3)/a
\]

*end where*

*do end do p1 now contains the desired Jacobi polynomials. We next compute pp, the derivatives, by a standard relation involving also p2, the polynomials of one lower order.*

*where (unfinished)*

\[pp=\text{n*(alf-bet-temp*z)*p1+2.0_dp*(n+alf)*}&
\]

\[(n*bet)*p2)/(\text{temp}*(1.0_dp-z*z))
\]

\[z1=z
\]

\[z=z1/pp\]

*Newton's formula.*

*unfinished=(abs(z-z1) > EPS)
\]

*end where*

*if (.not. any(unfinished)) exit end do*

*if (its == MAXIT+1) call nrerror('too many iterations in gaujac')
\]

\[x=z \quad \text{Store the root and the weight.}
\]
Now we need an explicit approximation for the roots of the Jacobi polynomials \( P_n^{(\omega,\beta)}(x) \). We start with the asymptotic expansion (10.14.10) of [1]. Setting this to zero gives the formula

\[
x = \cos \left[ \frac{k - 1/4 + \alpha/2}{n + (\alpha + \beta + 1)/2} \pi \right]
\]

This is better than the formula (22.16.1) in [2], especially at small and moderate \( n \).

\* \* \*

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : eigsrt,tqli
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix. On input, \( a \) and \( b \) of length \( N \) are the coefficients of the recurrence relation for the set of monic orthogonal polynomials. The quantity \( \mu_0 \equiv \int_a^b W(x) \, dx \) is input as \( amu0 \). The abscissas are returned in descending order in array \( x \) of length \( N \), with the corresponding weights in \( w \), also of length \( N \). The arrays \( a \) and \( b \) are modified. Execution can be speeded up by modifying \( tqli \) and \( eigsrt \) to compute only the first component of each eigenvector.
REAL(SP), DIMENSION(size(a),size(a)) :: z
INTEGER(I4B) :: n
n=assert_eq(size(a),size(b),size(x),size(w),'gaucof')
b(2:n)=sqrt(b(2:n))
Set up superdiagonal of Jacobi matrix.
call unit_matrix(z)
Set up identity matrix for \( tqli \) to compute eigenvectors.
call tqli(a,b,z)
call eigsrt(a,z)
Sort eigenvalues into descending order.
x=a
w=amu0*z(:,1,:)**2
Equation (4.5.12).
END SUBROUTINE gaucof

\* \* \*

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
Computes the coefficients \( a_j \) and \( b_j \), \( j = 0, \ldots N-1 \), of the recurrence relation for monic orthogonal polynomials with weight function \( W(x) \) by Wheeler’s algorithm. On input, \( \alpha \) and \( \beta \) contain the \( 2N-1 \) coefficients \( \alpha_j \) and \( \beta_j \), \( j = 0, \ldots 2N-2 \), of the recurrence
relation for the chosen basis of orthogonal polynomials. The \(2N\) modified moments \(\nu_j\) are
input in \(\text{anu}\) for \(j = 0, \ldots, 2N - 1\). The first \(N\) coefficients are returned in \(a\) and \(b\).

\[
\begin{align*}
\text{INTEGER}(148) & :: k, n, \text{ndum} \\
\text{REAL}(SP), \text{DIMENSION}(2*\text{size}(a)+1,2*\text{size}(a)+1) & :: \text{sig} \\
n & = \text{assert_eq(size}(a), \text{size}(b), \text{‘orthog: n’}) \\
\text{ndum} & = \text{assert_eq}(2*n, \text{size}(\text{alpha})+1, \text{size}(\text{anu})+1, \text{‘orthog: ndum’}) \\
\text{sig}(1:3:2*n) & = 0.0 \\
\text{Initialization, Equation (4.5.33).} \\
\text{sig}(2, 2:2*n+1) & = \text{anu}(1:2*n) \\
a(1) & = \text{alpha}(1)+\text{anu}(2)/\text{anu}(1) \\
b(1) & = 0.0 \\
\text{do } k = 3, n+1 \\
\text{Equation (4.5.34).} \\
\text{sig}(k, k:2*n-k+3) & = \text{sig}(k-1, k+1:2*n-k+4) + \text{alpha}(k-1:2*n-k+2) \cdot \text{sig}(k-1, k+1:2*n-k+3) \\
& - a(k-2) \cdot \text{sig}(k-1, k+2:2*n-k+3) - b(k-2) \cdot \text{sig}(k-2, k+2:2*n-k+3) \\
& + \text{beta}(k-1:2*n-k+2) \cdot \text{sig}(k-1, k-1:2*n-k+2) \\
a(k-1) & = \text{alpha}(k-1)+\text{sig}(k, k+1)/\text{sig}(k-1, k-1) \\
b(k-1) & = \text{sig}(k, k)/\text{sig}(k-1, k-1) \\
\end{align*}
\]

\text{END SUBROUTINE orthog}

⋆⋆⋆

As discussed in Volume 1, multidimensional quadrature can be performed by calling a one-dimensional quadrature routine along each dimension. If the same routine is used for all such calls, then the calls are recursive. The file \texttt{quad3d.f90} contains two modules, \texttt{quad3d\_ggaus\_mod} and \texttt{quad3d\_qromb\_mod}. In the first, the basic one-dimensional quadrature routine is a 10-point Gaussian quadrature routine called \texttt{ggaus} and three-dimensional quadrature is performed by calling \texttt{quad3d\_ggaus}. In the second, the basic one-dimensional routine is \texttt{qromb} of §4.3 and the three-dimensional routine is \texttt{quad3d\_qromb}. The Gaussian quadrature is simpler but its accuracy is not controllable. The Romberg integration lets you specify an accuracy, but is apt to be very slow if you try for too much accuracy. The only difference between the stand-alone version of \texttt{trapzd} and the version included here is that we have to add the keyword \texttt{RECURSIVE}. The only changes from the stand-alone version of \texttt{qromb} are: We have to add \texttt{RECURSIVE}; we remove \texttt{trapzd} from the list of routines in \texttt{USE nr}; we increase \texttt{EPS} to \(3 \times 10^{-6}\). Even this value could be too ambitious for difficult functions. You may want to set \texttt{JMAX} to a smaller value than 20 to avoid burning up a lot of computer time. Some people advocate using a smaller \texttt{EPS} on the inner quadrature (over \(z\) in our routine) than on the outer quadratures (over \(x\) or \(y\)). That strategy would require separate copies of \texttt{qromb}.

\texttt{MODULE quad3d\_ggaus\_mod}
\texttt{USE \text{rtype}}
\texttt{PRIVATE}
\texttt{PUBLIC quad3d\_ggaus}
\texttt{PRIVATE quad3d\_ggaus}
\texttt{REAL(SP) :: xsav, ysav}
\texttt{INTERFACE}
\texttt{FUNCTION func(x,y,z) The three-dimensional function to be integrated.}
\texttt{USES \text{rtype}}
\texttt{REAL(SP), INTENT(IN) :: x, y}
\texttt{REAL(SP), DIMENSION(:) \text{DIMENSION(size(z)) :: func}}
\texttt{END FUNCTION func}
\texttt{FUNCTION y1(x)}
\texttt{USE \text{rtype}}
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE

The routine quad3d_qgaus returns as \( SS \) the integral of a user-supplied function \( \text{func} \) over a three-dimensional region specified by the limits \( x_1, x_2 \), and by the user-supplied functions \( y_1, y_2, z_1, \) and \( z_2 \), as defined in (4.6.2). Integration is performed by calling qgaus recursively.

CONTAINS

FUNCTION h(x)
This is \( H \) of eq. (4.6.5).
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)
   xsav=x(i)
   h(i)=qgaus(g,y1(xsav),y2(xsav))
end do
END FUNCTION h

FUNCTION g(y)
This is \( G \) of eq. (4.6.4).
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)
   ysav=y(j)
   g(j)=qgaus(f,z1(xsav,ysav),z2(xsav,ysav))
end do
END FUNCTION g

FUNCTION f(z)
The integrand \( f(x,y,z) \) evaluated at fixed \( x \) and \( y \).
REAL(SP), DIMENSION(:,), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qgaus(func,a,b)
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qgaus
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
REAL(SP) :: dx, x
REAL(SP), DIMENSION(5) :: dx = (/ 0.2955242247_sp,0.2692667193_sp,&
0.2190836325_sp,0.1494513491_sp,0.0666713443_sp /),&
x = (/ 0.1488743389_sp,0.433953941_sp,0.6794095682_sp,&
0.8650633666_sp, 0.9739065285_sp /)
xm=0.5_sp*(b+a)
xr=0.5_sp*(b-a)
dx(:)=xr*x(:)
qgaus=xr*sum(w(:)*(func(xm+dx)+func(xm-dx)))
END FUNCTION qgaus

SUBROUTINE quad3d_qgaus(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qgaus(h,x1,x2)
END SUBROUTINE quad3d_qgaus

END MODULE quad3d_qgaus_mod

PRIVATE...PUBLIC quad3d_qgaus  By default, all module entities are accessible by a routine that uses the module (unless we restrict the USE statement with ONLY). In this module, the user needs access only to the routine quad3d_qgaus; the variables xsav, ysav and the procedures f, g, h, and qgaus are purely internal. It is good programming practice to prevent duplicate name conflicts or data overwriting by limiting access to only the desired entities. Here the PRIVATE statement with no variable names resets the default from PUBLIC. Then we include in the PUBLIC statement only the function name we want to be accessible.

REAL(SP) :: xsav,ysav  In Fortran 90, we generally avoid declaring global variables in COMMON blocks. Instead, we give them complete specifications in a module. A deficiency of Fortran 90 is that it does not allow pointers to functions. So here we have to use the fixed-name function func for the function to be integrated over. If we could have a pointer to a function as a global variable, then we would just set the pointer to the user function (of any name) in the calling program. Similarly the functions y1, y2, z1, and z2 could also have any name.

CONTAINS  Here follow the internal subprograms f, g, h, qgaus, and quad3d_qgaus. Note that such internal subprograms are all “visible” to each other, i.e., their interfaces are mutually explicit, and do not require INTERFACE statements.

RECURSIVE SUBROUTINE qgaus(func,a,b,ss)  The RECURSIVE keyword is required for the compiler to process correctly any procedure that is invoked again in its body before the return from the first call has been completed. While some compilers may let you get away without explicitly informing them that a routine is recursive, don’t count on it!

MODULE quad3d_qromb_mod
Alternative to quad3d_qgaus_mod that uses qromb to perform each one-dimensional integration.

USE nrtype
PRIVATE
PUBLIC quad3d_qromb
REAL(SP) :: xsav,ysav
INTERFACE
FUNCTION func(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func
FUNCTION y1(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1
FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2
FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1
FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2
END INTERFACE
CONTAINS
FUNCTION h(x)
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
DO i=1,size(x)
    xsav=x(i)
    h(i)=qromb(g,y1(xsav),y2(xsav))
END DO
END FUNCTION h
FUNCTION g(y)
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
DO j=1,size(y)
    ysav=y(j)
    g(j)=qromb(f,z1(xsav,ysav),z2(xsav,ysav))
END DO
END FUNCTION g
FUNCTION f(z)
REAL(SP), DIMENSION(:,), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f
RECURSIVE FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: dqromb
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
INTERFACE
PARAMETER :: JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1
REAL(SP), PARAMETER :: EPS=3.0e-6_sp
REAL(SP) :: dqromb
INTEGER(14B) :: j
h(1)=1.0
do j=1,JMAX
   call trapzd(func,a,b,s(j),j)
   if (j >= K) then
      call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
      if (abs(dqromb) <= EPS*abs(qromb)) RETURN
   end if
   s(j+1)=s(j)
   h(j+1)=0.25_sp*h(j)
end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

RECURSIVE SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then
   s=0.5_sp*(b-a)*sum(func( (/ a,b /) ))
else
   it=2**(n-2)
   del=(b-a)/it
   fsum=sum(func(arth(a+0.5_sp*del,del,it)))
   s=0.5_sp*(s+del*fsum)
end if
END SUBROUTINE trapzd

SUBROUTINE quad3d_qromb(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qromb(h,x1,x2)
END SUBROUTINE quad3d_qromb
END MODULE quad3d_qromb_mod

The only difference between this module and the
previous one is that all calls to qgaus are replaced by calls to qromb and that the
routine qgaus is replaced by qromb and trapzd.

CITED REFERENCES AND FURTHER READING:
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, _Higher Transcendental
Abramowitz, M., and Stegun, I.A. 1964, _Handbook of Mathematical Functions_, Applied Mathemat-
ics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Chapter B5. Evaluation of Functions

SUBROUTINE eulsum(sum, term, jterm)
USE nrtype; USE nrutil, ONLY : poly_term, reallocate
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm

Incorporates into sum the jterm'th term, with value term, of an alternating series. sum is input as the previous partial sum, and is output as the new partial sum. The first call to this routine, with the first term in the series, should be with jterm=1. On the second call, term should be set to the second term of the series, with sign opposite to that of the first call, and jterm should be 2. And so on.

REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
INTEGER(I4B), SAVE :: nterm
Number of saved differences in wksp.
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
  Initialize.
  init=.false.
  nullify(wksp)
end if
if (jterm == 1) then
  nterm=1
  wksp=>reallocate(wksp,100)
  wksp(1)=term
  sum=0.5_sp*term
  Return first estimate.
else
  if (nterm+1 > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
  wksp(2:nterm+1)=0.5_sp*wksp(1:nterm)
  Update saved quantities by van Wijngaarden's algorithm.
  wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp)
  if (abs(wksp(nterm+1)) <= abs(wksp(nterm))) then
    Favorable to increase p,
    sum=sum+0.5_sp*wksp(nterm+1)
    nterm=nterm+1
    and the table becomes longer.
  else
    Favorable to increase n,
    sum=sum+wksp(nterm+1)
    the table doesn't become longer.
  end if
end if
END SUBROUTINE eulsum

This routine uses the function reallocate in nrutil to define a temporary workspace and then, if necessary, enlarge the workspace without destroying the earlier contents. The pointer wksp is declared with the SAVE attribute. Since Fortran 90 pointers are born "in limbo," we cannot immediately test whether they are associated or not. Hence the code if (init)...nullify(wksp). Then the line wksp=>reallocate(wksp,100) allocates an array of length 100 and points wksp to it. On subsequent calls to eulsum, if nterm ever gets bigger than the size of wksp, the call to reallocate doubles the size of wksp and copies the old contents into the new storage.

You could achieve the same effect as the code if (init)...nullify(wksp)... wksp=>reallocate(wksp,100) with a simple allocate(wksp,100). You would then use
reallocate only for increasing the storage if necessary. Don’t! The advantage of the above scheme becomes clear if you consider what happens if \texttt{eulsum} is invoked twice by the calling program to evaluate two different sums. On the second invocation, when \texttt{jterm} = 1 again, you would be allocating an already allocated pointer. This does not generate an error — it simply leaves the original target inaccessible. Using \texttt{reallocate} instead not only allocates a new array of length 100, but also detects that \texttt{wksp} had already been associated. It dutifully (and wastefully) copies the first 100 elements of the old \texttt{wksp} into the new storage, and, more importantly, deallocates the old \texttt{wksp}, reclaiming its storage. While only two invocations of \texttt{eulsum} without intervening deallocation of memory would not cause a problem, many such invocations might well. We believe that, as a general rule, the potential for catastrophe from reckless use of \texttt{allocate} is great enough that you should always \texttt{deallocate} whenever storage is no longer required.

The unnecessary copying of 100 elements when \texttt{eulsum} is invoked a second time could be avoided by making \texttt{init} an argument. It hardly seems worth it to us.

For Fortran 90 neophytes, note that unlike in C you have to do nothing special to get the contents of the storage a pointer is addressing. The compiler figures out from the context whether you mean the contents, such as \texttt{wksp(:nterm)}, or the address, such as both occurrences of \texttt{wksp} in \texttt{wksp=>reallocate(wksp,100)}.

\texttt{wksp(:nterm+1)=poly_term(wksp(:nterm+1),0.5_sp)} The \texttt{poly_term} function in \texttt{nrutil} tabulates the partial sums of a polynomial, or, equivalently, performs the synthetic division of a polynomial by a monomial.

Small-scale parallelism in \texttt{eulsum} is achieved straightforwardly by the use of vector constructions and \texttt{poly_term} (which parallelizes recursively). The routine is not written to take advantage of data parallelism in the (infrequent) case of wanting to sum many different series simultaneously; nor, since \texttt{wksp} is a \texttt{SAVE}d variable, can it be used in many simultaneous instances on a MIMD machine. (You can easily recode these generalizations if you need them.)

\begin{verbatim}
SUBROUTINE ddpoly(c,x,pd)
USE nrtype; USE nrutil, ONLY : arth,cumprod,poly_term
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd

Given the coefficients of a polynomial of degree \(N_c - 1\) as an array \(c(1:N_c)\) with \(c(1)\) being the constant term, and given a value \(x\), this routine returns the polynomial evaluated at \(x\) as \(pd(1)\) and \(N_d - 1\) derivatives as \(pd(2:N_d)\).

INTEGER(I4B) :: i,nc,nd
REAL(SP), DIMENSION(size(pd)) :: fac
REAL(SP), DIMENSION(size(c)) :: d
nc=size(c)
nd=size(pd)
d(nc:1:-1)=poly_term(c(nc:1:-1),x)
do i=2,min(nd,nc)
d(nc:1:-1)=poly_term(d(nc:1:-1),x)
dcend
pd=d(1:nd)
fac=cumprod(arth(1.0_sp,1.0_sp,nd))
After the first derivative, factorial constants
pd(3:nd)=fac(2:nd-1)*pd(3:nd)
come in.
END SUBROUTINE ddpoly
\end{verbatim}
The poly term function in *nrutil* tabulates the partial sums of a polynomial, or, equivalently, performs synthetic division. See §22.3 for a discussion of why *ddpoly* is coded this way.

fac=cumprod(arth(1.0_sp,1.0_sp,nd)) Here the function arth from *nrutil* generates the sequence 1, 2, 3, ... The function *cumprod* then tabulates the cumulative products, thus making a table of factorials.

Notice that *ddpoly* doesn’t need an argument to pass \( N_d \), the number of output terms desired by the user: It gets that information from the length of the array *pd* that the user provides for it to fill. It is a minor curiosity that *pd*, declared as INTENT(OUT), can thus be used, on the sly, to pass some INTENT(IN) information. (A Fortran 90 brain teaser could be: A subroutine with only INTENT(OUT) arguments can be called to print any specified integer. How is this done?)

```fortran
SUBROUTINE poldiv(u,v,q,r)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r

Given the \(N \) coefficients of a polynomial in \(u \), and the \(N \) coefficients of another polynomial in \(v \), divide the polynomial \(u \) by the polynomial \(v \) ("\(u/v \") giving a quotient polynomial whose coefficients are returned in \(q \), and a remainder polynomial whose coefficients are returned in \(r \). The arrays \(q \) and \(r \) are of length \(N \), but only the first \(N - N_v + 1 \) elements of \(q \) and the first \(N_v - 1 \) elements of \(r \) are used. The remaining elements are returned as zero.

INTEGER(I4B) :: i,n,nv
n=assert_eq(size(u),size(q),size(r),'poldiv')
nv=size(v)
r(:)=u(:)
q(:)=0.0
DO i=n-nv,0,-1
 q(i+1)=r(nv+i)/v(nv)
 r(i+1:nv+i-1)=r(i+1:nv+i-1)-q(i+1)*v(1:nv-1)
END DO
r(nv:n)=0.0
END SUBROUTINE poldiv
```

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x Note precision! Change to REAL(SP) if desired.
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s

Given \( mm \), \( kk \), and \( \text{cof}(1:mm+kk+1) \), evaluate and return the rational function \( (\text{cof}(1) + \text{cof}(2)x + \cdots + \text{cof}(mm+1)x^{mm})/(1 + \text{cof}(mm+2)x + \cdots + \text{cof}(mm+kk+1)x^{kk}) \).

ratval_s=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_s

This simple routine uses the function *poly* from *nrutil* to evaluate the numerator and denominator polynomials. Single- and double-precision versions, *ratval_s* and *ratval_v*, are overloaded onto the name *ratval* when the module *nr* is used.
FUNCTION ratval_v(x, cof, mm, kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm, kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
ratval_v=poly(x, cof(1:mm+1))/(1.0_dp+x*poly(x, cof(mm+2:mm+kk+1)))
END FUNCTION ratval_v

* * * *

The routines recur1 and recur2 are new in this volume, and do not have Fortran 77 counterparts. First- and second-order linear recurrences are implemented as trivial do-loops on strictly serial machines. On parallel machines, however, they pose different, and quite interesting, programming challenges. Since many calculations can be decomposed into recurrences, it is useful to have general, parallelizable routines available. The algorithms behind recur1 and recur2 are discussed in §22.2.

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B), PARAMETER :: NPAR_RECUR1=8
Given vectors $a$ of size $n$ and $b$ of size $n-1$, returns a vector $u$ that satisfies the first order linear recurrence $u_1 = a_1$, $u_j = a_j + b_{j-1}u_{j-1}$, for $j = 2, \ldots, n$. Parallelization is via a recursive evaluation.
INTEGER(I4B) :: n,j
n=assert_eq(size(a),size(b)+1,'recur1')
u(1)=a(1)
if (n < NPAR_RECUR1) then
   Do short vectors as a loop.
do j=2,n
      u(j)=a(j)+b(j-1)*u(j-1)
   end do
else
   Otherwise, combine coefficients and recurse on the even components, then evaluate all the odd components in parallel:
u(2:n:2)=recur1(a(2:n:2)+a(1:n-1:2)*b(1:n-1:2), &
b(3:n:2)+b(2:n-2:2))
u(3:n:2)=a(3:n:2)+b(2:n-1:2)*u(2:n-1:2)
end if
END FUNCTION recur1

* * * *

RECURSIVE FUNCTION recur1(a,b) RESULT(u) When a recursive function invokes itself only indirectly through a sequence of function calls, then the function name can be used for the result just as in a nonrecursive function. When the function invokes itself directly, however, as in recur1, then another name must be used for the result. If you are hazy on the syntax for RESULT, see the discussion of recursion in §21.5.
FUNCTION recur2(a, b, c)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a, b, c
REAL(SP), DIMENSION(size(a)) :: recur2

Given vectors \( a \) of size \( n \) and \( b \) and \( c \) of size \( n-2 \), returns a vector \( u \) that satisfies the second order linear recurrence

\[
\begin{align*}
u_1 &= a_1, \\
u_2 &= a_2, \\
u_j &= a_j + b_{j-2}u_{j-1} + c_{j-2}u_{j-2}, \quad \text{for } j = 3, \ldots, n.
\end{align*}
\]

Parallelization is via conversion to a first order recurrence for a two-dimensional vector.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)-1) :: a1, a2, u1, u2
REAL(SP), DIMENSION(size(a)-2) :: b11, b12, b21, b22

n = assert_eq(size(a), size(b)+2, size(c)+2, 'recur2')

a1(1) = a(1)
a2(1) = a(2)
a1(2:n-1) = 0.0
a2(2:n-1) = a(3:n)
b11(1:n-2) = 0.0
b12(1:n-2) = 1.0
b21(1:n-2) = c(1:n-2)
b22(1:n-2) = b(1:n-2)

call recur1_v(a1, a2, b11, b12, b21, b22, u1, u2)
recur2(1:n-1) = u1(1:n-1)
recur2(n) = u2(n-1)

CONTAINS

RECURSIVE SUBROUTINE recur1_v(a1, a2, b11, b12, b21, b22, u1, u2)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a1, a2, b11, b12, b21, b22
REAL(SP), DIMENSION(:), INTENT(OUT) :: u1, u2
INTEGER(I4B), PARAMETER :: NPAR_RECUR2=8

Used by recur2 to evaluate first order vector recurrence. Routine is a two-dimensional vector version of recur1, with matrix multiplication replacing scalar multiplication.

INTEGER(I4B) :: n, j, nn, nn1
REAL(SP), DIMENSION(size(a1)/2) :: aa1, aa2
REAL(SP), DIMENSION(size(a1)/2-1) :: bb11, bb12, bb21, bb22

n = assert_eq((/size(a1), size(a2), size(b11)+1, size(b12)+1, size(b21)+1, &
size(b22)+1, size(u1), size(u2)/), 'recur1_v')

u1(1) = a1(1)
u2(1) = a2(1)

if (n < NPAR_RECUR2) then

Do short vectors as a loop.
do j = 2, n
  u1(j) = a1(j) + b11(j-1)*u1(j-1) + b12(j-1)*u2(j-1)
  u2(j) = a2(j) + b21(j-1)*u1(j-1) + b22(j-1)*u2(j-1)
end do

else

Otherwise, combine coefficients and recurse on the even components, then evaluate all the odd components in parallel.

nn = n/2
nn1 = nn - 1

aa1(1:nn) = a1(2:nn+2) + b11(1:nn-1) + a1(1:nn-1)
bb11(1:nn-1) = b11(1:nn-1) + b11(2:nn-2)
bb12(1:nn-1) = b12(1:nn-1) + b12(2:nn-2)
bb21(1:nn-1) = b21(1:nn-1) + b21(2:nn-2)
bb22(1:nn-1) = b22(1:nn-1) + b22(2:nn-2)

call recur1_v(aa1, aa2, bb11, bb12, bb21, bb22, uu1, uu2)

uu1(1:nn) = a1(1:nn) + b11(1:nn-1)*uu1(1:nn-1) + b12(1:nn-1)*uu2(1:nn-1)

end if
FUNCTION dfridr(func,x,h,err)
USE nrtype; USE nrutil, ONLY : assert, geop, iminloc
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.

Parameters: Step size is decreased by CON at each iteration. Max size of tableau is set by NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.

Parameters: Step size is decreased by CON at each iteration. Max size of tableau is set by NTAB. Return when error is SAFE worse than the best so far.

FUNCTION dfridr(func,x,h,err)
USE nrtype; USE nrutil, ONLY : assert, geop, iminloc
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.

Parameters: Step size is decreased by CON at each iteration. Max size of tableau is set by NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.

Parameters: Step size is decreased by CON at each iteration. Max size of tableau is set by NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.

Parameters: Step size is decreased by CON at each iteration. Max size of tableau is set by NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp, CON2=CON*CON, BIG=huge(x), SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in x over which func changes substantially. A estimate of the error in the derivative is returned as err.
The function `iminloc` in `nrutil` is useful when you need to know the index of the smallest element in an array.

```fortran
f90
ierrmin=iminloc(ert(1:i-1))
```

The function `iminloc` in `nrutil` is useful when you need to know the index of the smallest element in an array.

```fortran
FUNCTION chebft(a,b,n,func)
USE nrtype; USE nrutil, ONLY : arth,outerprod
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
Chebyshev fit: Given a function `func`, lower and upper limits of the interval $[a, b]$, and a maximum degree n, this routine computes the n coefficients c_k such that $\sum_{k=1}^{n} c_k T_k(y) - c_1/2$, where y and x are related by (5.8.10). This routine is to be used with moderately large n (e.g., 30 or 50), the array of c's subsequently to be truncated at the smaller value m such that c_{m+1} and subsequent elements are negligible.

```fortran
REAL(DP) :: bma,bpa
REAL(DP), DIMENSION(n) :: theta
bma=0.5_dp*(b-a)
bpa=0.5_dp*(b+a)
theta(:)=PI_D*arth(0.5_dp,1.0_dp,n)/n
chebft(:)=matmul(cos(outerprod(arth(0.0_dp,1.0_dp,n),theta)), &
func(real(cos(theta)*bma+bpa,sp)))*2.0_dp/n
```

Here again Fortran 90 produces a very concise parallelizable formulation that requires some effort to decode. Equation (5.8.7) is a product of the matrix of cosines, where the rows are indexed by j and the columns by k, with the vector of function values indexed by k. We use the `outerprod` function in `nrutil` to form the matrix of arguments for the cosine, and rely on the element-by-element application of `cos` to produce the matrix of cosines. `matmul` then takes care of the matrix product. A subtlety is that, while the calculation is being done in double precision to minimize roundoff, the function is assumed to be supplied in single precision. Thus `real(...)` is used to convert the double precision argument to single precision.

```fortran
FUNCTION chebft(a,b,n,func)
USE nrtype; USE nrutil, ONLY : arth,outerprod
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
Chebyshev fit: Given a function `func`, lower and upper limits of the interval $[a, b]$, and a maximum degree $n$, this routine computes the $n$ coefficients $c_k$ such that $\sum_{k=1}^{n} c_k T_k(y) - c_1/2$, where $y$ and $x$ are related by (5.8.10). This routine is to be used with moderately large $n$ (e.g., 30 or 50), the array of $c$'s subsequently to be truncated at the smaller value $m$ such that $c_{m+1}$ and subsequent elements are negligible.

```fortran
REAL(DP) :: bma,bpa
REAL(DP), DIMENSION(n) :: theta
bma=0.5_dp*(b-a)
bpa=0.5_dp*(b+a)
theta(:)=PI_D*arth(0.5_dp,1.0_dp,n)/n
chebft(:)=matmul(cos(outerprod(arth(0.0_dp,1.0_dp,n),theta)), &
func(real(cos(theta)*bma+bpa,sp)))*2.0_dp/n
```

Chebyshev evaluation: All arguments are input. $c$ is an array of length $M$ of Chebyshev coefficients, the first $M$ elements of $c$ output from `chebft` (which must have been called...
The name chebev is overloaded with scalar and vector versions. chebev_v is essentially identical to chebev_s except for the declarations of the variables. Fortran 90 does the appropriate scalar or vector arithmetic in the body of the routine, depending on the type of the variables.

* * *

FUNCTION chder(a,b,c)
USE nrtype; USE nrutil, ONLY : arth,cumsum
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder

This routine returns an array of length N containing the Chebyshev coefficients of the derivative of the function whose coefficients are in the array c. Input are a,b,c, as output...
from routine chebft §5.8. The desired degree of approximation \( N \) is equal to the length of \( c \) supplied.

\[
\text{INTEGER} (15B) :: \ n
\]

\[
\text{REAL(SP)} :: \ con
\]

\[
\text{REAL(SP), DIMENSION(size(c)) :: temp}
\]

\[
\text{n} = \text{size}(c)
\]

\[
\text{temp}(1) = 0.0
\]

\[
\text{temp}(2:n) = 2.0_{-6}\text{arth}(n-1,-1,n-1) \times c(n:2:-1)
\]

\[
\text{chder}(n:1:-2) = \text{cumsum}(\text{temp}(1:n:2))
\]

\[
\text{chder}(n-1:1:-2) = \text{cumsum}(\text{temp}(2:n:2))
\]

\[
\text{con} = 2.0_{-6}\text{arth}(b-a)
\]

\[
\text{chder} = \text{chder} \times \text{con}
\]

\[
\text{END FUNCTION chder}
\]

\[
\text{FUNCTION chint(a,b,c)}
\]

\[
\text{USE nrtype; USE nrutil, ONLY : arth}
\]

\[
\text{IMPLICIT NONE}
\]

\[
\text{REAL(SP), INTENT(IN) :: a,b}
\]

\[
\text{REAL(SP), DIMENSION(:,), INTENT(IN) :: c}
\]

\[
\text{REAL(SP), DIMENSION(size(c)) :: chint}
\]

\[
\text{This routine returns an array of length \( N \) containing the Chebyshev coefficients of the integral of the function whose coefficients are in the array \( c \). Input are \( a,b,c \), as output from routine chebft §5.8. The desired degree of approximation \( N \) is equal to the length of \( c \) supplied. The constant of integration is set so that the integral vanishes at \( a \). }
\]

\[
\text{INTEGER} (15B) :: \ n
\]

\[
\text{REAL(SP) :: \ con}
\]

\[
\text{n} = \text{size}(c)
\]

\[
\text{con} = 0.25_{-6}\text{arth}(b-a)
\]

\[
\text{chint}(2:n-1) = \text{con} \times (c(1:n-2)-c(3:n))/\text{arth}(1,1,n-2)
\]

\[
\text{chint}(n) = \text{con} \times c(n-1)/(n-1)
\]

\[
\text{chint}(1) = 2.0_{-6}\text{arth}(\text{sum(chint(2:n:2))}-\text{sum(chint(3:n:2)))}
\]

\[
\text{END FUNCTION chint}
\]

If you look at equation (5.9.1) for the Chebyshev coefficients of the integral of a function, you will see \( c_i - 1 \) and \( c_i + 1 \) and be tempted to use \text{eoshift}. We think it is almost always better to use array sections instead, as in the code above, especially if your code will ever run on a serial machine.

\[
\ast \ast \ast
\]

\[
\text{FUNCTION chebpc(c)}
\]

\[
\text{USE nrtype}
\]

\[
\text{IMPLICIT NONE}
\]

\[
\text{REAL(SP), DIMENSION(:,), INTENT(IN) :: c}
\]

\[
\text{REAL(SP), DIMENSION(size(c)) :: chebpc}
\]

\[
\text{Chebyshev polynomial coefficients. Given a coefficient array \( c \) of length \( N \), this routine returns a coefficient array \( d \) of length \( N \) such that \( \sum_{k=1}^{N} d_k y^{k-1} = \sum_{k=1}^{N} c_k T_{k-1}(y) - c_1/2 \). The method is Clenshaw's recurrence (5.8.11), but now applied algebraically rather than arithmetically.}
\]

\[
\text{INTEGER} (15B) :: \ j,n
\]

\[
\text{REAL(SP), DIMENSION(size(c)) :: dd,sv}
\]

\[
\text{n} = \text{size}(c)
\]

\[
\text{chebpc}=0.0
\]

\[
\text{dd}=0.0
\]

\[
\text{chebpc}(1)=c(n)
\]

\[
\text{do } j=n-1,2,-1
\]

\[
\text{sv}(2:n-j+1)=\text{chebpc}(2:n-j+1)
\]

\[
\text{chebpc}(2:n-j+1)=2.0_{-6}\text{arah}(c(n-j))-dd(2:n-j+1)
\]

\[
\text{dd}(2:n-j+1)=sv(2:n-j+1)
\]

\[
\text{END FUNCTION chebpc}
\]
sv(1)=chebpc(1)
chebpc(1)=-dd(1)+c(j)
dd(1)=sv(1)
end do
chebpc(2:n)=chebpc(1:n-1)-dd(2:n)
chebpc(1)=-dd(1)*0.5_sp+c(1)
END FUNCTION chebpc

* * *

SUBROUTINE pcshft(a,b,d)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: d
Polynomial coefficient shift. Given a coefficient array \( d \) of length \( N \), this routine generates a coefficient array \( g \) of the same length such that
\[
\sum_{k=1}^{N} d_k y^{k-1} = \sum_{k=1}^{N} g_k x^{k-1},
\]
where \( x \) and \( y \) are related by (5.8.10), i.e., the interval \(-1 < y < 1\) is mapped to the interval \( a < x < b \). The array \( g \) is returned in \( d \).
INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(d)) :: dd
REAL(SP) :: x
n=size(d)
d=d*geop(1.0_sp,2.0_sp/(b-a),n)
x=-0.5_sp*(a+b)
d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1
   d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
   d(1)=d(1)*x+dd(j)
end do
END SUBROUTINE pcshft

There is a subtle, but major, distinction between the synthetic division algorithm used in the Fortran 77 version of \texttt{pcshft} and that used above. In the Fortran 77 version, the synthetic division (translated to Fortran 90 notation) is
\[
d(1:n)=dd(1:n)
d j=1,n-1
do \ k=n-1,j,-1
   \ d(k)=x*d(k+1)+d(k)
end do
end do
\]
while, in Fortran 90, it is
\[
d(1)=dd(n)
d(2:n)=0.0
\]
\[
d j=n-1,1,-1
   \ d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
   \ d(1)=d(1)*x+dd(j)
end do
\]
As explained in §22.3, these are algebraically — but not algorithmically — equivalent. The inner loop in the Fortran 77 version does not parallelize, because each \( k \) value uses the result of the previous one. In fact, the \( k \) loop is a synthetic division, which can be parallelized recursively (as in the \texttt{nrutil} routine \texttt{poly_term}), but not simply.
vectorized. In the Fortran 90 version, since not one but n-1 successive synthetic divisions are to be performed (by the outer loop), it is possible to reorganize the calculation to allow vectorization.

```fortran
FUNCTION pccheb(d)
USE nrttyp; USE nrtutil, ONLY : arth,cumprod,geop
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb
 Inverse of routine chebpc: given an array of polynomial coefficients d, returns an equivalent array of Chebyshev coefficients of the same length.
INTEGER(I4B) :: k,n
REAL(SP), DIMENSION(size(d)) :: denom,numer,pow
n=size(d)
pcheb(1)=2.0_sp*d(1)
pow=geop(1.0_sp,2.0_sp,n)
 Powers of 2.
numer(1)=1.0
 Combinatorial coefficients computed as numer/denom.
denom(1)=1.0
denom(2:(n+3)/2)=cumprod(arth(1.0_sp,1.0_sp,(n+1)/2))
pcheb(2:n)=0.0
 Denom(2) a big number.
do k=2,n
 Loop over orders of x in the polynomial.
 numer(2:(k+3)/2)=cumprod(arth(k-1.0_sp,-1.0_sp,(k+1)/2))
pcheb(k:1:-2)=pccheb(k:1:-2)+
 d(k)/pow(k-1)*numer(1:(k+1)/2)/denom(1:(k+1)/2)
end do
END FUNCTION pccheb
```

```fortran
SUBROUTINE pade(cof,resid)
USE nrttyp
USE nr, ONLY : lubksb,ludcmp,mprove
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof
 DP for consistency with ratval.
REAL(SP), INTENT(OUT) :: resid
 Given cof(1:2*N+1), the leading terms in the power series expansion of a function, solve the linear Padé equations to return the coefficients of a diagonal rational function approximation to the same function, namely (cof(1)+cof(2)*x+...+cof(N+1)*x^N)/(1+cof(N+2)*x^2+...+cof(2*N+1)*x^N). The value resid is the norm of the residual vector; a small value indicates a well-converged solution.
INTEGER(I4B) :: k,n
INTEGER(I4B), DIMENSION((size(cof)-1)/2) :: indx
REAL(SP), PARAMETER :: BIG=1.0e30_sp
A big number.
REAL(SP) :: d,rr,rrold
REAL(SP), DIMENSION((size(cof)-1)/2) :: x,y,z
REAL(SP), DIMENSION((size(cof)-1)/2,(size(cof)-1)/2) :: q,qlu
n=(size(cof)-1)/2
x=cof(n+2:n+1)
 Set up matrix for solving.
y=x
do k=1,n
 q(:,k)=cof(n+2-k:2*n+1-k)
end do
qlu=q
 Solve by LU decomposition and backsubstitution.
call ludcmp(qlu,indx,d)
call lubksb(qlu,indx,x)
rr=BIG
do
 Important to use iterative improvement, since the Padé equations tend to be ill-conditioned.
rrold=rr
```

z=x
call mprove(q, qlu, indx, y, x)
rr=sum((z-x)**2)
if (rr >= rrold) exit
end do
resid=sqrt(rrold)
do k=1,n
  y(k)=cof(k+1)-dot_product(z(1:k),cof(k:1:-1))
end do
cof(2:n+1)=y
cof(n+2:2*n+1)=-z
END SUBROUTINE pade

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype; USE nrutil, ONLY : arth,geop
USE nr, ONLY : ratval,svbksb,svdcmp
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: NPFAC=8,MAXIT=5
REAL(DP), PARAMETER :: BIG=1.0e30_dp

Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the function func in the interval (a,b). Input quantities mm and kk specify the order of the numerator and denominator, respectively. The maximum absolute deviation of the approximation (insofar as is known) is returned as dev. Note that double-precision versions of svdcmp and svbksb are called.

INTEGER(I4B) :: it,ncof,npt,npth
REAL(DP) :: devmax,e,theta
REAL(DP), DIMENSION((mm+kk+1)*NPFAC) :: bb,ee,fs,wt,xs
REAL(DP), DIMENSION(mm+kk+1) :: coff,w
REAL(DP), DIMENSION(mm+kk+1,mm+kk+1) :: v
REAL(DP), DIMENSION((mm+kk+1)*NPFAC,mm+kk+1) :: u,temp
ncof=mm+kk+1
npt=NPFAC*ncof
i.e., fineness of the mesh.
de=BIG
theta=PI0_D/(npt-1)
theta=PI0_D/(npt-1)
xs=1:npt-1)a=+sin(theta*arth(0,1,npt-1))**2
Now fill arrays with mesh abscissas and function values. At each end, use formula that mini-
izes roundoff sensitivity in xs.
xs(1:npt)=b-(b-a)*sin(theta*arth(npt-npt,1,npt-npt+1))**2
In later iterations we will adjust these weights to
wt=1.0
ee=1.0
In later iterations we will adjust these weights to
w=0.0
do it=1,MAXIT
Loop over iterations.
bb=wt*(fs+sign(e,ee))
Key idea here: Fit to fs(x)+e where the deviation is positive, to fs(x)−e where it is
negative. Then e is supposed to become an approximation to the equal-ripple deviation.
temp=geop(spread(1.0_dp,1,npt),xs,ncof)
Note that vector form of {\textit{geop}} (returning matrix) is being used.

\begin{verbatim}
   u(:,1:mm+1)=temp(:,1:mm+1)*spread(wt,2,mm+1)
   Set up the "design matrix" for the least squares fit.
   u(:,mm+2:ncof)=-temp(:,2:ncof-mm)*spread(bb,2,ncof-mm-1)
   call svdcmp(u,v)
   Singular Value Decomposition. In especially singular or difficult cases, one might here edit the singular values w(1:ncof), replacing small values by zero.
   call svbksb(u,w,v,bb,coff)
   e=ratval(xs,coff,mm,kk)-fs
   Tabulate the deviations and revise the weights.
   wt=abs(e)
   Use weighting to emphasize most deviant points.
   devmax=maxval(wt)
   e=sum(wt)/npt
   Update e to be the mean absolute deviation.
   if (devmax <= dev) then
      Save only the best coefficient set found.
      cof=coff
      dev=devmax
      end if
   write(*,10) it,devmax
   end do
10 format (' ratlsq iteration=',i2,' max error=',1p,e10.3)
END SUBROUTINE ratlsq
\end{verbatim}

The design matrix \( u_{ij} \) is defined for \( i = 1, \ldots, \text{npts} \) by
\begin{equation}
   u_{ij} = \begin{cases} 
   w_i x_i^{j-m}, & j = m+2, \ldots, n \\
   -b_i x_i^{j-m-1}, & j = 1, \ldots, m+1 
   \end{cases}
\end{equation}
(B5.12)

The first case in equation (B5.12) is computed in parallel by constructing the matrix \( \text{temp} \) equal to
\[
\begin{bmatrix}
1 & x_1 & x_1^2 & \cdots \\
1 & x_2 & x_2^2 & \cdots \\
1 & x_3 & x_3^2 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]
and then multiplying by the matrix \( \text{spread}(wt,2,\text{mm}+1) \), which is just
\[
\begin{bmatrix}
w_1 & w_1 & w_1 & \cdots \\
w_2 & w_2 & w_2 & \cdots \\
w_3 & w_3 & w_3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

(Remember that multiplication using * means element-by-element multiplication, not matrix multiplication.) A similar construction is used for the second part of the design matrix.
Chapter B6. Special Functions

A Fortran 90 intrinsic function such as \( \sin(x) \) is both \textit{generic} and \textit{elemental}. Generic means that the argument \( x \) can be any of multiple intrinsic data types and kind values (in the case of \( \sin \), any real or complex kind). Elemental means that \( x \) need not be a scalar, but can be an array of any rank and shape, in which case the calculation of \( \sin \) is performed independently for each element.

Ideally, when we implement more complicated special functions in Fortran 90, as we do in this chapter, we would make them, too, both generic and elemental. Unfortunately, the language standard does not completely allow this. User-defined elemental functions are prohibited in Fortran 90, though they will be allowed in Fortran 95. And, there is no fully automatic way of providing for a single routine to allow arguments of multiple data types or kinds — nothing like C++’s “class templates,” for example.

However, don’t give up hope! Fortran 90 does provide a powerful mechanism for overloading, which can be used (perhaps not always with a maximum of convenience) to \textit{simulate} both generic and elemental function features. In most cases, when we implement a special function with a scalar argument, \( \text{gammln}(x) \) say, we will also implement a corresponding vector-valued function of vector argument that evaluates the special function for each component of the vector argument. We will then overload the scalar and vector version of the function onto the same function name. For example, within the \texttt{nr} module are the lines

```fortran
INTERFACE gammln
 FUNCTION gammln_s(xx)
 USE nrtype
 REAL(SP), INTENT(IN) :: xx
 REAL(SP) :: gammln_s
 END FUNCTION gammln_s

 FUNCTION gammln_v(xx)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: xx
 REAL(SP), DIMENSION(size(xx)) :: gammln_v
 END FUNCTION gammln_v
END INTERFACE
```

which can be included by a statement like “\texttt{USE nr, ONLY: gammln,}” and then allow you to write \( \text{gammln}(x) \) without caring (or even thinking about) whether \( x \) is a scalar or a vector. If you want arguments of even higher rank (matrices, and so forth), you can provide these yourself, based on our models, and overload them, too.

That takes care of “elemental”; what about “generic”? Here, too, overloading provides an acceptable, if not perfect, solution. Where double-precision versions of special functions are needed, you can in many cases easily construct them from our provided routines by changing the variable kinds (and any necessary convergence
parameters), and then additionally overload them onto the same generic function names. (In general, in the interest of brevity, we will not ourselves do this for the functions in this chapter.)

At first meeting, Fortran 90’s overloading capability may seem trivial, or merely cosmetic, to the Fortran 77 programmer; but one soon comes to rely on it as an important conceptual simplification. Programming at a “higher level of abstraction” is usually more productive than spending time “bogged down in the mud.” Furthermore, the use of overloading is generally fail-safe: If you invoke a generic name with arguments of shapes or types for which a specific routine has not been defined, the compiler tells you about it.

We won’t reprint the module \texttt{nr}’s interface blocks for all the routines in this chapter. When you see routines named \texttt{something\_s} and \texttt{something\_v}, below, you can safely assume that the generic name \texttt{something} is defined in the module \texttt{nr} and overloaded with the two specific routine names. A full alphabetical listing of all the interface blocks in \texttt{nr} is given in Appendix C2.

Given our heavy investment, in this chapter, in overloadable vector-valued special function routines, it is worth discussing whether this effort is simply a stopgap measure for Fortran 90, soon to be made obsolete by Fortran 95’s provision of user-definable \texttt{ELEMENTAL} procedures. The answer is “not necessarily,” and takes us into some speculation about the future of SIMD, versus MIMD, computing.

Elemental procedures, while applying the same executable code to each element, do not insist that it be feasible to perform all the parallel calculations in lockstep. That is, elemental procedures can have tests and branches (\texttt{if-then-else} constructions) that result in different elements being calculated by totally different pieces of code, in a fashion that can only be determined at run time. For true 100\% MIMD (multiple instruction, multiple data) machines, this is not a problem: individual processors do the individual element calculations asynchronously.

However, virtually none of today’s (and likely tomorrow’s) largest-scale parallel supercomputers are 100\% MIMD in this way. While modern parallel supercomputers increasingly have MIMD features, they continue to reward the use of SIMD (single instruction, multiple data) code with greater computational speed, often because of hardware pipelining or vector processing features within the individual processors. The use of Fortran 90 (or, for that matter Fortran 95) in a data-parallel or SIMD mode is thus by no means superfluous, or obviated by Fortran 95’s \texttt{ELEMENTAL} construction.

The problem we face is that parallel calculation of special function values often doesn’t fit well into the SIMD mold: Since the calculation of the value of a special function typically requires the convergence of an iterative process, as well as possible branches for different values of arguments, it cannot in general be done efficiently with “lockstep” SIMD programming.

Luckily, in particular cases, including most (but not all) of the functions in this chapter, one can in fact make reasonably good parallel implementations with the SIMD tools provided by the language. We will in fact see a number of different tricks for accomplishing this in the code that follows.

We are interested in demonstrating SIMD techniques, but we are not completely impractical. None of the data-parallel implementations given below are too inefficient on a scalar machine, and some may in fact be faster than Fortran 95’s \texttt{ELEMENTAL
alternative, or than do-loops over calls to the scalar version of the function. On a scalar machine, how can this be? We have already, above, hinted at the answer: (i) most modern scalar processors can overlap instructions to some degree, and data-parallel coding often provides compilers with the ability to accomplish this more efficiently; and (ii) data-parallel code can sometimes give better cache utilization.

* * *

FUNCTION gammln_s(xx)
USE nrtype; USE nrutil, ONLY : arth, assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
Returns the value \( \ln[\Gamma(xx)] \) for \( xx > 0 \).
REAL(DP) :: tmp, x
Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure accuracy is good enough.
REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&
 -86.50532032941677_dp, 24.01409824083091_dp,&
 -1.231739572450155_dp, 0.1208650973866179e-2_dp,&
 -0.5395239384953e-5_dp/)
call assert(xx > 0.0, 'gammln_s arg')
x=x
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
gammln_s=tmp+log(stp*(1.000000000190015_dp+&
 sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef))))/x))
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype; USE nrutil, ONLY: assert
IMPLICIT NONE
INTEGER(I4B) :: i
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
REAL(DP), DIMENSION(size(xx)) :: ser, tmp, x, y
REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&
 -86.50532032941677_dp, 24.01409824083091_dp,&
 -1.231739572450155_dp, 0.1208650973866179e-2_dp,&
 -0.5395239384953e-5_dp/)
if (size(xx) == 0) RETURN
call assert(all(xx > 0.0), 'gammln_v arg')
x=x
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
gammln_v=tmp+log(stp*ser/x)
END FUNCTION gammln_v
We use the `nrutil` routine `assert` for functions that have restrictions on the allowed range of arguments. One could instead have used an `if` statement with a call to `nrerror`; but we think that the uniformity of using `assert`, and the fact that its logical arguments read the “desired” way, not the “erroneous” way, make for a clearer programming style. In the vector version, the `assert` line is:

\[
\text{call assert(all(xx > 0.0), 'gammln_v arg')}
\]

Notice that the scalar and vector versions achieve parallelism in quite different ways, something that we will see many times in this chapter. In the scalar case, parallelism (at least small-scale) is achieved through

\[
\text{sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef)))}
\]

Here vector utilities construct the series \( x + 1, x + 2, \ldots \) and then sum a series with these terms in the denominators and a vector of coefficients in the numerators. (This code may seem terse to Fortran 90 novices, but once you get used to it, it is quite clear to read.)

In the vector version, by contrast, parallelism is achieved across the components of the vector argument, and the above series is evaluated sequentially as a `do`-loop. Obviously the assumption is that the length of the vector argument is much longer than the very modest number (here, 6) of terms in the sum.

```fortran
FUNCTION factrl_s(n)
 USE nrtype; USE nrutil, ONLY : arth, assert, cumprod
 USE nr, ONLY : gammln
 IMPLICIT NONE
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP) :: factrl_s

 Returns the value \(n! \) as a floating-point number.

 INTEGER(I4B), SAVE :: ntop=0
 INTEGER(I4B), PARAMETER :: NMAX=32
 REAL(SP), DIMENSION(NMAX), SAVE :: a Table of stored values.

 call assert(n >= 0, 'factrl_s arg')
 if (n < ntop) then
 factrl_s=a(n+1)
 else if (n < NMAX) then
 ntop=NMAX
 a(1)=1.0
 a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1))
 factrl_s=a(n+1)
 else
 factrl_s=exp(gammln(n+1.0_sp))
 end if
END FUNCTION factrl_s
```

By now you should recognize this as an idiom for generating a vector of consecutive factorials. The routines `cumprod` and `arth`, both in `nrutil`, are both capable of being parallelized, e.g., by recursion, so this idiom is potentially faster than an in-line `do`-loop.
FUNCTION factrl_v(n)
USE nrtype; USE nrutil, ONLY : arth, assert, cumprod
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(14B), DIMENSION(:,), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(14B), SAVE :: ntop=0
INTEGER(14B), PARAMETER :: NMAX=32
REAL(SP), DIMENSION(NMAX), SAVE :: a

!! Call assert(all(n >= 0), 'factrl_v arg')!!
!! if (ntop == 0) then !!
!! ntop=NMAX !!
!! a(1)=1.0 !!
!! a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1)) !!
!! end if !!
!!
!! where (.not. mask) factrl_v=a(n+1) !!
!!
END FUNCTION factrl_v

Here we meet the first of several solutions to a common problem: How shall we get answers, from an external vector-valued function, for just a subset of vector arguments, those defined by a mask? Here we use what we call the "pack-unpack" solution: Pack up all the arguments using the mask, send them to the function, and unpack the answers that come back. This packing and unpacking is not without cost (highly dependent on machine architecture, to be sure), but we hope to "earn it back" in the parallelism of the external function.

where (.not. mask) factrl_v=a(n+1) In some cases we might take care of the .not. mask case directly within the unpack construction, using its third ("FIELD=") argument to provide the not-unpacked values. However, there is no guarantee that the compiler won’t evaluate all components of the “FIELD=” array, if it finds it efficient to do so. Here, since the index of a(n+1) would be out of range, we can’t do it this way. Thus the separate where statement.

* * *

FUNCTION bico_s(n,k)
USE nrtype
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(14B), INTENT(IN) :: n,k
REAL(SP) :: bico_s

Returns the binomial coefficient \( \binom{n}{k} \) as a floating-point number.

bico_s=nint(exp(factln(n)-factln(k)-factln(n-k)))

The nearest-integer function cleans up roundoff error for smaller values of n and k.

END FUNCTION bico_s
FUNCTION bico_v(n,k)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(4B), DIMENSION(:,), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v
INTEGER(4B) :: ndum
ndum=assert_eq(size(n),size(k),'bico_v')
bico_v=nint(exp(factln(n)-factln(k)-factln(n-k)))
END FUNCTION bico_v

FUNCTION factln_s(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: n
REAL(SP) :: factln_s

Returns ln(n!).

INTEGER(4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
  Initialize the table.
  a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
  init=.false.
end if
if (n < TMAX) then
  In range of the table.
  factln_s=a(n+1)
else
  Out of range of the table.
  factln_s=gammln(n+1.0_sp)
end if
END FUNCTION factln_s

FUNCTION factln_v(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(4B), DIMENSION(:,), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
  a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
  init=.false.
end if
if (all(n >= 0), 'factln_v arg')
  mask = (n >= TMAX)
factln_v=unpack(gammln(pack(n,mask)+1.0_sp),mask,0.0_sp)
  where (.not. mask) factln_v=a(n+1)
END FUNCTION factln_v
Another example of the programming convenience of combining a function returning a vector (here, \texttt{arithmetic}) with a special function whose generic name (here, \texttt{gammln}) has an overloaded vector version.

\begin{verbatim}
FUNCTION beta_s(z,w)
USE nrtype
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s
    Returns the value of the beta function $B(z,w)$.
    beta_s=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_s

FUNCTION beta_v(z,w)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
INTEGER(I4B) :: ndum
    ndum=assert_eq(size(z),size(w),'beta_v')
    beta_v=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_v

FUNCTION gammp_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s
    call assert( x >= 0.0, a > 0.0, 'gammp_s args')
    if (x<a+1.0_sp) then
        Use the series representation.
        gammp_s=gser(a,x)
    else
        Use the continued fraction representation and take its complement.
        gammp_s=1.0_sp-gcf(a,x)
    end if
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(x)) :: gammp_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
    ndum=assert_eq(size(a),size(x),'gammp_vargs')
    call assert( all(x >= 0.0), all(a > 0.0), 'gammp_vargs')
    mask = (x<a+1.0_sp)
    gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &
        1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammp_v
\end{verbatim}
call assert(x >= 0.0, a > 0.0, 'gammp_s args')  The generic routine
assert in nrutil is overloaded with variants for more than one logical
assertion, so you can make more than one assertion about argument ranges.

gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &
1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask)  Here we meet
the second solution to the problem of getting masked values from an
external vector function.  (For the first solution, see note to factrl,
above.)  We call this one “merge with dummy values”: Inappropriate values of the
argument x (as determined by mask) are set to zero before gser, and later gcf, are
called, and the supernumerary answers returned are discarded by a final merge.  The
assumption here is that the dummy value sent to the function (here, zero) is a special
value that computes extremely fast, so that the overhead of computing and returning
the supernumerary function values is outweighed by the parallelism achieved on the
nontrivial components of x.  Look at gser_v and gcf_v below to judge whether
this assumption is realistic in this case.

FUNCTION gammq_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammq_s
Returns the incomplete gamma function
\( Q(a,x) \equiv 1 - P(a,x) \).

    call assert( x >= 0.0, a > 0.0, 'gammq_s args')
    if (x<a+1.0_sp) then  Use the series representation
        gammq_s=1.0_sp-gser(a,x)
        and take its complement.
    else
        gammq_s=gcf(a,x)
    end if
END FUNCTION gammq_s

FUNCTION gammq_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammq_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(x),'gammq_v')

    call assert( all(x >= 0.0), all(a > 0.0), 'gammq_v args')
    mask = (x<a+1.0_sp)
    gammq_v=merge(1.0_sp-gser(a,merge(x,0.0_sp,mask)), &
gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammq_v

FUNCTION gser_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)
Returns the incomplete gamma function $P(a, x)$ evaluated by its series representation as gamser. Also optionally returns ln $\Gamma(a)$ as gln.

```fortran
INTEGER :: n
REAL(SP) :: ap, del, summ
if (x == 0.0) then
 gser_s=0.0
 RETURN
end if
ap=a
summ=1.0_sp/a
del=summ
do n=1,ITMAX
 ap=ap+1.0_sp
 del=del*x/ap
 summ=summ+del
 if (abs(del) < abs(summ)*EPS) exit
end do
if (n > ITMAX) call nrerror('a too large, ITMAX too small in gser_s')
if (present(gln)) then
 gln=gammln(a)
 gser_s=summ*exp(-x+a*log(x)-gln)
else
 gser_s=summ*exp(-x+a*log(x)-gammln(a))
end if
END FUNCTION gser_s
```

```fortran
FUNCTION gser_v(a,x,gln)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)) :: ap, del, summ
LOGICAL(LGT), DIMENSION(size(a)) :: converged, zero
n=assert_eq(size(a),size(x),'gser_v')
zero=(x == 0.0)
where (zero) gser_v=0.0
ap=a
summ=1.0_sp/a
del=summ
converged=zero
do n=1,ITMAX
 where (.not. converged)
 ap=ap+1.0_sp
 del=del*x/ap
 summ=summ+del
 converged = (abs(del) < abs(summ)*EPS)
 end where
 if (all(converged)) exit
end do
if (n > ITMAX) call nrerror('a too large, ITMAX too small in gser_v')
if (present(gln)) then
 if (size(gln) < size(a)) call nrerror('Not enough space for gln')
 gln=gammln(a)
 where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gln)
else
 where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gammln(a))
end if
END FUNCTION gser_v
```
REAL(SP), OPTIONAL, INTENT(OUT) :: gln

Normally, an OPTIONAL argument will be INTENT(IN) and be used to provide a less-often-used extra input argument to a function. Here, the OPTIONAL argument is INTENT(OUT), used to provide a useful value that is a byproduct of the main calculation.

Also note that although \( x \geq 0 \) is required, we omit our usual call assert check for this, because gser is supposed to be called only by gammp or gammq — and these routines supply the argument checking themselves.

This is typical code in Fortran 90 for a loop with a maximum number of iterations, relying on Fortran 90’s guarantee that the index of the do-loop will be available after normal completion of the loop with a predictable value, greater by one than the upper limit of the loop. If the exit statement within the loop is ever taken, the if statement is guaranteed to fail; if the loop goes all the way through ITMAX cycles, the if statement is guaranteed to succeed.

\[
\text{zero}= (x == 0.0) \ldots \text{where (zero) gser_v}=0.0 \ldots \text{converged}=\text{zero}
\]

This is the code that provides for very low overhead calculation of zero arguments, as is assumed by the merge-with-dummy-values strategy in gammp and gammq. Zero arguments are “pre-converged” and are never the holdouts in the convergence test.

FUNCTION gcf_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS

Returns the incomplete gamma function \( Q(a,x) \) evaluated by its continued fraction representation as gammcf. Also optionally returns \( \ln \Gamma(a) \) as gln.

Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accuracy; FPMIN is a number near the smallest representable floating-point number.

INTEGER(14B) :: i
REAL(SP) :: an,b,c,d,del,h
if (x == 0.0) then
  gcf_s=1.0
  RETURN
end if
b=x+1.0_sp-a
an=-i*(i-a)

Iterate to convergence.

\[
\begin{align*}
b &= b + 2.0 \text{sp} \\
d &= \text{an} \cdot d + b \\
c &= b + \text{an} \cdot c \\
\text{if (abs(d) < FPMIN) d}=\text{FPMIN} \\
\text{c}=\text{FPMIN}
\end{align*}
\]

Set up for evaluating continued fraction by modified Lentz’s method (§5.2) with \( b_0 = 0 \).
d=1.0_sp/d
del=d*c
h=h*del
if (abs(del-1.0_sp) <= EPS) exit
end do
if (i > ITMAX) call nrerror('a too large, ITMAX too small in gcf_s')
if (present(gln)) then
gln=gammln(a)
gcf_s=exp(-x+a*log(x)-gln)*h  Put factors in front.
else
gcf_s=exp(-x+a*log(x)-gammln(a))*h
end if
end FUNCTION gcf_s

FUNCTION gcf_v(a,x,gln)
USE nrtype; USE nrutil, ONLY: assert_eq,nrerror
USE nr, ONLY: gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS
INTEGER(I4B) :: i
REAL(SP), DIMENSION(size(a)) :: an,b,c,d,del,h
LOGICAL(LGT), DIMENSION(size(a)) :: converged,zero
i=assert_eq(size(a),size(x),'gcf_v')
zero=(x == 0.0)
where (zero)
gcf_v=1.0
elsewhere
b=x+1.0_sp-a
c=1.0_sp/FPMIN
d=1.0_sp/b
h=d
end where
converged=zero
do i=1,ITMAX
where (.not. converged)
an=-i*(i-a)
b=b+2.0_sp
d=an*d+b
d=merge(FPMIN,d,abs(d)<FPMIN )
c=b*an/c
c=merge(FPMIN,c,abs(c)<FPMIN )
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp)<=EPS)
end where
if (all(converged)) exit
end do
if (i > ITMAX) call nrerror('a too large, ITMAX too small in gcf_v')
if (present(gln)) then
    if (size(gln) < size(a)) call nrerror('gser: Not enough space for gln')
gln=gammln(a)
else
    where (.not. zero) gcf_v=exp(-x+a*log(x)-gammln(a))*h
end if
end FUNCTION gcf_v
zero=(x == 0.0) ... where (zero) gcf_v=1.0 ... converged=zero See note on gser. Here, too, we pre-converge the special value of zero.

* * *

FUNCTION erf_s(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s
  Returns the error function erf(x).
  erf_s=gammp(0.5_sp,x**2)
  if (x < 0.0) erf_s=-erf_s
END FUNCTION erf_s

FUNCTION erf_v(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
  erf_v=gammp(spread(0.5_sp,1,size(x)),x**2)
  where (x < 0.0) erf_v=-erf_v
END FUNCTION erf_v

erf_v=gammp(spread(0.5_sp,1,size(x)),x**2) Yes, we do have an over-
loaded vector version of gammp, but it is vectorized on both its arguments.
Thus, in a case where we want to vectorize on only one argument, we
need a spread construction. In many contexts, Fortran 90 automatically makes
scalars conformable with arrays (i.e., it automatically spreads them to the shape of
the array); but the language does not do so when trying to match a generic function
or subroutine call to a specific overloaded name. Perhaps this is wise; it is safer to
prevent "accidental" invocations of vector-specific functions. Or, perhaps it is an
area where the language could be improved.

FUNCTION erfc_s(x)
USE nrtype
USE nr, ONLY : gammp,gammq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s
  Returns the complementary error function erfc(x).
  erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0)
END FUNCTION erfc_s

erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0) An example of our use of merge as an idiom for a conditional expression.
Once you get used to these, you’ll find them just as clear as the multiline
if...then...else alternative.
FUNCTION erfc_v(x)
USE nrtype
USE nr, ONLY : gammp, gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
mask = (x < 0.0)
erfc_v = merge(1.0_sp+gammp(spread(0.5_sp,1,size(x)), &
merge(x,0.0_sp,mask)**2),gammq(spread(0.5_sp,1,size(x)), &
merge(x,0.0_sp,.not. mask)**2),mask)
END FUNCTION erfc_v

erfc_v=merge(1.0_sp+... Another example of the “merge with dummy values” idiom described on p. 1090. Here positive values of x in the call to gammp, and negative values in the call to gammq, are first set to the dummy value zero. The value zero is a special argument that computes very fast. The unwanted dummy function values are then discarded by the final outer merge.

* * *

FUNCTION erfcc_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s
REAL(SP) :: t,z
REAL(SP), DIMENSION(10) :: coef = (-1.26551223_sp,1.00002368_sp,&
0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)
z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_s=t*exp(-z*z+poly(t,coef))
if (x < 0.0) erfcc_s=2.0_sp-erfcc_s
END FUNCTION erfcc_s

FUNCTION erfcc_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v,t,z
REAL(SP), DIMENSION(10) :: coef = (-1.26551223_sp,1.00002368_sp,&
0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)
z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_v=t*exp(-z*z+poly(t,coef))
where (x < 0.0) erfcc_v=2.0_sp-erfcc_v
END FUNCTION erfcc_v
erfcc_v=t*exp(-z*z+poly(t,coef))  The vector code is identical to the scalar, because the nrutil routine poly has overloaded cases for the evaluation of a polynomial at a single value of the independent variable, and at multiple values. One could also overload a version with a matrix of coefficients whose columns could be used for the simultaneous evaluation of different polynomials at different values of independent variable. The point is that as long as there are differences in the shapes of at least one argument, the intended version of poly can be discerned by the compiler.

```
 *
 *
 FUNCTION expint(n,x)
 USE nrtype; USE nrutil, ONLY : arth,assert,nrerror
 IMPLICIT NONE
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: expint
 INTEGER(I4B), PARAMETER :: MAXIT=100
 REAL(SP), PARAMETER :: EPS=epsilon(x),BIG=huge(x)*EPS
 Evaluates the exponential integral \(E_n(x) \).
 Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired relative error, not smaller than the machine precision; BIG is a number near the largest representable floating-point number; EULER (in nrtype) is Euler's constant \(\gamma \).
 INTEGER(I4B) :: i,nm1
 REAL(SP) :: a,b,c,d,del,fact,h
 call assert(n >= 0, x >= 0.0, (x > 0.0 .or. n > 1), &
 'expint args')
 if (n == 0) then Special case.
 expint=exp(-x)/x
 RETURN
 end if
 nm1=n-1
 if (x == 0.0) then Another special case.
 expint=1.0_sp/nm1
 else if (x > 1.0) then Lentz's algorithm (§5.2).
 b=x+n
 c=BIG
 d=1.0_sp/b
 h=d
 do i=1,MAXIT
 a=-i*(nm1+i)
 b=b+2.0_sp
 d=1.0_sp/(a*d+b) Denominators cannot be zero.
 c=c+a*d
 del=c*d
 h=h*del
 if (abs(del-1.0_sp) <= EPS) exit
 end do
 if (i > MAXIT) call nrerror('expint: continued fraction failed')
 expint=h*exp(-x)
 else Evaluate series.
 if (nm1 /= 0) then Set first term.
 expint=1.0_sp/nm1
 else
 expint=log(x)-EULER
 end if
 fact=1.0
 do i=1,MAXIT
 fact=fact*x/i
 if (i /= nm1) then
 del=fact/(i-nm1)
 end if
 end do
 end if
```

else \( \psi(n) \) appears here.
\[
\text{del} = \text{fact} \times (-\log(x) - \text{EULER} + \sum(1.0, 1, 1, n))
\]
end if
expint = expint + del
if (abs(del) < abs(expint) * EPS) exit
end do
if (i > MAXIT) call nrerror('expint: series failed')
end if
END FUNCTION expint

expint does not readily parallelize, and we thus don’t provide a vector version. For syntactic convenience you could make a vector version with a do-loop over calls to this scalar version; or, in Fortran 95, you can of course make the function ELEMENTAL.

FUNCTION ei(x)
USE nrtype; USE nrutil, ONLY : assert, nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: ei
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS
Computes the exponential integral \( Ei(x) \) for \( x > 0 \).
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error, or absolute error near the zero of \( Ei \) at \( x = 0.3725 \); FPMIN is a number near the smallest representable floating-point number; EULER (in nrtype) is Euler’s constant \( \gamma \).

INTEGER(I4B) :: k
REAL(SP) :: fact, prev, sm, term
if (x < FPMIN) then
  Special case: avoid failure of convergence test because of underflow.
i = log(x) + \text{EULER}
else if (x <= -log(EPS)) then
  Use power series.
i = 0.0
  fact = 1.0
  do k=1, MAXIT
    fact = fact * x / k
    term = fact / k
    sm = sm + term
    if (term < EPS * sm) exit
  end do
  if (k > MAXIT) call nrerror('series failed in ei')
ei = exp(x) * (1.0 + sm / x)
else
  Use asymptotic series.
i = 0.0
  term = 1.0
  do k=1, MAXIT
    prev = term
    term = term * k / x
    if (term < EPS) exit
    if (term < prev) then
      sm = sm + term
    else
      sm = sm - prev
    end if
    exit
  end do
  if (k > MAXIT) call nrerror('asymptotic failed in ei')
ei = exp(x) * (1.0 + sm / x)
end if
END FUNCTION ei
ei does not readily parallelize, and we thus don’t provide a vector version. For syntactic convenience you could make a vector version with a do-loop over calls to this scalar version; or, in Fortran 95, you can of course make the function ELEMENTAL.

```fortran
* * *

FUNCTION betai_s(a,b,x)
 USE nrtype; USE nrutil, ONLY : assert
 USE nr, ONLY : betacf, gammln
 IMPLICIT NONE
 REAL(SP), INTENT(IN) :: a,b,x
 REAL(SP) :: betai_s
 Returns the incomplete beta function \(I_x(a,b) \).
 REAL(SP) :: bt
 call assert(x >= 0.0, x <= 1.0, 'betai_s arg')
 if (x == 0.0 .or. x == 1.0) then
 bt=0.0
 else
 bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
 +a*log(x)+b*log(1.0_sp-x))
 end if
 if (x < (a+1.0_sp)/(a+b+2.0_sp)) then
 betai_s=bt*betacf(a,b,x)/a
 else
 betai_s=1.0_sp-bt*betacf(b,a,1.0_sp-x)/b
 end if
END FUNCTION betai_s

FUNCTION betai_v(a,b,x)
 USE nrtype; USE nrutil, ONLY : assert, assert_eq
 USE nr, ONLY : betacf, gammln
 IMPLICIT NONE
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
 REAL(SP), DIMENSION(size(a)) :: betai_v
 REAL(SP), DIMENSION(size(a)) :: bt
 LOGICAL(LGT), DIMENSION(size(a)) :: mask
 INTEGER(I4B) :: ndum
 ndum=assert_eq(size(a),size(b),size(x),'betai_v')
 call assert(all(x >= 0.0), all(x <= 1.0), 'betai_v arg')
 where (x == 0.0 .or. x == 1.0)
 bt=0.0
 elsewhere
 bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
 +a*log(x)+b*log(1.0_sp-x))
 end where
 mask=(x < (a+1.0_sp)/(a+b+2.0_sp))
 betai_v=bt*betacf(merge(a,b,mask),merge(b,a,mask),&
 merge(x,1.0_sp-x,mask))/merge(a,b,mask)
 where (.not. mask) betai_v=1.0_sp-betai_v
END FUNCTION betai_v
```
Compare the scalar

\[
\text{if } (x < (a+1.0_sp)/(a+b+2.0_sp)) \text{ then}
\begin{align*}
\text{betai}_s &= bt \times \text{betacf}(a,b,x)/a \\
\text{else} & \\
\text{betai}_s &= 1.0_sp - bt \times \text{betacf}(b,a,1.0_sp-x)/b \\
\text{end if}
\end{align*}
\]

with the vector

\[
\text{mask} = (x < (a+1.0_sp)/(a+b+2.0_sp))
\]

\[
\text{betai}_v = bt \times \text{betacf(merge(a,b,mask),merge(b,a,mask),}
\]

\[
\text{merge(x,1.0_sp-x,mask))/merge(a,b,mask)}
\]

where (.not. mask) betai_v = 1.0_sp - betai_v

Here \textit{merge} is used (several times) to evaluate all the required components in a single call to the vectorized \textit{betacf}, notwithstanding that some components require one pattern of arguments, some a different pattern.

\[
\text{FUNCTION betacf_s(a,b,x)}
\]

\[
\text{USE nrtype; USE nrutil, ONLY : nrerror}
\]

\[
\text{IMP\textsc{licit}} \text{ NONE}
\]

\[
\text{REAL(SP), INTENT(IN) :: } a,b,x
\]

\[
\text{REAL(SP) :: betacf_s}
\]

\[
\text{INTEGER(I4B), PARAMETER :: MAXIT=100}
\]

\[
\text{REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS}
\]

Used by \textit{betai}: Evaluates continued fraction for incomplete beta function by modified Lentz's method (§5.2).

\[
\text{REAL(SP) :: aa,c,d,del,h,qab,qam,qap}
\]

\[
\text{INTEGER(I4B) :: m,m2}
\]

\[
qab=a+b
\]

\[
qam=a-1.0_sp
\]

\[
c=1.0
\]

\[
d=1.0_sp-qab*x/qap
\]

\[
\text{if (abs(d) < FPMIN) d=FPMIN}
\]

\[
d=1.0_sp/p/d
\]

\[
h=d
\]

\[
do m=1,MAXIT
\]

\[
\text{m2=2*m}
\]

\[
aa=m*(b-m)*x/((qam+m2)*(a+m2))
\]

\[
d=1.0_sp/p/aa+d
\]

\[
\text{if (abs(d) < FPMIN) d=FPMIN}
\]

\[
c=1.0_sp/p/aa/c
\]

\[
\text{if (abs(c) < FPMIN) c=FPMIN}
\]

\[
d=1.0_sp/p/d
\]

\[
h=h*d*c
\]

\[
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
\]

\[
d=1.0_sp/aa+d
\]

\[
\text{if (abs(d) < FPMIN) d=FPMIN}
\]

\[
c=1.0_sp/aa/c
\]

\[
\text{if (abs(c) < FPMIN) c=FPMIN}
\]

\[
d=1.0_sp/p/d
\]

\[
del=d*c
\]

\[
h=h*del
\]

\[
\text{if (abs(del-1.0_sp) <= EPS) exit}
\]

\[
\text{end do}
\]

\[
\text{if (m > MAXIT) call nrerror('a or b too big, or MAXIT too small in betacf_s')}
\]

\[
\text{betai_s=0}
\]

\[
\text{END FUNCTION betacf_s}
\]
FUNCTION betacf_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS
REAL(SP), DIMENSION(size(x)) :: aa,c,d,del,h,qab,qam,qap
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B), PARAMETER :: m
INTEGER(I4B), DIMENSION(size(x)) :: m2
m=assert_eq(size(a),size(b),size(x),'betacf_v')
qab=a+b
qam=a-1.0_sp
qap=a+1.0_sp
c=1.0
h=d=1.0_sp-qab*x/qap
where (abs(d) < FPMIN) d=FPMIN
converged=.false..
do m=1,MAXIT
where (.not. converged)
m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=merge(FPMIN,d, abs(d)<FPMIN )
c=merge(FPMIN,c, abs(c)<FPMIN )
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=merge(FPMIN,d, abs(d)<FPMIN )
c=merge(FPMIN,c, abs(c)<FPMIN )
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp) <= EPS)
end where
end do
if (all(converged)) exit
end do
if (m > MAXIT)&
call nrerror('a or b too big, or MAXIT too small in betacf_v')
betacf_v=h
END FUNCTION betacf_v

FUNCTION betacf_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS
REAL(SP), DIMENSION(size(x)) :: aa,c,d,del,h,qab,qam,qap
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B), PARAMETER :: m
INTEGER(I4B), DIMENSION(size(x)) :: m2
m=assert_eq(size(a),size(b),size(x),'betacf_v')
qab=a+b
qam=a-1.0_sp
qap=a+1.0_sp
c=1.0
h=d=1.0_sp-qab*x/qap
where (abs(d) < FPMIN) d=FPMIN
d=1.0_sp/d
c=1.0_sp/d
where (.not. converged)
end where
end do
if (m > MAXIT)&
call nrerror('a or b too big, or MAXIT too small in betacf_v')
betacf_v=h
END FUNCTION betacf_v

The scalar version does this with an if. Why does it become a merge here in the vector version, rather than a where? Because we are already inside a "where (.not. converged)" block, and Fortran 90 doesn’t allow nested where’s! (Fortran 95 will allow nested where’s.)
FUNCTION bessj0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s

Returns the Bessel function \( J_0(x) \) for any real \( x \).

REAL(SP) :: ax,xx,z
REAL(SP) :: bessj0_s

REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&
                           0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.1562499998e-1_dp,&
                           0.1430488765e-3_dp,-0.691147651e-5_dp,0.7621098161e-6_dp,&
                           -0.934945152e-7_dp/)
REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
                             651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
                             -184.9052456_dp/)
REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
                             9494680.718_dp,69276.64853_dp,267.8532712_dp,1.0_dp/)

if (abs(x) < 8.0) then
    Direct rational function fit.
    y = x**2
    bessj0_s = poly(y,r)/poly(y,s)
else
    Fitting function (6.5.9).
    ax = abs(x)
    z = 8.0_sp/ax
    y = z**2
    xx = ax - 0.785398164_sp
    bessj0_s = sqrt(0.636619772_sp/ax)*(cos(xx)*poly(y,p,mask)-z*sin(xx)*poly(y,q,mask))
end if

END FUNCTION bessj0_s

FUNCTION bessj0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
REAL(SP), DIMENSION(size(x)) :: ax,xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&
                           0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.1562499998e-1_dp,&
                           0.1430488765e-3_dp,-0.691147651e-5_dp,0.7621098161e-6_dp,&
                           -0.934945152e-7_dp/)
REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
                             651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
                             -184.9052456_dp/)
REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
                             9494680.718_dp,69276.64853_dp,267.8532712_dp,1.0_dp/)

mask = (abs(x) < 8.0)

if (mask) then
    bessj0_v = poly(y,r,mask)/poly(y,s,mask)
else
    ax = abs(x)
    z = 8.0_sp/ax
    y = z**2
    xx = ax - 0.785398164_sp
    bessj0_v = sqrt(0.636619772_sp/ax)*(cos(xx)*poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))
end if

END FUNCTION bessj0_v
where (mask)...bessj0_v=poly(y,r,mask)/poly(y,s,mask)

Here we meet the third solution to the problem of getting masked values from an external vector function. (For the other two solutions, see notes to factrl, p. 1087, and gammp, p. 1090.) Here we simply evade all responsibility and pass the mask into every routine that is supposed to be masked. Let it be somebody else’s problem! That works here because your hardworking authors have overloaded the nrutil routine poly with a masked vector version. More typically, of course, it becomes your problem, and you have to remember to write masked versions of all the vector routines that you call in this way. (We’ll meet examples of this later.)

FUNCTION bessy0_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy0_s
Returns the Bessel function \( Y_0(x) \) for positive \( x \).
REAL(SP) :: xx,z
REAL(DP) :: y
We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&
0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&
0.1430488765e-3_dp,-0.6911147681e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)
REAL(DP), DIMENSION(6) :: r = (/-2957821389.0_dp,7062834065.0_dp,&
-512359803.6_dp,10879881.29_dp,-86327.92757_dp,&
228.4622733_dp/)
REAL(DP), DIMENSION(6) :: s = (/-40076544269.0_dp,745249964.8_dp,&
7189466.438_dp,24767.0_dp,226.103244_dp,1.0_dp/)
call assert(x > 0.0, 'bessy0_s arg')
if (abs(x) < 8.0) then
Rational function approximation of (6.5.8).
y=x**2
bessy0_s=(poly(y,r)/poly(y,s))+&
0.636619772_sp*bessj0(x)*log(x)
else
Fitting function (6.5.10).
z=x**2
xx=x-0.785398164_sp
bessy0_s=sqrt(0.636619772_sp/x)*(sin(xx)*&
poly(y,p)+z*cos(xx)*poly(y,q))
end if
END FUNCTION bessy0_s

FUNCTION bessy0_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(size(x)) :: p = (/1.0_dp,-0.1098628627e-2_dp,&
0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(size(x)) :: q = (/-0.1562499995e-1_dp,&
0.1430488765e-3_dp,-0.6911147681e-5_dp,0.7621095161e-6_dp,&
REAL(DP), DIMENSION(6) :: r = (/ -2957821389.0_dp, 7062834065.0_dp, &
-512359803.6_dp, 10879881.29_dp, -86327.92757_dp, &
228.4622733_dp /)
REAL(DP), DIMENSION(6) :: s = (/ 40076544269.0_dp, 745249964.8_dp, &
7189466.438_dp, 47447.26470_dp, 268.1030244_dp, 1.0_dp /)
call assert(all(x > 0.0), 'bessy0_varg')
mask = (abs(x) < 8.0)
where (mask)
y=x**2
bessy0_v=(poly(y,r,mask)/poly(y,s,mask))+&
0.636619772_sp*bessj0(x)*log(x)
elsewhere
z=8.0_sp/x
y=x**2
xx=x-0.785398164_sp
bessy0_v=sqrt(0.636619772_sp/x)*(sin(xx)*&
poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy0_v

-0.934945152e-7_dp/
REAL(DP), DIMENSION(6) :: r = (/ -2957821389.0_dp, 7062834065.0_dp, &
-512359803.6_dp, 10879881.29_dp, -86327.92757_dp, &
228.4622733_dp /)
REAL(DP), DIMENSION(6) :: s = (/ 40076544269.0_dp, 745249964.8_dp, &
7189466.438_dp, 47447.26470_dp, 268.1030244_dp, 1.0_dp /)
call assert(all(x > 0.0), 'bessy0_varg')
mask = (abs(x) < 8.0)
where (mask)
y=x**2
bessy0_v=(poly(y,r,mask)/poly(y,s,mask))+&
0.636619772_sp*bessj0(x)*log(x)
elsewhere
z=8.0_sp/x
y=x**2
xx=x-0.785398164_sp
bessy0_v=sqrt(0.636619772_sp/x)*(sin(xx)*&
poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy0_v

⋆⋆⋆
FUNCTION bessj1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s
Returns the Bessel function \( J_1(x) \) for any real \( x \).
REAL(SP) :: ax,xx,z
REAL(DP) :: y
We'll accumulate polynomials in double precision.
REAL(DP), DIMENSION(6) :: r = (/ 72362614232.0_dp, &
-7895059235.0_dp, 242396853.1_dp, -2972611.439_dp, &
15704.48260_dp, -30.16036606_dp /)
REAL(DP), DIMENSION(6) :: s = (/ 144726228442.0_dp, 2300535178.0_dp, &
18583304.74_dp, 99447.43394_dp, 376.9991397_dp, 1.0_dp /)
REAL(DP), DIMENSION(5) :: p = (/ 1.0_dp, 0.183105e-2_dp, &
-0.3516396496e-4_dp, 0.2457520174e-5_dp, -0.240337019e-6_dp, &
-0.2002690873e-6_dp, 0.8449199096e-5_dp, -0.88228987e-6_dp, &
0.105787412e-6_dp /)
if (abs(x) < 8.0) then
  Direct rational approximation.
y=x**2
  bessj1_s=x*(poly(y,r)/poly(y,s))
else
  Fitting function (6.5.9).
  ax=abs(x)
z=8.0_sp/ax
  y=x**2
  xx=ax-2.356194491_sp
  bessj1_s=sqrt(0.636619772_sp/ax)*(cos(xx)*&
poly(y,p)-z*sin(xx)*poly(y,q))*sign(1.0_sp,x)
end if
END FUNCTION bessj1_s
FUNCTION bessj1_v(x)  
USE nrtype; USE nrutil, ONLY : poly  
IMPLICIT NONE  
REAL(SP), DIMENSION(:), INTENT(IN) :: x  
REAL(SP), DIMENSION(size(x)) :: bessj1_v  
REAL(SP), DIMENSION(size(x)) :: ax,xx,z  
REAL(DP), DIMENSION(size(x)) :: y  
LOGICAL(LGT), DIMENSION(size(x)) :: mask  
REAL(DP), DIMENSION(6) :: r = (/72362614232.0_dp,  
                            -789509235.0_dp, 24396853.1_dp, -2972611.439_dp,  
                            15704.48260_dp, -30.16036606_dp/)  
REAL(DP), DIMENSION(6) :: s = (/14472228442.0_dp, 230053178.0_dp,  
                              18583304.74_dp, 43394_dp, 376.9991397_dp, 1.0_dp/)  
REAL(DP), DIMENSION(5) :: p = (/1.0_dp, 0.183105e-2_dp,  
                                -0.3516396496e-4_dp, 0.245720174e-5_dp, -0.240337019e-6_dp/)  
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,  
                                 -0.2002690873e-3_dp, 0.8449199096e-5_dp, -0.88228987e-6_dp,  
                                 0.105787412e-6_dp/)  
mask = (abs(x) < 8.0)  
where (mask)  
y=x**2  
bessj1_v=x*(poly(y,r,mask)/poly(y,s,mask))  
elsewhere  
ax=abs(x)  
z=8.0_sp/ax  
y=x**2  
xx=ax-2.356194491_sp  
bessj1_v=sqrt(0.636619772_sp/ax)*(cos(xx)*poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))*&  
sign(1.0_sp,x)  
end where  
END FUNCTION bessj1_v

FUNCTION bessy1_s(x)  
USE nrtype; USE nrutil, ONLY : assert,poly  
USE nr, ONLY : bessj1  
IMPLICIT NONE  
REAL(SP), INTENT(IN) :: x  
REAL(SP) :: bessy1_s  
Returns the Bessel function Y_1(x) for positive x.  
REAL(SP) :: xx,z  
REAL(DP) :: y  
We'll accumulate polynomials in double precision.  
REAL(DP), DIMENSION(5) :: p = (/1.0_dp, 0.183105e-2_dp,  
                              -0.3516396496e-4_dp, 0.245720174e-5_dp, -0.240337019e-6_dp/)  
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,  
                                 -0.2002690873e-3_dp, 0.8449199096e-5_dp, -0.88228987e-6_dp,  
                                 0.105787412e-6_dp/)  
REAL(DP), DIMENSION(6) :: r = (/0.24996580570e14_dp,  
                                 0.424419664e12_dp, 0.3733650367e10_dp, 0.2245904002e8_dp,  
                                 0.10204260506e6_dp, 0.3549632885e3_dp, 1.0_dp/)  
call assert(x > 0.0, 'bessy1_s arg')  
if (abs(x) < 8.0) then  
  Rational function approximation of (6.5.8).  
y=x**2  
bessy1_s=x*(poly(y,r)/poly(y,s))+&  
  0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)  
else  
  Fitting function (6.5.10).  

* * *

FUNCTION bessy1_s(x)  
USE nr, ONLY : bessj1  
IMPLICIT NONE  
REAL(SP), INTENT(IN) :: x  
REAL(SP) :: bessy1_s  
Returns the Bessel function Y_1(x) for positive x.  
REAL(SP) :: xx,z  
REAL(DP) :: y  
We'll accumulate polynomials in double precision.  
REAL(DP), DIMENSION(5) :: p = (/1.0_dp, 0.183105e-2_dp,  
                              -0.3516396496e-4_dp, 0.245720174e-5_dp, -0.240337019e-6_dp/)  
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,  
                                 -0.2002690873e-3_dp, 0.8449199096e-5_dp, -0.88228987e-6_dp,  
                                 0.105787412e-6_dp/)  
REAL(DP), DIMENSION(6) :: r = (/0.24996580570e14_dp,  
                                 0.424419664e12_dp, 0.3733650367e10_dp, 0.2245904002e8_dp,  
                                 0.10204260506e6_dp, 0.3549632885e3_dp, 1.0_dp/)  
call assert(x > 0.0, 'bessy1_s arg')  
if (abs(x) < 8.0) then  
  Rational function approximation of (6.5.8).  
y=x**2  
bessy1_s=x*(poly(y,r)/poly(y,s))+&  
  0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)  
else  
  Fitting function (6.5.10).
FUNCTION bessy1_s(x)
USE nrtype; USE nrutil, ONLY : assert, poly
USE nr, ONLY : bessj1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&
-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&
-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.10578412e-6_dp/)
REAL(DP), DIMENSION(6) :: r = (/-0.4900604943e13_dp,&
0.1275274390e13_dp,-0.5153438139e11_dp,0.7349264551e9_dp,&
-0.4237922766e7_dp,0.851199793e6_dp/)
REAL(DP), DIMENSION(7) :: s = (0.3733650367e10_dp,0.2245904002e8_dp,&
0.1020426050e6_dp,0.3549639858e3_dp,1.0_dp/)
call assert(all(x > 0.0), 'bessy1_sarg')
mask = (abs(x) < 8.0)
where (mask)
y=x**2
bessy1_v=x*(poly(y,r,mask)/poly(y,s,mask))+&
0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)
elsewhere
z=8.0_sp/x
y=z**2
xx=x-2.356194491_sp
bessy1_s=sqrt(0.636619772_sp/x)*(sin(xx)*&
poly(y,p)*z*cos(xx)*poly(y,q))
end where
END FUNCTION bessy1_s

FUNCTION bessy_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy_s
INTEGER(I4B) :: j
REAL(SP) :: by,bym,byp,tox

call assert(n >= 2, x > 0.0, 'bessy_sarg')
tox=2.0_sp/x
by=bessy1(x)
bym=bessy0(x)
do j=1,n-1
Recurrence (6.5.7).
FUNCTION bessy_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0,bessy1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy_v
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: by,bym,byp,tox
call assert(n >= 2, all(x > 0.0), 'bessy_v args')
tox=2.0_sp/x
by=bessy1(x)
bym=bessy0(x)
do j=1,n-1
  byp=j*tox*by-bym
  bym=by
  by=byp
end do
bessy_v=by
END FUNCTION bessy_v

Notice that the vector routine is exactly the same as the scalar routine, but operates only on vectors, and that nothing in the routine is specific to any level of precision or kind type of real variable. Cases like this make us wish that Fortran 90 provided for “template” types that could automatically take the type and shape of the actual arguments. (Such facilities are available in other, more object-oriented languages such as C++)

FUNCTION bessj_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2
Returns the Bessel function $J_n(x)$ for any real $x$ and $n \geq 2$. Make the parameter IACC larger to increase accuracy.

INTEGER(I4B) :: j,jsum,m
REAL(SP) :: ax,bj,bjm,bjp,summ,tox
call assert(n >= 2, 'bessj_s args')
ax=abs(x)
if (ax*ax <= 8.0_sp*tiny(x)) then
  bessj_s=0.0
else if (ax > real(n,sp)) then
  tox=2.0_sp/ax
  bj=bessj0(ax)
  bjm=bessj1(ax)
do j=1,n-1
bjp=j*tox*bj-bjm
bjm=bj
bj=bjp
end do
bessj_s=bj
else
tox=2.0_sp/ax
m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessj_s=0.0
jsum=0
bjp=0.0
bj=1.0
do j=m,1,-1
bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if (exponent(bj) > IEXP) then
bj=scale(bj,-IEXP)
bjp=scale(bjp,-IEXP)
bessj_s=scale(bessj_s,-IEXP)
summ=scale(summ,-IEXP)
end if
if (jsum /= 0) summ=summ+bj
jsum=1-jsum
if (j == n) bessj_s=bjp
end do
summ=2.0_sp*summ-bj
bessj_s=summ
end if
if (x < 0.0 .and. mod(n,2) == 1) bessj_s=-bessj_s
END FUNCTION bessj_s

The bessj routine does not conveniently parallelize with Fortran 90’s language constructions, but Bessel functions are of sufficient importance that we feel the need for a parallel version nevertheless. The basic method adopted below is to encapsulate as contained vector functions two separate algorithms, one for the case \( x \leq n \), the other for \( x > n \). Both of these have masks as input arguments; within each routine, however, they immediately revert to the pack-unpack method. The choice to pack in the subsidiary routines, rather than in the main routine, is arbitrary; the main routine is supposed to be a little clearer this way.

In the Fortran 77 version of this routine, we scaled the variables by \( 10^{-10} \) whenever \( bj \) was bigger than \( 10^{10} \). On a machine with a large exponent range, we could improve efficiency by scaling less often. In order to remain portable, however, we used the conservative value of \( 10^{10} \). An elegant way of handling renormalization is provided by the Fortran 90 intrinsic functions that manipulate real numbers. We test with if (exponent(bj) > IEXP) and then if necessary renormalize with bj=scale(bj,-IEXP) and similarly for the other variables. Our conservative choice is to set IEXP=maxexponent(x)/2. Note that an added benefit of scaling this way is that only the exponent of each variable is modified; no roundoff error is introduced as it can be if we do a floating-point division instead.
FUNCTION bessj_v(n,xx)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: bessj_v
INTEGER(I4B), PARAMETER :: IACC=40, IEXP=maxexponent(xx)/2
REAL(SP), DIMENSION(size(xx)) :: ax
LOGICAL(LGT), DIMENSION(size(xx)) :: mask,mask0
REAL(SP), DIMENSION(:), ALLOCATABLE :: x,bj,bjm,bjp,summ,nox,bessjle
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: renorm
INTEGER(I4B) :: j,jsum,m,npak
CALL assert(n >= 2, 'bessj_vargs')
aa=abs(xx)
mask = (ax <= real(n,sp))
mask0 = (ax*ax <= 8.0_sp*tiny(xx))
bessj_v=bessjle_v(n,ax,logical(mask .and. .not.mask0, kind=lgt))
bessj_v=merge(bessjgt_v(n,ax,.not. mask),bessj_v,.not. mask)
WHERE (mask0) bessj_v=0.0
WHERE (xx < 0.0 .and. mod(n,2) == 1) bessj_v=-bessj_v
CONTAINS

FUNCTION bessjgt_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjgt_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),tox(npak))
x=pack(xx,mask)
tox=2.0_sp/x
bjm=bessj0(x)
bj=bessj1(x)
do j=1,n-1
bjp=j*tox*bj-bjm
bjm=bj
bj=bjp
end do
bessjgt_v=unpack(bj,mask,0.0_sp)
deallocate(x,bj,bjm,bjp,tox)
END FUNCTION bessjgt_v

FUNCTION bessjle_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjle_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),summ(npak), &
bessjle(npak),tox(npak),renorm(npak))
x=pack(xx,mask)
tox=2.0_sp/x
m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessjle=0.0
jsum=0
summ=0.0
bjp=0.0
bj=1.0
do j=m+1,-1
bjm=j*tox*bj-bjp

bjp = bj
bj = bjm
renorm = (exponent(bj) > IEXP)
bj = merge(scale(bj, -IEXP), bj, renorm)
bj = merge(scale(bj, -IEXP), bj, renorm)
bessjle = merge(scale(bessjle, -IEXP), bessjle, renorm)
summ = merge(scale(summ, -IEXP), summ, renorm)
if (jsum /= 0) summ = summ + bj
jsum = 1 - jsum
if (j == n) bessjle = bjp
end do
summ = 2.0_sp * summ - bj
bessjle = bessjle / summ
bessjle_v = unpack(bessjle, mask, 0.0_sp)
deallocate(x, bj, bjm, bjp, summ, bessjle, tox, renorm)
END FUNCTION bessjle_v
END FUNCTION bessj_v

The vector bessj_v is set once (with a mask) and then merged with itself, along
with the vector result of the bessjgt_v call. Thus are the two evaluation
methods combined. (A third case, where an argument is zero, is then handled by
an immediately following where.)

FUNCTION bessi0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s

Returns the modified Bessel function \( I_0(x) \) for any real \( x \).

REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/1.0_dp, 3.5156229_dp,&
3.0899424_dp, 1.2067502_dp, 0.2659732_dp, 0.360768e-1_dp,&
0.45813e-2_dp/)
Accumulate polynomials in double precision.
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp, 0.1328592e-1_dp,&
0.225319e-2_dp, -0.157565e-2_dp, 0.916281e-2_dp,&
-0.2057706e-1_dp, 0.2635537e-1_dp, -0.1647633e-1_dp,&
0.392377e-2_dp/)
ax = abs(x)
if (ax < 3.75) then
Polynomial fit.
bessi0_s = poly(real((x/3.75_sp)**2, dp), p)
else
bessi0_s = (exp(ax)/sqrt(ax)) * poly(real(3.75_sp/ax, dp), q)
end if
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp, 3.5156229_dp,&
3.0899424_dp, 1.2067492_dp, 0.2659732_dp, 0.360768e-1_dp,&
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp, 0.1328592e-1_dp, &
0.225319e-2_dp, -0.157565e-2_dp, 0.916281e-2_dp, &
-0.2057706e-1_dp, 0.2635537e-1_dp, -0.1647633e-1_dp, &
0.392377e-2_dp/)  
ax = abs(x)  
mask = (ax < 3.75)  
where (mask)  
bessi0_v = poly(real((x/3.75_sp)**2, dp), p, mask)  
elsewhere  
y = 3.75_sp/ax  
bessi0_v = (exp(ax)/sqrt(ax))*poly(real(y, dp), q, .not. mask)  
end where  
END FUNCTION bessi0_v

FUNCTION bessk0_s(x)  
USE nrtype; USE nrutil, ONLY : assert, poly  
USE nr, ONLY : bessi0  
IMPLICIT NONE  
REAL(SP), INTENT(IN) :: x  
REAL(SP) :: bessk0_s  
Returns the modified Bessel function $K_0(x)$ for positive real $x$.  
REAL(DP), DIMENSION(7) :: p = (/ -0.57721566_dp, 0.42278420_dp, &
0.23069756_dp, 0.3488590e-1_dp, 0.262698e-2_dp, 0.10750e-3_dp, &
0.74e-5_dp/)  
REAL(DP), DIMENSION(7) :: q = (/ 1.25331414_dp, -0.7832358e-1_dp, &
0.2189568e-1_dp, -0.1062446e-1_dp, 0.587872e-2_dp, &
-0.251540e-2_dp, 0.53208e-3_dp/)  
call assert(x > 0.0, 'bessk0_s arg')  
if (x <= 2.0) then  
Polynomial fit.  
y = x**2/4.0_sp  
bessk0_s = (-log(x/2.0_sp)*bessi0(x)) + poly(y, p)  
else  
y = (2.0_sp/x)  
bessk0_s = (exp(-x)/sqrt(x))*poly(y, q)  
end if  
END FUNCTION bessk0_s

FUNCTION bessk0_v(x)  
USE nrtype; USE nrutil, ONLY : assert, poly  
USE nr, ONLY : bessi0  
IMPLICIT NONE  
REAL(SP), DIMENSION(:), INTENT(IN) :: x  
REAL(SP), DIMENSION(size(x)) :: bessk0_v  
REAL(DP), DIMENSION(size(x)) :: y  
LOGICAL(LGT), DIMENSION(size(x)) :: mask  
REAL(DP), DIMENSION(7) :: p = (/ -0.57721566_dp, 0.42278420_dp, &
0.23069756_dp, 0.3488590e-1_dp, 0.262698e-2_dp, 0.10750e-3_dp, &
0.74e-5_dp/)  
REAL(DP), DIMENSION(7) :: q = (/ 1.25331414_dp, -0.7832358e-1_dp, &
0.2189568e-1_dp, -0.1062446e-1_dp, 0.587872e-2_dp, &
-0.251540e-2_dp, 0.53208e-3_dp/)  
call assert(all(x > 0.0), 'bessk0_v arg')  
mask = (x <= 2.0)  
where (mask)  
y = x**2/4.0_sp  
bessk0_v = (-log(x/2.0_sp)*bessi0(x)) + poly(y, p, mask)
elsewhere
  y=(2.0_sp/x)
  bessk0_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)
end where
END FUNCTION bessk0_v

FUNCTION bessi1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s

Returns the modified Bessel function $I_1(x)$ for any real $x$.

REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&
                         0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
                         0.301532e-2_dp,0.32411e-3_dp/)
Accumulate polynomials in double precision.
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
                           -0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
                           0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
                           -0.420059e-2_dp/)

ax=abs(x)
if (ax < 3.75) then
  Polynomial fit.
  bessi1_s=ax*poly(real((x/3.75_sp)**2,dp),p)
else
  bessi1_s=(exp(ax)/sqrt(ax))*poly(real(3.75_sp/ax,dp),q)
end if
if (x < 0.0) bessi1_s=-bessi1_s
END FUNCTION bessi1_s

FUNCTION bessi1_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&
                           0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
                           0.301532e-2_dp,0.32411e-3_dp/)
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
                           -0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
                           0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
                           -0.420059e-2_dp/)

ax=abs(x)
mask = (ax < 3.75)
where (mask)
  bessi1_v=ax*poly(real((x/3.75_sp)**2,dp),p,mask)
elsewhere
  y=3.75_sp/ax
  bessi1_v=(exp(ax)/sqrt(ax))*poly(real(y,dp),q,.not. mask)
end where
where (x < 0.0) bessi1_v=-bessi1_v
END FUNCTION bessi1_v
FUNCTION bessk1_s(x)
USE nrtype; USE nrutil, ONLY : assert, poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk1_s

Returns the modified Bessel function $K_1(x)$ for positive real $x$.

REAL(DP) :: y
Accumulate polynomials in double precision.
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&
  -0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
  -0.110404e-2_dp,-0.4686e-4_dp/)
REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
  -0.3655520e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
  0.325614e-2_dp,-0.68245e-3_dp/)
call assert(x > 0.0, 'bessk1_s arg')
if (x <= 2.0) then
  Polynomial fit.
  y=x*x/4.0_sp
  bessk1_s=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p)
else
  y=2.0_sp/x
  bessk1_s=(exp(-x)/sqrt(x))*poly(y,q)
end if
END FUNCTION bessk1_s

FUNCTION bessk1_v(x)
USE nrtype; USE nrutil, ONLY : assert, poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk1_v
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&
  -0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
  -0.110404e-2_dp,-0.4686e-4_dp/)
REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
  -0.3655520e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
  0.325614e-2_dp,-0.68245e-3_dp/)
call assert(all(x > 0.0), 'bessk1_v arg')
mask = (x <= 2.0)
where (mask)
  y=x*x/4.0_sp
  bessk1_v=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p,mask)
elsewhere
  y=2.0_sp/x
  bessk1_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)
end where
END FUNCTION bessk1_v
FUNCTION bessk_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk_s
Returns the modified Bessel function $K_n(x)$ for positive $x$ and $n \geq 2$.
INTEGER(4B) :: j
REAL(SP) :: bk,bkm,bkp,tox
! Upward recurrence for all $x$...
call assert(n >= 2, x > 0.0, 'bessk_s args')
tox=2.0_sp/x
bkm=bessk0(x)
bk=bessk1(x)
do j=1,n-1
  bkp=bkm+j*tox*bk
  bkm=bk
  bk=bkp
end do
bessk_s=bk
END FUNCTION bessk_s

FUNCTION bessk_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk_v
INTEGER(4B) :: j
REAL(SP), DIMENSION(size(x)) :: bk,bkm,bkp,tox
! Upward recurrence for all $x$...
call assert(n >= 2, all(x > 0.0), 'bessk_v args')
tox=2.0_sp/x
bkm=bessk0(x)
bk=bessk1(x)
do j=1,n-1
  bkp=bkm+j*tox*bk
  bkm=bk
  bk=bkp
end do
bessk_v=bk
END FUNCTION bessk_v

The scalar and vector versions of bessk are identical, and have no
precision-specific constants, another example of where we would like to
define a generic "template" function if the language had this facility.

*   *   *
FUNCTION bessi_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
INTEGER(4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Returns the modified Bessel function $I_n(x)$ for any real $x$ and $n \geq 2$. Make the parameter IACC larger to increase accuracy.

INTEGER(4B) :: j,m
REAL(SP) :: bi,bim,bip,tox

call assert(n >= 2, 'bessi_s args')

bessi_s=0.0

if (x*x <= 8.0_sp*tiny(x)) RETURN

Underflow limit.
tox=2.0_sp/abs(x)
bip=0.0
bi=1.0
m=2*((n+int(sqrt(real(IACC*n,sp)))))

Downward recurrence from even $m$.
do j=m,1,-1

The downward recurrence.
bim=bip+j*tox*bi
bip=bi
bi=bim

Renormalize to prevent overflows.
if (exponent(bi) > IEXP) then

bessi_s=scale(bessi_s,-IEXP)
bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)
end if

if (j == n) bessi_s=bip

end do

bessi_s=bessi_s*bessi0(x)/bi

Normalize with bessi0.
if (x < 0.0 .and. mod(n,2) == 1) bessi_s=-bessi_s

END FUNCTION bessi_s

FUNCTION bessi_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
INTEGER(4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Examine the scaling needed for implementing the recurrence relation. The scaling necessary cannot be computed from the scaling codes in the book penciled in above.

INTEGER(4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: bi,bim,bip,tox,
LOGICAL(LGT), DIMENSION(size(x)) :: mask

call assert(n >= 2, 'bessi_v args')

bessi_v=0.0

mask = (x <= 8.0_sp*tiny(x))
tox=2.0_sp/merge(2.0_sp,abs(x),mask)
bip=0.0
bi=1.0_sp
m=2*((n+int(sqrt(real(IACC*n,sp)))))

Downward recurrence from even $m$.
do j=m,1,-1

The downward recurrence.
bim=bip+j*tox*bi
bip=bi
bi=bim

Renormalize to prevent overflows.
where (exponent(bi) > IEXP)

bessi_v=scale(bessi_v,-IEXP)

END FUNCTION bessi_v

if (exponent(bi) > IEXP) then

See discussion of scaling for bessj on p. 1107.
bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)
end where
if (j == n) bessi_v=bip
end do
bessi_v=bessi_v*bessi0(x)/bi
where (mask) bessi_v=0.0_sp
where (x < 0.0 .and. mod(n,2) == 1) bessi_v=-bessi_v
END FUNCTION bessi_v

For the special case $x = 0$, the value of the returned function should be zero; however, the evaluation of tox will give a divide check. We substitute an innocuous value for the zero cases, then fix up their answers at the end.

***

SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: rj,ry,rjp,ryp
INTEGER(I4B), PARAMETER :: MAXIT=10000
REAL(DP), PARAMETER :: XMIN=2.0_dp,EPS=1.0e-10_dp,FPMIN=1.0e-30_dp

Returns the Bessel functions $rj = J_\nu$, $ry = Y_\nu$ and their derivatives $rjp = J'_\nu$, $ryp = Y'_\nu$, for positive $x$ and for $xnu = \nu \geq 0$. The relative accuracy is within one or two significant digits of EPS, except near a zero of one of the functions, where EPS controls its absolute accuracy. FPMIN is a number close to the machine's smallest floating-point number. All internal arithmetic is in double precision. To convert the entire routine to double precision, change the SP declaration above and decrease EPS to $10^{-16}$. Also convert the subroutine beschb.

INTEGER(I4B) :: i,isign,l,nl
REAL(DP) :: a,b,c,d,del,del1,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,&
gammi,gampl,h,p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,&
ry1,rymu,rymup,rytemp,sum,sum1,w,x2,xi,xi2,xmu,xmu2
COMPLEX(DPC) :: aa,bb,cc,dd,di,pq
call assert(x > 0.0, xnu >= 0.0, 'bessjy args')
nl=merge(int(xnu+0.5_dp), max(0,int(xnu-x+1.5_dp)), x < XMIN)
nl is the number of downward recurrences of the $J$'s and upward recurrences of $Y$'s. xnu lies between $-1/2$ and $1/2$ for $x < XMIN$, while it is chosen so that $x$ is greater than the turning point for $x \geq XMIN$.

The Wronskian.
Evaluate CF1 by modified Lentz's method ([5.2]). isign keeps track of sign changes in the denominator.
if (abs(c) < FPMIN) c=FPMIN
  d=1.0_dp/d
  del=c*d
  h=del*h
if (d < 0.0) isign=-isign
if (abs(del-1.0_dp) < EPS) exit
end do
if (i > MAXIT) call nrerror('x too large in bessjy; try asymptotic expansion')
rjl=isign*FPMIN
  rjpl=h*rjl
  rj1=rj1
  rjpl=rjpl
  fact=xmu*xi
do l=n1,1,-1
  rjtemp=fact*rjl+rjpl
  fact=fact-xi
  rjpl=fact*rjtemp-rjl
  rjl=rjtemp
end do
if (rjl == 0.0) rjl=EPS
f=rjpl/rjl
Now have unnormalized \( J_\nu \) and \( J'_\nu \).
if (x < XMIN) then
  Use series.
x2=0.5_dp*x
  pimu=PI_D*xmu
  if (abs(pimu) < EPS) then
    fact=1.0
  else
    fact=pimu/sin(pimu)
  end if
d=-log(x2)
  e=xmu*d
  if (abs(e) < EPS) then
    fact2=1.0
  else
    fact2=sinh(e)/e
  end if
  call beschb(xmu,gam1,gam2,gampl,gammi)
  Chebyshevevaluation of \( \Gamma_1 \) and \( \Gamma_2 \).
  ff=2.0_dp/PI_D*fact*(gam1*cosh(e)+gam2*fact2*d)
  f0=
f=e/exp(e)
p=e/(gampl*PI_D)
q=1.0_dp/(e*PI_D*gammi)
pimu2=0.5_dp*pimu
  if (abs(pimu2) < EPS) then
    fact3=1.0
  else
    fact3=sin(pimu2)/pimu2
  end if
c=1.0
  d=x2*x2
  sum=ff+r*q
  sum1=p
  do i=1,MAXIT
    ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
  p=p/(i-xmu)
  q=q/(i+xmu)
del=c*(ff+r*q)
  sum=sum+del
  deli=cp+i*del
  sumi=sum1+deli
  if (abs(del) < (1.0_dp+abs(sum))*EPS) exit
end do
if (i > MAXIT) call nrerror('bessy series failed to converge')
rymu=-sum
ry1=-sum1*xi2
rymup=xmu*xi*rymu-ry1
rjmu=a/(rymup-f*rymu)
else

Equation (6.7.13).

Evaluate CF2 by modified Lentz's method ((5.2)).

a=0.25_dp-xmu2
pq=cmplx(-0.5_dp*xi,1.0_dp,kind=dpc)
aa=cmplx(0.0_dp,x,2.0_dp,kind=dpc)
bb=cmplx(2.0_dp,x,2.0_dp,kind=dpc)
cc=bb+aa/pq
dd=1.0_dp/bb
pq=cc-dd*pq
do i=2,MAXIT
    a=a+2*(i-1)
    bb=bb+cmplx(0.0_dp,2.0_dp,kind=dpc)
    dd=a*dd+bb
    if (absc(dd) < EPS) exit
end do
if (i > MAXIT) call nrerror('cf2 failed in bessjy')
p=real(pq)
q=aimag(pq)
gam=(p-f)/q
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup
end if

Equations (6.7.6) – (6.7.10).

scale original Jν and J′
ν.

rytemp=(xmu+i)*xi2*ry1-rymu
rymu=ry1
ry1=rytemp
end do
ry=rymu
ryp=xnu*xi*rymu-ry1
CONTAINS
FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: z
REAL(DP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE bessjy_s

Yes there is a vector version bessjy_v. Its general scheme is to have a
bunch of contained functions for various cases, and then combine their
outputs (somewhat like bessj_v, above, but much more complicated).
A listing runs to about four printed pages, and we judge it to be of not much interest,
so we will not include it here. (It is included on the machine-readable media.)

*   *   *
SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(14B), PARAMETER :: NUSE1=5,NUSE2=5
Evaluates $\Gamma_1$ and $\Gamma_2$ by Chebyshev expansion for $|x| \leq 1/2$. Also returns $1/\Gamma(1+x)$ and $1/\Gamma(1-x)$. If converting to double precision, set NUSE1 = 7, NUSE2 = 8.
REAL(SP) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&
   6.5165112670737e-3_sp,3.087091730386e-4_sp,-3.4706269649e-6_sp,&
   6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)
REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
   -7.6852804047867e-2_sp,1.2719273166546e-3_sp,&
   -4.9713767042e-6_sp,-3.31261198e-8_sp,2.423096e-10_sp,&
   -1.702e-13_sp,-1.49e-15_sp/)
xx=8.0_dp*x*x-1.0_dp     Multiply x by 2 to make range be -1 to 1, and then apply
gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)       transformation for evaluating even Cheby-
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)    shev series.
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(I4B), PARAMETER :: NUSE1=5,NUSE2=5
REAL(SP), DIMENSION(size(x)) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&
   6.5165112670737e-3_sp,3.087091730386e-4_sp,-3.4706269649e-6_sp,&
   6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)
REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
   -7.6852804047867e-2_sp,1.2719273166546e-3_sp,&
   -4.9713767042e-6_sp,-3.31261198e-8_sp,2.423096e-10_sp,&
   -1.702e-13_sp,-1.49e-15_sp/)
xx=8.0_dp*x*x-1.0_dp     Multiply x by 2 to make range be -1 to 1, and then apply
gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)       transformation for evaluating even Cheby-
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)    shev series.
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_v

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: ri,rk,rip,rkp
INTEGER(14B), PARAMETER :: MAXIT=10000
REAL(SP), PARAMETER :: XMIX=2.0
REAL(DP), PARAMETER :: EPS=1.0e-10_dp,FPMIN=1.0e-30_dp
Returns the modified Bessel functions $r_i = I_\nu$, $r_k = K_\nu$ and their derivatives $r_i' = I_\nu'$, $r_k' = K_\nu'$, for positive $x$ and for $xnu = \nu \geq 0$. The relative accuracy is within one or
two significant digits of EPS. FPMIN is a number close to the machine's smallest floating-point number. All internal arithmetic is in double precision. To convert the entire routine to double precision, change the REAL declaration above and decrease EPS to $10^{-16}$. Also convert the subroutine beschb.

INTEGER(4B) :: i, nl
REAL(DP) :: a, a1, b, c, d, del, del1, delh, dels, e, fact, fact2, ff, gam1, gam2, gammi, gampl, h, pimu, q, q1, q2, qnew, ril, rill, rimu, ripl, rtemp, rk1, rkmu, rkmup, rktemp, s, sum, sum1, x2, x1, x12, xmu, xmu2

call assert(x > 0.0, xnu >= 0.0, 'bessik args')

nl = int(xmu + 0.5_dp)

xmu = xmu - nl

xmu2 = xmu * xmu

xi = 1.0_dp / x

x12 = 2.0_dp * xi

h = xmu * xi

if (h < FPMIN) h = FPMIN

b = x12 * xmu

d = 0.0

c = h

do i = 1, MAXIT

b = b + x12

d = 1.0_dp / (b + d)

c = b + 1.0_dp / c

del = c * d

h = del * h

end do

if (i > MAXIT) call nrerror('x too large in bessik; try asymptotic expansion')

ril = FPMIN

ripl = h * ril

ripl1 = ripl

fact = xmu / xi

do l = nl, 1, -1

ritemp = fact * ril + ripl

fact = fact - xi

ripl = fact * rtemp * ril

ril = rtemp
end do

f = ripl / ril

if (x < XMIN) then

x2 = 0.5_dp * x

pimu = PI_D * xmu

if (abs(pimu) < EPS) then

fact = 1.0

else

fact = pimu / sin(pimu)
end if

d = log(x2)

e = xmu * d

if (abs(e) < EPS) then

fact2 = 1.0

else

fact2 = sinh(e) / e
end if

call beschb(xmu, gam1, gam2, gampl, gammi)

ff = fact * (gam1 * cosh(e) + gam2 * fact2 * d)

sum = ff

e = exp(e)

p = 0.5_dp * e / gampl

q = 0.5_dp / (e * gammi)

c = 1.0

d = x2 * x2

f0. Chebyshev evaluation of $\Gamma_1$ and $\Gamma_2$.

$P_0$, $Q_0$. 

Evaluate CF1 by modified Lentz's method ($\S$5.2).

Denominators cannot be zero here, so no need for special precautions.

Now have unnormalized $I_\mu$ and $I'_\mu$.

Use series.

nl is the number of downward recurrences of the $I$'s and upward recurrences of $K$'s. xmu lies between $-1/2$ and $1/2$. 

xmu = xnu - nl

xmu2 = xmu * xmu

xi = 1.0_dp / x

x12 = 2.0_dp * xi

h = xmu * xi

if (h < FPMIN) h = FPMIN

b = x12 * xmu

d = 0.0

c = h

do i = 1, MAXIT

b = b + x12

d = 1.0_dp / (b + d)

c = b + 1.0_dp / c

del = c * d

h = del * h

end do

if (i > MAXIT) call nrerror('x too large in bessik; try asymptotic expansion')

ril = FPMIN

ripl = h * ril

ripl1 = ripl

fact = xmu / xi

do l = nl, 1, -1

ritemp = fact * ril + ripl

fact = fact - xi

ripl = fact * rtemp * ril

ril = rtemp
end do

f = ripl / ril

if (x < XMIN) then

x2 = 0.5_dp * x

pimu = PI_D * xmu

if (abs(pimu) < EPS) then

fact = 1.0

else

fact = pimu / sin(pimu)
end if

d = log(x2)

e = xmu * d

if (abs(e) < EPS) then

fact2 = 1.0

else

fact2 = sinh(e) / e
end if

call beschb(xmu, gam1, gam2, gampl, gammi)

ff = fact * (gam1 * cosh(e) + gam2 * fact2 * d)

sum = ff

e = exp(e)

p = 0.5_dp * e / gampl

q = 0.5_dp / (e * gammi)

c = 1.0

d = x2 * x2

f0. Chebyshev evaluation of $\Gamma_1$ and $\Gamma_2$. 

$P_0$, $Q_0$. 

Evaluate CF1 by modified Lentz's method ($\S$5.2).

Denominators cannot be zero here, so no need for special precautions.

Now have unnormalized $I_\mu$ and $I'_\mu$.

Use series.

nl is the number of downward recurrences of the $I$'s and upward recurrences of $K$'s. xmu lies between $-1/2$ and $1/2$. 

xmu = xnu - nl

xmu2 = xmu * xmu

xi = 1.0_dp / x

x12 = 2.0_dp * xi

h = xmu * xi

if (h < FPMIN) h = FPMIN

b = x12 * xmu

d = 0.0

c = h

do i = 1, MAXIT

b = b + x12

d = 1.0_dp / (b + d)

c = b + 1.0_dp / c

del = c * d

h = del * h

end do

if (i > MAXIT) call nrerror('x too large in bessik; try asymptotic expansion')

ril = FPMIN

ripl = h * ril

ripl1 = ripl

fact = xmu / xi

do l = nl, 1, -1

ritemp = fact * ril + ripl

fact = fact - xi

ripl = fact * rtemp * ril

ril = rtemp
end do

f = ripl / ril

if (x < XMIN) then

x2 = 0.5_dp * x

pimu = PI_D * xmu

if (abs(pimu) < EPS) then

fact = 1.0

else

fact = pimu / sin(pimu)
end if

d = log(x2)

e = xmu * d

if (abs(e) < EPS) then

fact2 = 1.0

else

fact2 = sinh(e) / e
end if

call beschb(xmu, gam1, gam2, gampl, gammi)

ff = fact * (gam1 * cosh(e) + gam2 * fact2 * d)

sum = ff

e = exp(e)

p = 0.5_dp * e / gampl

q = 0.5_dp / (e * gammi)

c = 1.0

d = x2 * x2

f0. Chebyshev evaluation of $\Gamma_1$ and $\Gamma_2$. 

$P_0$, $Q_0$. 

Evaluate CF1 by modified Lentz's method ($\S$5.2).

Denominators cannot be zero here, so no need for special precautions.

Now have unnormalized $I_\mu$ and $I'_\mu$.

Use series.
**Chapter B6. Special Functions**

```fortran
sum1=p
do i=1,MAXIT
 ff=(i*ff+p+q)/(i*i-xmu2)
 c=c*d/i
 p=p/(i-xmu)
 q=q/(i+xmu)
 del=c*ff
 sum=sum+del
 del1=c*(p-i*ff)
 sum1=sum1+del1
 if (abs(del) < abs(sum)*EPS) exit
end do
if (i > MAXIT) call nrerror('bessk series failed to converge')
rkmu=sum
rk1=sum1*xi2
else
 b=2.0_dp*(1.0_dp+x)
 d=1.0_dp/b
 delh=d
 h=delh
 q1=0.0
 q2=1.0
 a1=0.25_dp-xmu2
 c=a1
 q=c
 a=-a1
 s=1.0_dp*q*delh
 do i=2,MAXIT
 a=a-2*(i-1)
 c=-a*c/i
 qnew=(q1-b*q2)/a
 q1=q2
 q2=qnew
 b=b2.0_dp
 d=1.0_dp/(b+a*d)
 delh=(b*d-1.0_dp)*delh
 h=h+delh
 dels=q*delh
 s=s+dels
 if (abs(dels/s) < EPS) exit
 end do
 if (i > MAXIT) call nrerror('bessik failure to converge in cf2')
 h=a1*h
 rkmu=sqrt(PI_D/(2.0_dp*x))*exp(-x)/s
 rk1=sqrt(PI_D/(2.0_dp*x))*exp(-x)/xi
 end if
end SUBROUTINE bessik
```

Evaluate CF2 by Steed's algorithm ([5.2]), which is OK because there can be no zero denominators.

Need only test convergence of sum, since CF2 itself converges more quickly.

Initializations for recurrence (6.7.35).

First term in equation (6.7.34).

Need only test convergence of sum, since CF2 itself converges more quickly.

Omit the factor \( \exp(-x) \) to scale all the returned functions by \( \exp(x) \) for \( x \geq XMIN \).

Get \( I_\mu \) from Wronskian.

Scale original \( I_\nu \) and \( I'_\nu \).

Upward recurrence of \( K_\nu \).
bessik does not readily paralleize, and we thus don’t provide a vector version. Since airy, immediately following, requires bessik, we don’t have a vector version of it, either.

⋆⋆⋆

SUBROUTINE airy(x,ai,bi,aip,bip)
USE nrtype
USE nr, ONLY : bessik,bessjy
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ai,bi,aip,bip
Returns Airy functions Ai(x), Bi(x), and their derivatives Ai’(x), Bi’(x).
REAL(SP) :: absx,ri,rip,rk,rkp,rootx,ry,ryp,z
REAL(SP), PARAMETER :: THIRD=1.0_sp/3.0_sp,TWOTHR=2.0_sp/3.0_sp, &
ONOVRT=0.5773502691896258_sp
absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if (x > 0.0) then
    call bessik(z,THIRD,ri,rk,rip,rkp)
    ai=rootx*ONOVRT*rk/PI
    bi=rootx*(rk/PI+2.0_sp*ONOVRT*ri)
else if (x < 0.0) then
    call bessjy(z,THIRD,rj,ry,rjp,ryp)
    ai=0.5_sp*rootx*(rj-ONOVRT*ry)
    bi=-0.5_sp*rootx*(ry+ONOVRT*rj)
else  Case x = 0.
    ai=0.3550280538878172_sp
    bi=ai/ONOVRT
    aip=-0.2588194037928068_sp
    bip=-aip/ONOVRT
end if
END SUBROUTINE airy

⋆⋆⋆

SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp
Returns spherical Bessel functions j_n(x), y_n(x), and their derivatives j'_n(x), y'_n(x) for integer n ≥ 0 and x > 0.
REAL(SP), PARAMETER :: RTP102=1.253314137315500_sp
REAL(SP) :: factor,order,rj,ry,ryp
call assert(n >= 0, x > 0.0, 'sphbes_s args')
order=0.5_sp
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTP102/sqrt(x)
  sj=factor*rj
  sy=factor*ry
\[ sjp = \text{factor} \times rjp - sj/(2.0\_sp \times x) \]
\[ syp = \text{factor} \times ryp - sy/(2.0\_sp \times x) \]

END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: sj,sy,sjp,syp
REAL(SP), PARAMETER :: RTPIO2 = 1.253314137315500_sp
REAL(SP) :: order

call assert(n >= 0, all(x > 0.0), 'sphbes_vargs')
order = n + 0.5_sp
call bessjy(x, order, rj, ry, rjp, ryp)
factor = RTPIO2 / sqrt(x)
sj = factor \times rj
sy = factor \times ry
sjp = factor \times rjp - sj/(2.0\_sp \times x)
syp = factor \times ryp - sy/(2.0\_sp \times x)
END SUBROUTINE sphbes_v

Note that sphbes_v uses (through overloading) bessjy. The listing of that routine was omitted above, but it is on the machine-readable media.

FUNCTION plgndr_s(l,m,x)
USE nrtype; USE nrutil, ONLY : arth, assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), INTENT(IN) :: x
REAL(SP) :: plgndr_s

Computes the associated Legendre polynomial \( P^m_l(x) \). Here \( m \) and \( l \) are integers satisfying \( 0 \leq m \leq l \), while \( x \) lies in the range \(-1 \leq x \leq 1\).

INTEGER(I4B) :: ll
REAL(SP) :: pll,pmm,pmmp1,somx2

call assert(m >= 0, m <= l, abs(x) <= 1.0, 'plgndr_s args')
pmm = 1.0
if (m > 0) then
  somx2 = sqrt((1.0_sp-x)*(1.0_sp+x))
pmm = product(arth(1.0_sp, 2.0_sp, m))*somx2**m
  if (mod(m,2) == 1) pmm = -pmm
end if
if (l == m) then
  plgndr_s = pmm
else
  pmmp1 = x*(2*m+1)*pmm
  if (l == m+1) then
    plgndr_s = pmmp1
  else
    do ll = m+2, l
      pll = (x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
      pmmp1 = pll
    end do
    plgndr_s = pll
  end if
end if
FUNCTION plgndr_v(l,m,x)
USE nrtype; USE nrutil, ONLY : arth, assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: plgndr_v
INTEGER(I4B) :: ll
REAL(SP), DIMENSION(size(x)) :: pl, pmm, pmmp1, somx2
call assert(m >= 0, m <= l, all(abs(x) <= 1.0), 'plgndr_vargs')
pmm=1.0
if (m > 0) then
  somx2=sqrt((1.0_sp-x)*(1.0_sp+x))
  pmm=product(arth(1.0_sp,2.0_sp,m))*somx2**m
  if (mod(m,2) == 1) pmm=-pmm
end if
if (l == m) then
  plgndr_v=pmm
else
  pmmp1=x*(2*m+1)*pmm
  if (l == m+1) then
    plgndr_v=pmmp1
  else
    do ll=m+2,l
      pl=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
      pmm=pmmp1
      pmmp1=pl
    end do
    plgndr_v=pl
  end if
end if
END FUNCTION plgndr_v

SUBROUTINE frenel(x,s,c)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FMIN=tiny(x), BIG=huge(x)*EPS, &
XMIN=1.5
Computes the Fresnel integrals S(x) and C(x) for all real x.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error;
FMIN is a number near the smallest representable floating-point number; BIG is a number

end if
end if
END FUNCTION plgndr_s

That is, \((2m - 1)!!\)
near the machine overflow limit; XMIN is the dividing line between using the series and
continued fraction.

```fortran
INTEGER(I4B) :: k, n
REAL(SP) :: a, ax, fact, pix2, sign, sum, sumc, sums, term, test
COMPLEX(SPC) :: b, cc, d, h, del, cs
LOGICAL(LGT) :: odd
ax=abs(x)
if (ax < sqrt(FPMIN)) then
 s=0.0
 c=ax
else if (ax <= XMIN) then
 Evaluate both series simultaneously.
 sum=0.0
 sums=0.0
 sumc=ax
 sign=1.0
 fact=PIO2*ax*ax
 odd=.true.
term=ax
 n=3
 do k=1,MAXIT
 term=term*fact/k
 sum=sum+sign*term/n
 test=abs(sum)*EPS
 if (odd) then
 sign=-sign
 sums=sum
 sum=sumc
 else
 sumc=sum
 sum=sums
 end if
 if (term < test) exit
 odd=.not. odd
 n=n+2
 end do
 if (k > MAXIT) call nrerror('frenel: series failed')
s=sums
c=sumc
else
 Evaluate continued fraction by modified Lentz's method (5.2).
 pix2=PI*ax*ax
 b=cmplx(1.0_sp,-pix2,kind=spc)
 cc=BI G
 d=1.0_sp/b
 h=d
 n=-1
 do k=2,MAXIT
 a=-n*(n+1)
 b=b+4.0_sp
 d=1.0_sp/(a*d+b)
 cc=b+a/cc
 del=cc*d
 h=h*del
 if (absc(del-1.0_sp) <= EPS) exit
 end do
 if (k > MAXIT) call nrerror('cf failed in frenel')
 h=h*cmplx(ax,-ax,kind=spc)
 cs=cmplx(0.5_sp,0.5_sp,kind=spc)*(1.0_sp-&
 cmplx(cos(0.5_sp*pix2),sin(0.5_sp*pix2),kind=spc)*h)
 c=real(cs)
 s=aimag(cs)
end if
if (x < 0.0) then
 Use antisymmetry.
 c=-c
end if
```

Special case: avoid failure of convergence test because of underflow.
s=-s
end if
CONTAINS
FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE frenel

s=-s
end if

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE frenel

It's a good idea always to include the kind= parameter when you use the cmplx intrinsic. The reason is that, perhaps counterintuitively, the result of cmplx is not determined by the kind of its arguments, but is rather the “default complex kind.” Since that default may not be what you think it is (or what spc is defined to be), the desired kind should be specified explicitly.

And why not specify a kind= parameter here, where it is also optionally allowed? Our answer is that the real intrinsic actually merges two different usages. When its argument is complex, it is the counterpart of aimag and returns a value whose kind is determined by the kind of its argument. In fact aimag doesn't even allow an optional kind parameter, so we never put one in the corresponding use of real. The other usage of real is for “casting,” that is, converting one real type to another (e.g., double precision to single precision, or vice versa). Here we always include a kind parameter, since otherwise the result is the default real kind, with the same dangers mentioned in the previous paragraph.

SUBROUTINE cisi(x,ci,si)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci,si
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=4.0_sp*tiny(x),&
BIG=huge(x)*EPS,TMIN=2.0
Computes the cosine and sine integrals Ci(x) and Si(x). Ci(0) is returned as a large negative number and no error message is generated. For x < 0 the routine returns Ci(−x) and you must supply the −iπ yourself.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error, or absolute error near a zero of Ci(x); FPMIN is a number near the smallest representable floating-point number; BIG is a number near the machine overflow limit; TMIN is the dividing line between using the series and continued fraction; EULER = γ (in nrtype).
INTEGER(I4B) :: i,k
REAL(SP) :: a,err,fact,sign,sum,sumc,sums,t,term
LOGICAL(LGT) :: odd
t=abs(x)
if (t == 0.0) then Special case.
si=0.0
else
si=BIG
RETURN
endif
if (t > TMIN) then Evaluate continued fraction by modified Lentz's method (§5.2).
      b=cmplx(1.0_sp,-pix2,kind=spc)
\begin{verbatim}
c = BIG
d = 1.0_sp/b
h = d

\textbf{do i = 2, MAXIT}
  a = -(i-1)**2
  b = b + 2.0_sp
  d = 1.0_sp/(a*d + b)
  c = b/a/c
  del = c*d
  h = h*del
  if (absc(del-1.0_sp) <= EPS) exit
\end{verbatim}

\begin{verbatim}
Denominators cannot be zero.
\end{verbatim}

\begin{verbatim}
else
  if (t < sqrt(FPMIN)) then
    \textbf{if (t < sqrt(FPMIN)) then}
      \textbf{else}
        \textbf{special case: avoid failure of convergence test}
        \textbf{becase of underflow.}
      \textbf{end if}
      \textbf{else}
        \textbf{sum = 0.0}
        \textbf{sums = 0.0}
        \textbf{sumc = 0.0}
        \textbf{sign = 1.0}
        \textbf{fact = 1.0}
        \textbf{odd = .true.}
        \textbf{do k = 1, MAXIT}
          \textbf{do k = 1, MAXIT}
            \textbf{fact = fact*t/k}
            \textbf{term = fact/k}
            \textbf{sum = sum + sign*term}
            \textbf{err = term/abs(sum)}
            \textbf{if (odd) then}
              \textbf{if (odd) then}
                \textbf{sign = -sign}
                \textbf{sums = sum}
                \textbf{sum = sumc}
              \textbf{else}
                \textbf{sumc = sum}
                \textbf{sum = sums}
              \textbf{end if}
            \textbf{else}
              \textbf{sums = sum}
              \textbf{sum = sumc}
            \textbf{end if}
            \textbf{if (err < EPS) exit}
            \textbf{odd = .not. odd}
          \textbf{end do}
          \textbf{end do}
          \textbf{if (k > MAXIT) call nerror('MAXIT exceeded in cisi')} \hfill
          \textbf{end if}
        \textbf{end if}
      \textbf{end if}
    \textbf{end if}
  \textbf{else}
    \textbf{if (x < 0.0) si = -si}
  \textbf{end if}
\end{verbatim}

\begin{verbatim}
\textbf{CONTAINS}
\end{verbatim}

\begin{verbatim}
FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc = abs(real(z)) + abs(aimag(z))
END FUNCTION absc
END SUBROUTINE cisi
\end{verbatim}

\begin{verbatim}
\* \* \*
\end{verbatim}
FUNCTION dawson_s(x)
USE nrtype; USE nrutil, ONLY : arth, geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s

Returns Dawson’s integral \( F(x) = \exp(-x^2) \int_0^x \exp(t^2) dt \) for any real \( x \).

INTEGER(14B), PARAMETER :: NMAX=6
REAL(SP), PARAMETER :: H=0.4_sp, A1=2.0_sp/3.0_sp, A2=0.4_sp, &
A3=2.0_sp/7.0_sp
INTEGER(14B) :: i, n0
REAL(SP) :: ec, x2, xp, xx
REAL(SP), DIMENSION(NMAX) :: d1, d2, e1
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)

if (c(1) == 0.0) c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2)

Initialize \( c \) on first call.

if (abs(x) < 0.2_sp) then
  Use series expansion.
  dawson_s=x*(1.0_sp-A1*x2*(1.0_sp-A2*x2*(1.0_sp-A3*x2)))
else
  Use sampling theorem representation.
  xx=abs(x)
  n0=2*nint(0.5_sp*xx/H)
  xp=xx-real(n0,sp)*H
  ec=exp(2.0_sp*xp*H)
  d1=arth(n0+1,2,NMAX)
  d2=arth(n0-1,-2,NMAX)
  e1=geop(ec,ec**2,NMAX)
  dawson_s=0.5641895835477563_sp*sign(exp(-xp**2),x)*&
            Constant is \( \frac{1}{\sqrt{\pi}} \).
  sum(c*(e1/d1+1.0_sp/(d2*e1)))
end if

END FUNCTION dawson_s

REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)
This is one way to give initial values to an array. Actually, we’re somewhat nervous about using the “implied do-loop” form of the array constructor, as above, because our parallel compilers might not always be smart enough to execute the constructor in parallel. In this case, with NMAX=6, the damage potential is quite minimal. An alternative way to initialize the array would be with a data statement, “DATA c/NMAX*0.0_sp/”; however, this is not considered good Fortran 90 style, and there is no reason to think that it would be faster.

FUNCTION dawson_v(x)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
INTEGER(14B), PARAMETER :: NMAX=6

Another example where the arth function of nrutil comes in handy. Otherwise, this would be

\[
\text{do } i=1,NMAX
\]
\[
c(i)=\exp(-((2.0_sp*i-1.0_sp)*H)**2)
\]
\[
\text{end do}
\]

arth(n0+1,2,NMAX)...arth(n0-1,-2,NMAX)...geop(ec,ec**2,NMAX) These are not just notationally convenient for generating the sequences \( (n_0+1, n_0+3, n_0+5, \ldots), \)
\( (n_0-1, n_0-3, n_0-5, \ldots), \) and \( (ec, ec^3, ec^5, \ldots) \). They also may allow parallelization with parallel versions of arth and geop, such as those in nrutil.

FUNCTION dawson_v(x)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
INTEGER(14B), PARAMETER :: NMAX=6
**FUNCTION dawsonseries_v(xin,mask)**

**IMPLICIT NONE**

**REAL(SP), DIMENSION(:), INTENT(IN)** :: xin

**LOGICAL(LGT), DIMENSION(size(xin)), INTENT(IN)** :: mask

**REAL(SP), DIMENSION(size(xin))** :: dawsonseries_v

**INTEGER(I4B), DIMENSION(:), ALLOCATABLE** :: n0

**REAL(SP), DIMENSION(:), ALLOCATABLE** :: d1,d2,e1,e2,sm,xp,xx,x

**n=count(mask)**

**if (n == 0) RETURN**

**allocate(n0(n),d1(n),d2(n),e1(n),e2(n),sm(n),xp(n),xx(n),x(n))**

**x=pack(xin,mask)**

**xx=abs(x)**

**n0=2*nint(0.5_sp*xx/H)**

**xp=xx-real(n0,sp)*H**

**e1=exp(2.0_sp*xp*H)**

**e2=e1**

**d1=n0+1.0_sp**

**d2=d1-2.0_sp**

**sm=0.0**

**do i=1,NMAX**

**sm=sm+c(i)*(e1/d1+1.0_sp/(d2*e1))**

**d1=d1+2.0_sp**

**d2=d2-2.0_sp**

**e1=e2*e1**

**end do**

**sm=0.5641895835477563_sp*sign(exp(-xp**2),x)*sm**

**dawsonseries_v=unpack(sm,mask,0.0_sp)**

**deallocate(n0,d1,d2,e1,e2,sm,xp,xx)**

**END FUNCTION dawsonseries_v**

*Pass-the-buck method for getting masked values, see note to bessj0 above, p. 1102. Within the contained dawsonseries, we use the pack-unpack method. Note that, unlike in dawsons, the sums are done by do-loops, because the parallelization is already over the components of the vector argument.*
Computes Carlson’s elliptic integral of the first kind, \( R_F(x, y, z) \). \( x, y, \) and \( z \) must be nonnegative, and at most one can be zero. \( \text{TINY} \) must be at least 5 times the machine underflow limit, \( \text{BIG} \) at most one-fifth the machine overflow limit.

```fortran
C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp
xt=x
ty=y
zt=z
do
sqrtx=sqrt(xt)
sqrtysqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtxsqrtysqrtz+sqrtysqrtzt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit
end do
e2=delx*dely-delz**2
e3=delx*dely*delz
rf_s=(1.0_sp+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
END FUNCTION rf_s
```

```fortran
FUNCTION rf_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rf_v
REAL(SP), PARAMETER :: ERRTOL=0.08_sp,TINY=1.5e-38_sp,BIG=3.0e37_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp
REAL(SP), DIMENSION(size(x)) :: alamb, ave, delx, dely, delz, e2, e3, &
sqrtx, sqrtysqrty, sqrtz, xt, yt, zt
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),'rf_vargs')
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z) >= TINY), &
all(max(x,y,z) <= BIG), 'rf_v args')
xt=x
ty=y
zt=z
converged=.false.
do
where (.not. converged)
sqrtx=sqrt(xt)
sqrtysqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtxsqrtysqrtz+sqrtysqrtzt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
converged = (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL)
end do
```

FUNCTION rf_v(x,y,z)
FUNCTION rd_s(x,y,z)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
REAL(SP) PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&
C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4
Computes Carlson's elliptic integral of the second kind, $R_D(x,y,z)$. $x$ and $y$ must be nonnegative, and at most one can be zero. $z$ must be positive. TINY must be at least twice the negative 2/3 power of the machine overflow limit. BIG must be at most $0.1 \times$ ERRTOL times the negative 2/3 power of the machine underflow limit.
REAL(SP) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt
call assert(min(x,y) >= 0.0, min(x+y,z) >= TINY, max(x,y,z) <= BIG, &
'rd_s args')
xt=x
yt=y
zt=z
sum=0.0
fac=1.0
do
  sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=0.2_sp*(xt+y+3.0_sp*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit
end do
eea=delx+dely
eb=delz+dely
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ee
rd_s=3.0_sp*sum+fac*(1.0_sp+ed*(-C1*CS+ee)*delz*ee)/&
+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea))/(ave*sqrt(ave))
END FUNCTION rd_s
FUNCTION rd_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert, assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rd_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&
C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4
REAL(SP), DIMENSION(size(x)) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),'rd_v')
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,z) >= TINY), &
all(max(x,y,z) <= BIG), 'rd_vargs')
xt=x
yt=y
zt=z
sum=0.0
fac=1.0
converged=.false.
do
where (.not. converged)
  sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
  alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
  sum=sum+fac/(sqrtz*(zt+alamb))
  fac=0.25_sp*fac
  xt=0.25_sp*(xt+alamb)
  yt=0.25_sp*(yt+alamb)
  zt=0.25_sp*(zt+alamb)
  ave=0.2_sp*(xt+yt+3.0_sp*zt)
  delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
  converged = (all(max(abs(delx),abs(dely),abs(delz)) <= ERRTOL))
end where
if (all(converged)) exit
end do
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ec
rd_v=3.0_sp*sum+fac*(1.0_sp+ed*(-C1+C5*ed-C6*delz*ee)&
+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
END FUNCTION rd_v

FUNCTION rj_s(x,y,z,p)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : rc,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z,p
REAL(SP) :: rj_s
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&
C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3+C3
Computes Carlson's elliptic integral of the third kind, R_j(x,y,z,p).
For x, y, and z must be nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy

principal value is returned. TINY must be at least twice the cube root of the machine underflow limit, BIG at most one-fifth the cube root of the machine overflow limit.

```fortran
REAL(SP) :: a, alamb, alpha, ave, b, bet, delp, delx, &
deley, delz, ea, eb, ec, ed, ee, fac, pt, rho, sqrtx, sqrtqy, sqrtz, &
sm, tau, xt, yt, zt
call assert(min(x,y,z) >= 0.0, min(x+y,xt+y+z,abs(p)) >= TINY, &
max(x,y,z,abs(p)) <= BIG, 'rj_s args')
sm=0.0
fac=1.0
if (p > 0.0) then
 xt=x
 yt=y
 zt=z
 pt=p
else
 xt=min(x,y,z)
 zt=max(x,y,z)
 yt=x+y+z-xt-zt
 a=1.0_sp/(yt-p)
 b=a*(zt-yt)*(yt-xt)
 pt=yt+b
 rho=x*tz/yt
 tau=p/pt/yt
end if

do
 sqrtx=sqrt(xt)
 sqrtqy=sqrt(yt)
 sqrtz=sqrt(zt)
 alamb=sqrtx*(sqrtqy+sqrtz)+sqrtqy*sqrtz
 alpha=(pt*(sqrtx+sqrtqy+sqrtz)+sqrtx*sqrtqy*sqrtz)**2
 bet=pt*(pt+alamb)**2
 sm=sm+fac*rc(alpha,bet)
 fac=0.25_sp*fac
 xt=0.25_sp*(xt+alamb)
 yt=0.25_sp*(yt+alamb)
 zt=0.25_sp*(zt+alamb)
 pt=0.25_sp*(pt+alamb)
 ave=0.2_sp*(xt+yt+zt+pt+pt)
 delx=(ave-xt)/ave
 dely=(ave-yt)/ave
 delz=(ave-zt)/ave
 delp=(ave-pt)/ave
 if (max(abs(delx), abs(dely), abs(delz), abs(delp)) <= ERRTOL) exit
end do

ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea=3.0_sp*ec
ee=eb=2.0_sp*delx*(ea-ec)

if (p <= 0.0) rj_s+a*(b*rj_s+3.0_sp*rc(rho,tau)-rf(xt,yt,zt))
end if
```

FUNCTION rj_v(x,y,z,p)
USE ntype; USE nrutil, ONLY : assert, assert_eq
USE nr, ONLY : rc, rf
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,z,p
REAL(SP), DIMENSION(size(x)) :: rj_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&
C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3*C3

REAL(SP), DIMENSION(size(x)) :: a,alamb,alpha,ave,b,bet,delp,delx,&
dely,delz,ea,eb,ec,ed,ee,fac,pt,rho,sqrtx,sqrty,sqrtz,&
sm,tau,xt,yt,zt
LOGICAL(LGT), DIMENSION(size(x)) :: mask

INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),size(p),'rj_v')
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z,abs(p)) >= TINY), &
all(max(x,y,z,abs(p)) <= BIG), 'rj_v args')
sm=0.0
fac=1.0
where (p > 0.0)
xt=x
yt=y
zt=z
pt=p
elsewhere
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1.0_sp/(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
tau=p*pt/yt
end where

mask=.false.
do
where (.not. mask)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alpha=(pt*sqrtx+sqrty*sqrtz)**2
bet=pt*(sqrtx+sqrty)*sqrtz
sm=sm+fac*rc(alpha,bet)
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
pt=0.25_sp*(pt+alamb)
ave=0.2_sp*(xt+yt+zt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
mask = (max(abs(delx),abs(dely),abs(delz),abs(delp)) <= ERRTOL)
end where
if (all(mask)) exit
end do

ea=delx*(dely+delz)+dely*delz
eb=delx+dely+delz
ee=delx+2
ed=ea-3.0_sp*ec
ee=eb+2.0_sp*delp*(ea-ec)
rj_v=3.0_sp*sm+fac*(1.0_sp+ed*(-C1+C5*ed-C6*ee)+ee*(-C7&
+C5*ed-C6*ee)+edelp*(-C8&
+delp*C3-C2*delp*C3))/((ave*sqrt(ave))
mask = (p <= 0.0)
where (mask) rj_v=aa*(b+rj_v&
unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))-&
rpack(xt,mask),pack(yt,mask),pack(zt,mask))),mask,0.0_sp))
END FUNCTION rj_v
unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))...),mask,0.0_sp)

If you’re willing to put up with fairly unreadable code, you can use the pack-unpack trick (for getting a masked subset of components out of a vector function) right in-line, as here. Of course the “outer level” that is seen by the enclosing where construction has to contain only objects that have the same shape as the mask that goes with the where. Because it is so hard to read, we don’t like to do this very often. An alternative would be to use CONTAINS to incorporate short, masked “wrapper functions” for the functions used in this way.

FUNCTION rc_s(x,y)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&
SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp
Computes Carlson’s degenerate elliptic integral, $R_c(x,y)$. $x$ must be nonnegative and $y$ must be nonzero. If $y < 0$, the Cauchy principal value is returned. TINY must be at least 5 times the machine underflow limit, BIG at most one-fifth the machine maximum overflow limit.

REAL(SP) :: alamb,ave,s,w,xt,yt
call assert( (/x >= 0.0,y /= 0.0,x+abs(y) >= TINY,x+abs(y) <= BIG, &
   y >= -COMP1 .or. x <= 0.0 .or. x >= COMP2/),'rc_s')
if (y > 0.0) then
   xt=x
   yt=y
   w=1.0
else
   xt=x-y
   yt=-y
   w=sqrt(x)/sqrt(xt)
end if
do
   alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
   xt=0.25_sp*(xt+alamb)
   yt=0.25_sp*(yt+alamb)
   ave=THIRD*(xt+yt+y)
   s=(yt-ave)/ave
   if (abs(s) <= ERRTOL) exit
end do
rc_s=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_s

FUNCTION rc_v(x,y)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: rc_v
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&
SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp
REAL(SP), DIMENSION(size(x)) :: alamb,ave,s,w,xt,yt
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum

ndum=assert_eq(size(x),size(y),'rc_v')
call assert((all(x >= 0.0),all(y /= 0.0),all(x+abs(y) >= TINY), &
    all(x+abs(y) <= BIG),all(y >= -COMP1 .or. x <= 0.0 &
    .or. x >= COMP2) '/,'rc_v')
where (y > 0.0)
  xt=x
  yt=y
  w=1.0
elsewhere
  xt=x-y
  yt=-y
  w=sqrt(x)/sqrt(xt)
end where
converged=.false.
do
  if (.not. converged)
    alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
    xt=0.25_sp*(xt+alamb)
    yt=0.25_sp*(yt+alamb)
    ave=THIRD*(xt+yt+yt)
    s=(yt-ave)/ave
    converged = (abs(s) <= ERRTOL)
  end if
end do
rc_v=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_v

FUNCTION ellf_s(phi,ak)
USE nrtype
USE nr
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: ellf_s
Legendre elliptic integral of the 1st kind F(φ, k), evaluated using Carlson's function R_F.
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sin φ ≤ 1.
REAL(SP) :: s
s=sin(phi)
ellf_s=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),1.0_sp)
END FUNCTION ellf_s

FUNCTION ellf_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
REAL(SP), DIMENSION(size(phi)) :: s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),'ellf_v')
s=sin(phi)
ellf_v=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),&
   spread(1.0_sp,s,size(phi)))
END FUNCTION ellf_v
FUNCTION elle_s(phi,ak)
USE nrtype
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: elle_s

Legendre elliptic integral of the 2nd kind $E(\phi,k)$, evaluated using Carlson’s functions $R_D$ and $R_F$. The argument ranges are $0 \leq \phi \leq \pi/2$, $0 \leq k \sin\phi \leq 1$.

REAL(SP) :: cc,q,s
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_s=s*(rf(cc,q,1.0_sp)-((s*ak)**2)*rd(cc,q,1.0_sp)/3.0_sp)
END FUNCTION elle_s

FUNCTION elle_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: elle_v
REAL(SP), DIMENSION(size(phi)) :: cc,q,s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),'elle_v')
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_v=s*(rf(cc,q,spread(1.0_sp,1,size(phi)))-((s*ak)**2)*rd(cc,q,spread(1.0_sp,1,size(phi)))/3.0_sp)
END FUNCTION elle_v

FUNCTION ellpi_s(phi,en,ak)
USE nrtype
USE nr, ONLY : rf,rj
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s

Legendre elliptic integral of the 3rd kind $\Pi(\phi,n,k)$, evaluated using Carlson’s functions $R_J$ and $R_F$. (Note that the sign convention on $\Pi$ is opposite that of Abramowitz and Stegun.)
The ranges of $\phi$ and $k$ are $0 \leq \phi \leq \pi/2$, $0 \leq k \sin\phi \leq 1$.

REAL(SP) :: cc,enss,q,s
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellepi_s=s*(rf(cc,q,1.0_sp)-enss*rj(cc,q,1.0_sp,1.0_sp+enss)/3.0_sp)
END FUNCTION ellpi_s

`rd(cc,q,spread(1.0_sp,1,size(phi)))` See note to erf_v, p. 1094 above.
FUNCTION ellpi_v(phi, en, ak)
USE nrtype
USE nr, ONLY : rf, rj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi, en, ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
REAL(SP), DIMENSION(size(phi)) :: cc, enss, q, s
s=sin(phi)
ensis=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellpi_v=s*(rf(cc, q, spread(1.0_sp, 1, size(phi))))-ensis*&
  rj(cc, q, spread(1.0_sp, 1, size(phi)), 1.0_sp+ensis)/3.0_sp)
END FUNCTION ellpi_v

* * *

SUBROUTINE sncndn(uu, emmc, sn, cn, dn)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: uu, emmc
REAL(SP), INTENT(OUT) :: sn, cn, dn
Returns the Jacobian elliptic functions sn \( u, k_c \),
cn \( u, k_c \), and dn \( u, k_c \). Here uu = u,
while emmc = \( k^2 \).
REAL(SP), PARAMETER :: CA=0.0003_sp
The accuracy is the square of CA.
INTEGER(I4B), PARAMETER :: MAXIT=13
INTEGER(I4B) :: l, i, ii
REAL(SP) :: a, b, c, d, emc, u
REAL(SP), DIMENSION(MAXIT) :: em, en
LOGICAL(LGT) :: bo
emc=emmc
u=uu
if (emc /= 0.0) then
  bo=(emc < 0.0)
  if (bo) then
    d=1.0_sp-emc
    emc=-emc/d
    d=sqrt(d)
    u=d*u
  end if
  a=1.0_sp
  dn=1.0_sp
  do i=1, MAXIT
    l=i
    em(i)=a
    emc=sqrt(emc)
    en(i)=emc
    c=0.5_sp*(a+emc)
    if (abs(a-emc) <= CA*a) exit
    emc=a*emc
    a=c
  end do
  if (i > MAXIT) call nrerror('sncndn: convergence failed')
  u=c=u
  sn=sin(u)
  cn=cos(u)
  if (sn /= 0.0) then
    a=cn/sn
    c=a*c
    do ii=1,1,-1
      b=em(ii)
a=c*a
b=c=d*n*c
dn=(en(ii)+a)/(b+a)
a=c/b
do
a=1.0_sp/sqrt(c**2+1.0_sp)
end if
if (bo) then
a=dn
dn=cn
sn=sn/cn
end if
else
hn=1.0_sp/cosh(u)
dn=sn
cn=tanh(u)
end if
end subroutine sncndn

* * *

module hypgeo_info
use nrtype
complex(spc) :: hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_dz,hypgeo_z0
end module hypgeo_info

function hypgeo(a,b,c,z)
use nrtype
use hypgeo_info
use nr, only : bsstep,hypdrv,hypser,odeint
implicit none
complex(spc), intent(in) :: a,b,c,z
complex(spc) :: hypgeo
real(spc), parameter :: eps=1.0e-6_sp
complex(spc), dimension(2) :: y
real(spc), dimension(4) :: ry
if (real(z)**2+aimag(z)**2 <= 0.25) then
use series...
call hypser(a,b,c,z,hypgeo,y(2))
return
else if (real(z) < 0.0) then
...or pick a starting point for the path integration.
hypgeo_z0=complex(-0.5_sp,0.0_sp,kind=spc)
else if (real(z) <= 1.0) then
hypgeo_z0=complex(0.5_sp,0.0_sp,kind=spc)
else
hypgeo_z0=complex(0.0_sp,sign(0.5_sp,aimag(z)),kind=spc)
end if
hypgeo_aa=a
load the module variables, used to pass parameters "over the head" of odeint
hypgeo_bb=b
to hypdrv.
hypgeo_cc=c
hypgeo_dz=z-hypgeo_z0
call hypser(hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_z0,y(1),y(2))
get starting function and derivative.
ry(1:4:2)=real(y)
ry(2:4:2)=aimag(y)
call odeint(ry,0.0_sp,0.1_sp,EPS,0.1_sp,0.0001_sp,hypdrv,bstemp)
The arguments to odeint are the vector of independent variables, the starting and ending
values of the dependent variable, the accuracy parameter, an initial guess for stepsize, a
minimum stepsize, and the names of the derivative routine and the (here Bulirsch-Stoer)
stepping routine.
y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
hypgeo=y(1)
END FUNCTION hypgeo

SUBROUTINE hypser(a,b,c,z,series,deriv)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC), INTENT(OUT) :: series,deriv

Returns the hypergeometric series \( _2F_1 \) and its derivative, iterating to machine accuracy.
For \( |z| \leq 1/2 \) convergence is quite rapid.

INTEGER(I4B) :: n
INTEGER(I4B), PARAMETER :: MAXIT=1000
COMPLEX(SPC) :: aa,bb,cc,fac,temp
deriv=cmplx(0.0_sp,0.0_sp,kind=spc)
fac=cmplx(1.0_sp,0.0_sp,kind=spc)
temp=fac
aa=a
bb=b
cc=c

do n=1,MAXIT
    fac=((aa*bb)/cc)*fac
    deriv=deriv+fac
    fac=fac*z/n
    series=temp+fac
    if (series == temp) RETURN
    temp=series
    aa=aa+1.0
    bb=bb+1.0
    cc=cc+1.0
end do
call nrerror('hypser: convergence failure')
END SUBROUTINE hypser

SUBROUTINE hypdrv(s,ry,rdyds)
USE nrtype
USE hypgeo_info
IMPLICIT NONE
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry
REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds

Derivative subroutine for the hypergeometric equation; see text equation (5.14.4).

COMPLEX(SPC), DIMENSION(2) :: y,dyds
COMPLEX(SPC) :: z
y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
z=hypgeo_z0+s*hypgeo_dz
dyds(1)=y(2)*hypgeo_dz
rdyds(1:4:2)=real(dyds)
dyds(2:4:2)=aimag(dyds)
END SUBROUTINE hypdrv
Notice that the real array (of length 4) \( r_y \) is immediately mapped into a complex array of length 2, and that the process is reversed at the end of the routine with \( r_d y d e \). In Fortran 77 no such mapping is necessary: the calling program sends real arguments, and the Fortran 77 \texttt{hypdrv} simply interprets what is sent as complex. Fortran 90’s stronger typing does not encourage (and, practically, does not allow) this convenience; but it is a small price to pay for the vastly increased error-checking capabilities of a strongly typed language.
Chapter B7. Random Numbers

One might think that good random number generators, including those in Volume 1, should last forever. The world of computing changes very rapidly, however:

- When Volume 1 was published, it was unusual, except on the fastest supercomputers, to “exhaust” a 32-bit random number generator, that is, to call for all $2^{32}$ sequential random values in its periodic sequence. Now, this is feasible, and not uncommon, on fast desktop workstations. A useful generator today must have a minimum of 64 bits of state space, and generally somewhat more.
- Before Fortran 90, the Fortran language had no standardized calling sequence for random numbers. Now, although there is still no standard algorithm defined by the language (rightly, we think), there is at least a standard calling sequence, exemplified in the intrinsics random_number and random_seed.
- The rise of parallel computing places new algorithmic demands on random generators. The classic algorithms, which compute each random value from the previous one, evidently need generalization to a parallel environment.
- New algorithms and techniques have been discovered, in some cases significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90, different uniform random number generators from those in Volume 1’s Fortran 77 implementations. We hasten to add that there is nothing wrong with any of the generators in Volume 1. That volume’s ran0 and ran1 routines are, to our knowledge, completely adequate as 32-bit generators; ran2 has a 64-bit state space, and our previous offer of $1000 for any demonstrated failure in the algorithm has never yet been claimed (see [1]).

Before we launch into the discussion of parallelizable generators with Fortran 90 calling conventions, we want to attend to the continuing needs of longtime “x=ran(idum)” users with purely serial machines. If you are a satisfied user of Volume 1’s ran0, ran1, or ran2 Fortran 77 versions, you are in this group. The following routine, ran, preserves those routines’ calling conventions, is considerably faster than ran2, and does not suffer from the old ran0 or ran1’s 32-bit period exhaustion limitation. It is completely portable to all Fortran 90 environments. We recommend ran as the plug-compatible replacement for the old ran0, ran1, and ran2, and we happily offer exactly the same $1000 reward terms as were (and are still) offered on the old ran2.
FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran

"Minimal" random number generator of Park and Miller combined with a Marsaglia shift sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This fully portable, scalar generator has the "traditional" (not Fortran 90) calling sequence with a random deviate as the returned function value: call with idum a negative integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this generator is about $3.1 \times 10^{18}$.

INTEGER(K4B), PARAMETER :: IA=16807, IM=2147483647, IQ=127773, IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1, iy=-1, k

if (idum <= 0 .or. iy < 0) then
  Initialize.
  am=nearest(1.0, -1.0)/IM
  iy=ieor(ieor(888889999, abs(idum)), 1)
  ix=ieor(777755556, abs(idum))
  idum=abs(idum)+1
  Set idum positive.
end if
ix=ieor(ix, ishft(ix, 13))
ix=ieor(ix, ishft(ix, -17))
ix=ieor(ix, ishft(ix, 5))
k=i\ div IQ
iy=IA*(iy-k*IQ)-IR*k
if (iy < 0) iy=i\ div IQ+IM
ran=am*ior(iand(IM, ieor(ix, iy)), 1)

Combine the two generator with masking to ensure nonzero value.

END FUNCTION ran

This is a good place to discuss a new bit of algorithmics that has crept into ran, above, and even more strongly affects all of our new random number generators, below. Consider:

\[
\begin{align*}
ix &= \text{ieor}(ix, \text{ishft}(ix, 13)) \\
ix &= \text{ieor}(ix, \text{ishft}(ix, -17)) \\
ix &= \text{ieor}(ix, \text{ishft}(ix, 5))
\end{align*}
\]

These lines update a 32-bit integer \( ix \), which cycles pseudo-randomly through a full period of \( 2^{32} - 1 \) values (excluding zero) before repeating. Generators of this type have been extensively explored by Marsaglia (see [2]), who has kindly communicated some additional results to us in advance of publication. For convenience, we will refer to generators of this sort as "Marsaglia shift registers."

Useful properties of Marsaglia shift registers are (i) they are very fast on most machines, since they use only fast logical operations, and (ii) the bit-mixing that they induce is quite different in character from that induced by arithmetic operations such as are used in linear congruential generators (see Volume 1) or lagged Fibonacci generators (see below). Thus, the combination of a Marsaglia shift register with another, algorithmically quite different generator is a powerful way to suppress any residual correlations or other weaknesses in the other generator. Indeed, Marsaglia finds (and we concur) that the above generator (with constants 13, -17, 5, as shown) is by itself about as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the 32 bits of the integer as components in a vector of length 32, in a linear space where addition and multiplication are done modulo 2. Noting that exclusive-or (\text{ieor}) is the same as addition, each of the three lines in the updating can be written as the action of a \( 32 \times 32 \) matrix on a vector, where the matrix is all zeros except for
Chapter B7. Random Numbers

ones on the diagonal, and on exactly one super- or subdiagonal (corresponding to positive or negative second arguments in ishft). Denote this matrix as \( S_k \), where \( k \) is the shift argument. Then, one full step of updating (three lines of code, above) corresponds to multiplication by the matrix \( T = S_k S_k S_k \).

One next needs to find triples of integers \((k_1, k_2, k_3)\), for example \((13, -17, 5)\), that give the full \( M = 2^{32} - 1 \) period. Necessary and sufficient conditions are that \( T^M = I \) (the identity matrix), and that \( T^N \neq I \) for these five values of \( N \):

\[
N = 3 \times 5 \times 17 \times 257, \quad N = 3 \times 5 \times 17 \times 65537, \quad N = 3 \times 5 \times 257 \times 65537, \\
N = 3 \times 17 \times 257 \times 65537, \quad N = 5 \times 17 \times 257 \times 65537.
\]

(Note that each of the five prime factors of \( M \) is omitted one at a time to get the five values of \( N \).) The required large powers of \( T \) are readily computed by successive squarings, requiring only on the order of \( 32^3 \log M \) operations. With this machinery, one can find full-period triples \((k_1, k_2, k_3)\) by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however. Marsaglia subjects candidate values to a battery of tests for randomness, and we have ourselves applied various tests. This stage of winnowing is as much art as science, because all 32-bit generators can be made to exhibit signs of failure due to period exhaustion (if for no other reason). “Good” triples, in order of our preference, are readily computed by successive squarings, requiring only on the order of \( 32^3 \log M \) operations. With this machinery, one can find full-period triples \((k_1, k_2, k_3)\) by exhaustive search, at reasonable cost.

Let us now discuss explicitly the needs of parallel random number generators. The general scheme, from the user’s perspective, is that of Fortran 90’s intrinsic \texttt{random} \_ \texttt{number}: A statement like \texttt{call ran1(harvest)} (where \texttt{ran1} will be one of our portable replacements for the compiler-dependent \texttt{random} \_ \texttt{number}) should fill the real array \texttt{harvest} with pseudo-random real values in the range \((0, 1)\). Of course, we want the underlying machinery to be completely parallel, that is, no do-loops of order \( N \equiv \text{size(harvest)} \).

A first design decision is whether to replicate the state-space across the parallel dimension \( N \), i.e., whether to reserve storage for essentially \( N \) scalar generators. Although there are various schemes that avoid doing this (e.g., mapping a single, smaller, state space into \( N \) different output values on each call), we think that it is a memory cost well worth paying in return for achieving a less exotic (and thus better tested) algorithm. However, this choice dictates that we must keep the state space per component quite small. We have settled on five or fewer 32-bit words of state space per component as a reasonable limit. Some otherwise interesting and well tested methods (such as Knuth’s subtractive generator, implemented in Volume 1 as \texttt{ran3}) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that different parallel components produce different sequences, and so that there is an acceptable degree of randomness across the parallel dimension, as well as between successive calls of the generator. Each component starts its life with one and only one unique identifier, its component index \( n \) in the range \( 1 \ldots N \). One is
Chapter B7. Random Numbers

tempted simply to hash the values \( n \) into the corresponding components of initial state space. “Random” hashing is a bad idea, however, because different \( n \)'s will produce identical 32-bit hash results by chance when \( N \) is no larger than \( \sim 2^{16} \). We therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine \texttt{psdes} in Volume 1 and below) which guarantees causally that different \( n \)'s produce different state space initializations.

The machinery for allocating, deallocating, and initializing the state space, including provision of a user interface for getting or putting the contents of the state space (as in the intrinsic \texttt{random seed}) is fairly complicated. Rather than duplicate it in each different random generator that we provide, we have consolidated it in a single module, \texttt{ran.state}, whose contents we will now discuss. Such a discussion is necessarily technical, if not arcane; on first reading, you may wish to skip ahead to the actual new routines \texttt{ran0}, \texttt{ran1}, and \texttt{ran2}. If you do so, you will need to know only that \texttt{ran.state} provides each vector random routine with five 32-bit vectors of state information, denoted \texttt{iran}, \texttt{jran}, \texttt{kran}, \texttt{mran}, \texttt{nran}. (The overloaded scalar generators have five corresponding 32-bit scalars, denoted \texttt{iran0}, etc.)

\begin{verbatim}
MODULE ran_state
This module supports the random number routines \texttt{ran0}, \texttt{ran1}, \texttt{ran2}, and \texttt{ran3}. It provides each generator with five integers (for vector versions, five vectors of integers), for use as internal state space. The first three integers (\texttt{iran}, \texttt{jran}, \texttt{kran}) are maintained as nonnegative values, while the last two (\texttt{mran}, \texttt{nran}) have 32-bit nonzero values. Also provided by this module is support for initializing or reinitializing the state space to a desired standard sequence number, hashing the initial values to random values, and allocating and deallocating the internal workspace.
USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
Independent of the usual integer kind \texttt{I4B}, we need a kind value for (ideally) 32-bit integers. INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,mran0,nran0,rans
INTEGER(K4B), DIMENSION(:,,:), POINTER, SAVE :: ranseeds
INTEGER(K4B), DIMENSION(:,), POINTER, SAVE :: iran,jran,kran, & mran,nran,ranv
REAL(SP), SAVE :: amm
INTERFACE ran_hash
Scalar and vector versions of the hashing procedure.
MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE
CONTAINS

(We here intersperse discussion with the listing of the module.) The module defines \texttt{K4B} as an integer \texttt{KIND} that is intended to be 32 bits. If your machine doesn’t have 32-bit integers (hard to believe!) this will be caught later, and an error message generated. The definition of the parameters \texttt{hg}, \texttt{hgm}, and \texttt{hgng} makes an assumption about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the magnitude of the most negative representable integer is greater by one than that of the most positive representable integer. This is a property of the two's \textit{complement arithmetic} that is used on virtually all modern machines (see, e.g., [3]).

The global variables \texttt{rans} (for scalar) and \texttt{ranv} (for vector) are used by all of our routines to store the \texttt{integer} value associated with the most recently returned call. You can access these (with a “USE \texttt{ran.state}” statement) if you want integer, rather than real, random deviates.
The first routine, \texttt{ran-init}, is called by routines later in the chapter to initialize their state space. It is not intended to be called from a user’s program.

```fortran
SUBROUTINE ran_init(length)
USE nrtype; USE nrutil, ONLY : arth,nrerror,reallocate
IMPLICIT NONE
INTEGER(K4B), INTENT(IN) :: length

Initialize or reinitialize the random generator state space to vectors of size \texttt{length}. The saved variable \texttt{seq} is hashed (via calls to the module routine \texttt{ran_hash}) to create unique starting seeds, different for each vector component.

```

```fortran
INTEGER(K4B) :: new,j,hgt
if (length < lenran) RETURN

Simply return if enough space is already allocated.
```

```fortran
hgt=hg
```

```fortran
The following lines check that kind value K4B is in fact a 32-bit integer with the usual properties that we expect it to have (under negation and wrap-around addition). If all of these tests are satisfied, then the routines that use this module are portable, even though they go beyond Fortran 90’s integer model.
```

```fortran
if (hg /= 2147483647) call nrerror('ran_init: arith assump 1 fails')
if (hgng >= 0) call nrerror('ran_init: arith assump 2 fails')
if (hgt+1 /= hgng) call nrerror('ran_init: arith assump 3 fails')
if (not(hg) >= 0) call nrerror('ran_init: arith assump 4 fails')
if (not(hgng) < 0) call nrerror('ran_init: arith assump 5 fails')
if (hg+hgng >= 0) call nrerror('ran_init: arith assump 6 fails')
if (not(-1_k4b) < 0) call nrerror('ran_init: arith assump 7 fails')
if (not(0_k4b) >= 0) call nrerror('ran_init: arith assump 8 fails')
if (not(1_k4b) >= 0) call nrerror('ran_init: arith assump 9 fails')
```

```fortran
if (lenran > 0) then
 Reallocate space, or ...
 ranseeds=>reallocate(ranseeds,length,5)
 ranv=>reallocate(ranv,length-1)
 new=lenran+1
else
 allocate(ranseeds(length,5))
 allocate(ranv(length-1))
 new=1

Index of first location not yet initialized.
```

```fortran
amm=nearest(1.0_sp,-1.0_sp)/hgng
```

```fortran
Use of \texttt{nearest} is to ensure that returned random deviates are strictly less than 1.0. If all of these tests are satisfied, then the routines that use this module are portable, even though they go beyond Fortran 90’s integer model.
```

```fortran
if (amm*hgng >= 1.0 .or. amm*hgng <= 0.0) &
 call nrerror('ran_init: arith assump 10 fails')
```

```fortran
end if
```

```fortran
Set starting values, unique by \texttt{seq} and vector component.
```

```fortran
ranseeds(new,:,1)=seq
ranseeds(new;2:5)=spread(arth(new,1,size(ranseeds(new,:,1))),2,4)
do j=1,4
 Hash them.
 call ran_hash(ranseeds(new,:,j),ranseeds(new,:,j+1))
end do
```

```fortran
where (ranseeds(new,:,1:3) < 0) &
 Enforce nonnegativity.
```

```fortran
ranseeds(new,:,1:3)=not(ranseeds(new,:,1:3))
```

```fortran
where (ranseeds(new,:,4:5) == 0) ranseeds(new,:,4:5)=1
 Enforce nonzero.
```

```fortran
if (new == 1) then
 Set scalar seeds.
 iran0=ranseeds(1,1)
 jran0=ranseeds(1,2)
 kran0=ranseeds(1,3)
 mran0=ranseeds(1,4)
 nran0=ranseeds(1,5)
 ranv=nran0
end if
```

```fortran
if (length > 1) then
 Point to vector seeds.
 iran => ranseeds(2,:,1)
 jran => ranseeds(2,:,2)
 kran => ranseeds(2,:,3)
 mran => ranseeds(2,:,4)
 nran => ranseeds(2,:,5)
 ranv = nran
```
end if
lenran=length
END SUBROUTINE ran_init

f90
hgt=hg ... if (hgt+1 /= hgng)  Bit of dirty laundry here! We are testing
whether the most positive integer hg wraps around to the most negative
integer hgng when 1 is added to it. We can’t just write hg+1, since some
compilers will evaluate this at compile time and return an overflow error message.
If your compiler sees through the charade of the temporary variable hgt, you’ll
have to find another way to trick it.

amm=nearest(1.0_sp,-1.0_sp)/hgng ... Logically, amm should be a parameter;
but the nearest intrinsic is trouble-prone in the initialization expression for a
parameter (named constant), so we compute this at run time. We then check that amm,
when multiplied by the largest possible negative integer, does not equal or exceed
unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder why amm is negative, and why we multiply it by negative integers
to get positive random deviates. The answer, which will become manifest
in the random generators given below, is that we want to use the fast not operation
on integers to convert them to nonzero values of all one sign. This is possible if the
conversion is to negative values, since not(i) is negative for all nonnegative i. If
the conversion were to positive values, we would have problems both with zero (its
sign bit is already positive) and hgng (since not(hgng) is generally zero).

iran0=ranseeds(1,1) ...
iran => ranseeds(2:,1)...
The initial state information is stored in ranseeds, a two-dimensional array whose
column (second) index ranges from 1 to 5 over the state variables. ranseeds(1,:) is
reserved for scalar random generators, while ranseeds(2:, :) is for vector-parallel
generators. The ranseeds array is made available to vector generators through
the pointers iran, jran, kran, mran, and nran. The corresponding scalar values,
iran0...nran0 are simply global variables, not pointers, because the overhead of
addressing a scalar through a pointer is often too great. (We will have to copy these
scalar values back into ranseeds when it, rarely, needs to be addressed as an array.)

call ran_hash(...)  Unique, and random, initial state information is obtained
by putting a user-settable “sequence number” into iran, a component number into
jran, and hashing this pair. Then jran and kran are hashed, kran and mran
are hashed, and so forth.

SUBROUTINE ran_deallocate
User interface to release the workspace used by the random number routines.
if (lenran > 0) then
dallocate(ranseeds,ranv)
nullify(ranseeds,ranv,iran,jran,kran,mran,nran)
lenran = 0
end if
END SUBROUTINE ran_deallocate

The above routine is supplied as a user interface for deallocating all the state
space storage.
SUBROUTINE ran_seed(sequence, size, put, get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) :: sequence
INTEGER, OPTIONAL, INTENT(INOUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get
User interface for seeding the random number routines. Syntax is exactly like Fortran 90's random_seed routine, with one additional argument keyword: sequence, set to any integer value, causes an immediate new initialization, seeded by that integer.
if (present(size)) then
  size=5*lenran
else if (present(put)) then
  if (lenran == 0) RETURN
  ranseeds=reshape(put,shape(ranseeds))
  where (ranseeds(:,1:3) < 0) ranseeds(:,1:3)=not(ranseeds(:,1:3))
  Enforce nonnegativity and nonzero conditions on any user-supplied seeds.
  where (ranseeds(:,4:5) == 0) ranseeds(:,4:5)=1
  iran0=ranseeds(1,1)
  jran0=ranseeds(1,2)
  kran0=ranseeds(1,3)
  mran0=ranseeds(1,4)
  nran0=ranseeds(1,5)
else if (present(get)) then
  if (lenran == 0) RETURN
  ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
  get=reshape(ranseeds,shape(get))
else if (present(sequence)) then
  call ran_deallocate
  seq=sequence
end if
END SUBROUTINE ran_seed

SUBROUTINE ran_hash_s(il,ir)
IMPLICIT NONE
INTEGER(K4B), INTENT(INOUT) :: il,ir
DES-like hashing of two 32-bit integers, using shifts, xor's, and adds to make the internal nonlinear function.
INTEGER(K4B) :: is,j
do j=1,4
  is=ir
  ir=ieor(ir,ishft(ir,5))+1422217823
  The various constants are chosen to give good bit mixing and should not be changed.
  ir=ieor(ir,ishft(ir,-16))+1842055030
  ir=ieor(ir,ishft(ir,9))+80567781
  il=is
end do
END SUBROUTINE ran_hash_s
SUBROUTINE ran_hash_v(il,ir)
   IMPLICIT NONE
   INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il,ir
   Vector version of ran_hash.
   INTEGER(K4B), DIMENSION(size(il)) :: is
   INTEGER(K4B) :: j
   do j=1,4
      is=ir
      ir=ieor(ir,ishft(ir,5))+1422217823
      ir=ieor(ir,ishft(ir,-16))+1842055030
      ir=ieor(ir,ishft(ir,9))+80567781
      ir=ieor(il,ir)
      il=is
   end do
END SUBROUTINE ran_hash_v

END MODULE ran_state

The lines
   ir=ieor(ir,ishft(ir,5))+1422217823
   ir=ieor(ir,ishft(ir,-16))+1842055030
   ir=ieor(ir,ishft(ir,9))+80567781

are not a Marsaglia shift sequence, though they resemble one. Instead, they
implement a fast, nonlinear function on ir that we use as the “S-box” in a DES-like
hashing algorithm. (See Volume 1, §7.5.) The triplet (5, −16, 9) is not chosen to
give a full period Marsaglia sequence — it doesn’t. Instead it is chosen as being
particularly good at separating in Hamming distance (i.e., number of nonidentical
bits) two initially close values of ir (e.g., differing by only one bit). The large
integer constants are chosen by a similar criterion. Note that the wrap-around
of addition without generating an overflow error condition, which was tested in
ran_init, is relied upon here.

* * *

SUBROUTINE ran0_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran0,jran0,kran0,nran0,rans
   IMPLICIT NONE
   REAL(SP), INTENT(OUT) :: harvest
   Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest
   a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This gen-
erator has the same calling and initialization conventions as Fortran 90’s random_number
   routine. Use ran_seed to initialize or reinitialize to a particular sequence. The period of
   this generator is about $2 \times 10^{28}$, and it fully vectorizes. Validity of the integer model
   assumed by this generator is tested at initialization.
   if (lenran < 1) call ran_init(1)
   rans=iran0-kran0
   if (rans < 0) rans=rans+2147483579_k4b
   iran0=jran0
   jran0=kran0
   kran0=rans
   nran0=ieor(nran0,ishft(nran0,13))
   nran0=ieor(nran0,ishft(nran0,-17))
   nran0=ieor(nran0,ishft(nran0,5))
   rans=ieor(nran0,rans)
   harvest=amm*merge(rans,not(rans), rans<0 )
END SUBROUTINE ran0_s
SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran0_v

This is the simplest, and fastest, of the generators provided. It combines a subtractive Fibonacci generator (Number 6 in ref. [1], and one of the generators in Marsaglia and Zaman’s mzran) with a Marsaglia shift sequence. On typical machines it is only 20% or so faster than ran1, however; so we recommend the latter preferentially. While we know of no weakness in ran0, we are not offering a prize for finding a weakness. ran0 does have the feature, useful if you have a machine with nonstandard arithmetic, that it does not go beyond Fortran 90’s assumed integer model.

Note that ran0_s and ran0_v are overloaded by the module nr onto the single name ran0 (and similarly for the routines below).

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP) , INTENT(OUT) :: harvest
Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, returns harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This generator has the same calling and initialization conventions as Fortran 90’s random number routine. Use ran_seed to initialize or reinitialize to a particular sequence.
The period of this generator is about $8.5 \times 10^{37}$, and it fully vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

Initialization routine in ran_state.
Update Fibonacci generator, which has period $p^2 + p + 1$, $p = 2^{31} - 69$.
Update Marsaglia shift sequence.
Update Marsaglia shift sequence with period $2^{32} - 1$.
1150 Chapter B7. Random Numbers

rans = ieor(nran0, rans) + mran0
Combine the generators. The above statement has wrap-around addition.

harvest = amm * merge(rans, not(rans), rans < 0 )
Make the result positive definite (note that amm is negative).

END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, &
iran, jran, kran, nran, mran, ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n = size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n) = iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n) = ranv(1:n)+2147483579_k4b
iran(1:n) = jran(1:n)
jran(1:n) = kran(1:n)
kran(1:n) = ranv(1:n)
nran(1:n) = ieor(nran(1:n), ishft(nran(1:n),13))
nran(1:n) = ieor(nran(1:n), ishft(nran(1:n),-17))
nran(1:n) = ieor(nran(1:n), ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n) = 270369_k4b
mran(1:n) = ieor(mran(1:n), ishft(mran(1:n),-13))
mran(1:n) = ieor(mran(1:n), ishft(mran(1:n),5))
rans=amm * merge(ranv(1:n), not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran1_v

The routine ran1 combines three fast generators: the two used in ran0, plus an additional (different) Marsaglia shift sequence. The last generator is combined via an addition that can wrap-around.

We think that, within the limits of its floating-point precision, ran1 provides perfect random numbers. We will pay $1000 to the first reader who convinces us otherwise (by exhibiting a statistical test that ran1 fails in a nontrivial way, excluding the ordinary limitations of a floating-point representation).

***

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, &
iran0, jran0, kran0, nran0, mran0, rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear congruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This generator has the same calling and initialization conventions as Fortran 90's random number routine. Use ran_seed to initialize or reinitialize to a particular sequence. The period of this generator is about $8.5 \times 10^{37}$, and it fully vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1)
rans = iran0 - kran0
if (rans < 0) rans = rans + 2147483579_k4b
iran0 = jran0
jran0 = kran0
kran0 = rans

Initialization routine in ran_state. Update Fibonacci generator, which has period $p^2 + p + 1$, $p = 2^{31} - 69$. 

Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
Chapter B7. Random Numbers

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &
iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=iand(mran(1:n),65535)
mran(1:n)=ishft(3533*ishft(mran(1:n),-16)+ranv(1:n),16)+ &
3533*ranv(1:n)+820265819_k4b
ranv(1:n)=ieor(nran(1:n),kran(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0 )
END SUBROUTINE ran2_s

SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum)
We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s

ran2, for use by readers whose caution is extreme, also combines three
generators. The difference from ran1 is that each generator is based on a completely
different method from the other two. The third generator, in this case, is a linear
congruential generator, modulo $2^{32}$. This generator relies extensively on wrap-
around addition (which is automatically tested at initialization). On machines with
fast arithmetic, ran2 is on the order of only 20% slower than ran1. We offer a
$1000 bounty on ran2, with the same terms as for ran1, above.

* * *

SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Returns in harvest an exponentially distributed, positive, random deviate of unit mean,
using ran1 as the source of uniform deviates.
REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum)
We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s
SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v

The only noteworthy thing about this line is its simplicity: Once all the machinery is in place, the random number generators are self-initializing (to the sequence defined by seq = 0), and (via overloading) usable with both scalar and vector arguments.

* * *

SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Returns in harvest a normally distributed deviate with zero mean and unit variance, using ran1 as the source of uniform deviates.
REAL(SP) :: rsq,v1,v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then
  harvest=g
  gaus_stored=.false.
else
  do
    call ran1(v1)
    v1=2.0_sp*v1-1.0_sp
    call ran1(v2)
    v2=2.0_sp*v2-1.0_sp
    rsq=v1**2+v2**2
    if (rsq > 0.0 .and. rsq < 1.0) exit
  end do
  rsq=sqrt(-2.0_sp*log(rsq)/rsq)
  harvest=v1*rsq
  g=v2*rsq
  gaus_stored=.true.
end if
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq,v1,v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER(I4B) :: n,ng,nn,m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE :: gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) :: mask
n=size(harvest)
if (n /= last_allocated) then
if (last_allocated /= 0) deallocate(g)
allocate(g(n))
last_allocated=n
gaus_stored=.false.
end if
if (gaus_stored) then
harvest=g
gaus_stored=.false.
else
ng=1
do
if (ng > n) exit
call ran1(v1(ng:n))
call ran1(v2(ng:n))
v1(ng:n)=2.0_sp*v1(ng:n)-1.0_sp
v2(ng:n)=2.0_sp*v2(ng:n)-1.0_sp
rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
v2(ng:ng+nn-1)=pack(v2(ng:n),mask(ng:n))
rsq(ng:ng+nn-1)=pack(rsq(ng:n),mask(ng:n))
ng=ng+nn
end do
rsq=sqrt(-2.0_sp*log(rsq)/rsq)
harvest=v1*rsq
g=v2*rsq
gaus_stored=.true.
end if
END SUBROUTINE gasdev_v

if (n /= last_allocated) ... We make the assumption that, in most cases, the size of harvest will not change between successive calls.
Therefore, if it does change, we don't try to save the previously generated deviates that, half the time, will be around. If your use has rapidly varying sizes (or, even worse, calls alternating between two different sizes), you should remedy this inefficiency in the obvious way.

call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m) This is a variant of the pack-unpack method (see note to factrl, p. 1087). Different here is that we don't care which random deviates end up in which component. Thus, we can simply keep packing successful returns into v1 and v2 until they are full.

Note also the use of array_copy, since we don't know in advance the length of the array returned by pack.

FUNCTION gamdev(ia)
USE nrtype, USE nrdi, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev

Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting time to the ia-th event in a Poisson process of unit mean, using ran1 as the source of uniform deviates.

REAL(SP) :: am,e,b,s,x,y,v(2),arr(5)
call assert(ia >= 1, 'gamdev arg')
if (ia < 6) then
Use direct method, adding waiting times.

...
x = log(product(arr(1:ia)))  Why take the log of the product instead of the sum of the logs? Because log is assumed to be slower than multiply.

We don't have vector versions of the less commonly used deviate generators, gamdev, poidev, and bnldev.

FUNCTION poidev(xm)
USE nrtype
USE nr, ONLY : gammln, ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev
Returns as a floating-point number an integer value that is a random deviate drawn from a Poisson distribution of mean xm, using ran1 as a source of uniform random deviates.

REAL(SP) :: em, harvest, t, y
REAL(SP), SAVE :: alxm, g, oldm=-1.0_sp, sq
oldm is a flag for whether xm has changed since last call.
if (xm < 12.0) then
  Use direct method.
  if (xm /= oldm) then
    oldm=xm
    g=exp(-xm)
  end if
  em=-1
  t=1.0
  do
    em=em+1.0_sp
    call ran1(harvest)
    t=t*harvest
    if (t <= g) exit
  end do
else
  Use rejection method.
  if (xm /= oldm) then
    oldm=xm
    sq=sqrt(2.0_sp*xm)
    alxm=log(xm)
    g=xm*alxm-gammln(xm+1.0_sp)
  end if
  do
do
call ran1(harvest)
y=tan(PI*harvest)
em=sq*y+xm
if (em >= 0.0) exit
end do
em=int(em)
t=0.9_sp*(1.0_sp+y**2)*exp(em*alxm-gammln(em+1.0_sp)-g)
\(t\) is the ratio of the desired distribution to the comparison function; we accept or reject by comparing it to another uniform deviate. The factor 0.9 is chosen so that \(t\) never exceeds 1.
call ran1(harvest)
if (harvest <= t) exit
end do
end if
poidev=em
END FUNCTION poidev

* * *

FUNCTION bnldev(pp,n) 
USE nrtyp
USE nr, ONLY : gammln,ran1
IMPLICIT NONE 
REAL(SP), INTENT(IN) :: pp 
INTEGER(I4B), INTENT(IN) :: n 
REAL(SP) :: bnldev
Returns as a floating-point number an integer value that is a random deviate drawn from a binomial distribution of \(n\) trials each of probability \(p\), using \texttt{ran1} as a source of uniform random deviates.

INTEGER(I4B) :: j
INTEGER(I4B), SAVE :: nold=-1
REAL(SP) :: am,em,g,h,p,sq,t,y,arr(24)
REAL(SP), SAVE :: pc,plog,pclog,en,oldg,pold=-1.0
Arguments from previous calls.
p=merge(pp,1.0_sp-pp, pp <= 0.5_sp )
The binomial distribution is invariant under changing \(p\) to \(1.-p\), if we also change the answer to \(n\) minus itself; we'll remember to do this below.
am=n*p
if (n < 25) then
call ran1(arr(1:n))
bnldev=count(arr(1:n)<p)
else if (am < 1.0) then
g=exp(-am)
t=1.0 do j=0,n
call ran1(h)
t=t*h
if (t < g) exit
end do
bnldev=merge(j,n, j <= n)
else
if (n /= nold) then
en=n
oldg=gammln(en+1.0_sp)
nold=n
end if
if (p /= pold) then
pc=1.0_sp-p
plog=log(p)
pclog=log(pc)
pold=p
end if
This is the mean of the deviate to be produced. Use the direct method while \(n\) is not too large. This can require up to 25 calls to \texttt{ran1}.
If fewer than one event is expected out of 25 or more trials, then the distribution is quite accurately Poisson. Use direct Poisson method.
Use the rejection method.
If \(n\) has changed, then compute useful quantities.
If \(p\) has changed, then compute useful quantities.
end if
sq=sqrt(2.0_sp*am+pc)
do
   call rani(h)
y=tan(PI*h)
   em=sq*y+am
   if (em < 0.0 .or. em >= en+1.0_sp) cycle Reject.
   em=int(em) Trick for integer-valued distribution.
   t=1.2_sp*sq*(1.0_sp+y**2)*exp(oldg-gammln(em+1.0_sp)-&
   gammln(en-em+1.0_sp)+em*plog+(en-em)*pclog)
   call rani(h)
   if (h <= t) exit Reject. This happens about 1.5 times per devi-
end do
   bnldev=em
end if
   if (p /= pp) bnldev=n-bnldev Remember to undo the symmetry transfor-
END FUNCTION bnldev

⋆⋆⋆

The routines psdes and psdes_safe both perform exactly the same hashing as was done by the Fortran 77 routine psdes. The difference is that psdes makes assumptions about arithmetic that go beyond the strict Fortran 90 model, while psdes_safe makes no such assumptions. The disadvantage of psdes_safe is that it is significantly slower, performing most of its arithmetic in double-precision reals that are then converted to integers with Fortran 90’s modulo intrinsic.

In fact the nonsafe version, psdes, works fine on almost all machines and compilers that we have tried. There is a reason for this: Our assumed integer model is the same as the C language unsigned int, and virtually all modern computers and compilers have a lot of C hidden inside. If psdes and psdes_safe produce identical output on your system for any hundred or so different input values, you can be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system fails on the ran_hash routine in the ran_state module (you will have learned this from error messages generated by ran_init), you can substitute psdes_safe for ran_hash: They are plug-compatible.

SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
"Pseudo-DES" hashing of the 64-bit word (lword,irword). Both 32-bit arguments are returned hashed on all bits. Note that this version of the routine assumes properties of integer arithmetic that go beyond the Fortran 90 model, though they are compatible with unsigned integers in C.
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
do i=1,NITER
   iswap=rword
   ia=ieor(rword,C1(i)) The bit-rich constants C1 and (below) C2 guarantee lots of nonlinear mixing.
   itmpl=land(ias,65535)
   itmph=land(ishft(ias,-16),65535)
   Perform niter iterations of DES logic, using a simpler (noncryptographic) nonlinear function instead of DES’s.
end do

SUBROUTINE psdes_s(lword,rword)
USE nrtype;
USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),'psdes_s')
do i=1,NITER
  iswap=rword
  ia=ieor(rword,C1(i))
itmph=land(ishft(ib,-16),65535)
itmpl=iaor**(2)*not(itmph)**2
  ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap
end do
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype;
USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),'psdes_v')
do i=1,NITER
  iswap=rword
  ia=ieor(rword,C1(i))
  alo=real(iand(ia,65535),dp)
  ahi=real(iand(ishft(ia,-16),65535),dp)
  ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
  ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap
end do
END SUBROUTINE psdes_v

SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
"Pseudo-DES" hashing of the 64-bit word (lword, rword). Both 32-bit arguments are
returned hashed on all bits. This is a slower version of the routine that makes no assumptions
outside of the Fortran 90 integer model.
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
REAL(DP) :: alo,ahi
do i=1,NITER
  iswap=rword
  ia=ieor(rword,C1(i))
  alo=real(land(ia,65535),dp)
  ahi=real(land(ishft(ia,-16),65535),dp)
  ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
  ia=ior(ishft(ib,16),land(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap
end do
CONTAINS
FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP) PARAMETER :: big=huge(modint), base=big*big+2.0_dp
a=modulo(x,base)
end FUNCTION modint
Chapter B7. Random Numbers

SUBROUTINE psdes_safe_s(lword, rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword, rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), SAVE :: C1(4), C2(4)
DATA C1 /Z'BAA96887',Z'1E17D32C',Z'03BCDC3C',Z'0F33D1B2'/
DATA C2 /Z'4B0F3B58',Z'E874F0C3',Z'6955C5A6',Z'55A7CA46'/
INTEGER(I4B), DIMENSION(size(lword)) :: ia, ib, iswap
REAL(DP), DIMENSION(size(lword)) :: alo, ahi
INTEGER(I4B) :: i
i=assert_eq(size(lword), size(rword), 'psdes_safe_s')
do i=1, NITER
  iswap=rword
  ia=ior(rword, C1(i))
  alo=real(iand(ia, 65535), dp)
  ahi=real(iand(ishft(ia, -16), 65535), dp)
  ib=modint(alo*alo+real(not(modint(ahi*ahi)), dp))
  ia=ior(ishft(ib, 16), iand(ishft(ib, -16), 65535))
  rword=ieor(lword, modint(real(ieor(C2(i), ia), dp)+alo*ahi))
  lword=iswap
end do
CONTAINS
FUNCTION modint(x)
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x, base)
where (a > big) a=a-base
modint=nint(a, kind=15)
END FUNCTION modint
END SUBROUTINE psdes_safe_s

FUNCTION modint(x)
This embedded routine takes a double-precision real argument, and returns it as an integer mod $2^{32}$ (correctly wrapping it to negative to take into account that Fortran 90 has no unsigned integers).

* * *

SUBROUTINE ran3_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B, amm, lenran, ran_init, ran_hash, mran0, nran0, rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest
Random number generation by DES-like hashing of two 32-bit words, using the algorithm ran_hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values).
INTEGER(K4B) :: temp
if (lenran < 1) call ran_init(1)
nran0=ior(nran0, ishft(nran0, 15))
nran0=ior(nran0, ishft(nran0, -17))
nran0=ior(nran0, ishft(nran0, 5))
if (nran0 == 1) nran0=270369_k4b
Initialize.
Two Marsaglia shift sequences are maintained as input to the hashing. The period of the combined generator is about $1.8 \times 10^{19}$.

f90

Sample page from NUMERICAL RECIPES IN FORTRAN 90: The Art of Parallel Scientific Computing (ISBN 0-521-57439-0). Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
ranc=nran0
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
temp=mran0
call ran_hash(temp,rans)
harvest=amm*merge(rans,not(rans),rans<0 )

SUBROUTINE ran3_v(harvest)
USE ntype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
ranv(1:n)=nran(1:n)
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
temp=mran(1:n)
call ran_hash(temp,ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)),ranv(1:n)<0 )
END SUBROUTINE ran3_v

As given, ran3 uses the ran_hash function in the module ran_state as its
DES surrogate. That function is sufficiently fast to make ran3 only about a factor
of 2 slower than our baseline recommended generator ran1. The slower routine
psdes and (even slower) psdes_safe are plug-compatible with ran_hash, and
could be substituted for it in this routine.

* * *

FUNCTION irbit1(iseed)
USE ntype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
integer(I4B) :: irbit1
    Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
    is modified for the next call).
if (btest(iseed,17) .neqv. btest(iseed,4) .neqv. btest(iseed,1) &
    .neqv. btest(iseed,0)) then
    iseed=ibset(ishft(iseed,1),0)  Leftshift the seed and put a 1 in its bit 1.
    irbit1=1
else
    iseed=ishft(iseed,1)
    irbit1=0
end if
END FUNCTION irbit1
FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).
INTEGER(I4B), PARAMETER :: IB1=1, IB2=2, IB5=16, MASK=IB1+IB2+IB5
if (btest(iseed,17)) then
  Change all masked bits, shift, and put 1 into bit 1.
  iseed=ibset(ishft(ieor(iseed,MASK),1),0)
  irbit2=1
else
  Shift and put 0 into bit 1.
  iseed=ibclr(ishft(iseed,1),0)
  irbit2=0
end if
END FUNCTION irbit2

SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
INTEGER(I4B), PARAMETER :: MAXBIT=30, MAXDIM=6
When the optional integer init is present, internally initializes a set of MAXBIT direction
numbers for each of MAXDIM different Sobol' sequences. Otherwise returns as the vector x
of length N the next values from N of these sequences. (N must not be changed between
initializations.)
REAL(SP), SAVE :: fac
INTEGER(I4B) :: i, im, ipp, j, k, l
INTEGER(I4B), DIMENSION(:,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip, ix, mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,1,1,1,5,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then
  Initialize, don't return a vector.
  ix=0
  in=0
  if (iv(1) /= 1) RETURN
  fac=1.0_sp/2.0_sp**MAXBIT
  allocate(iu(MAXDIM,MAXBIT))
  To allow both 1D and 2D addressing.
  do k=1,MAXDIM
    do j=1,mdeg(k)
      Stored values require only normalization.
      iu(k,j)=iu(k,j)*2**(MAXBIT-j)
    end do
    do j=mdeg(k)+1,MAXBIT
      Use the recurrence to get other values.
      ipp=ip(k)
      i=iu(k,j+mdeg(k))
      i=ieor(i,1/2**mdeg(k))
      do l=mdeg(k)-1,-1,-1
        if (btest(ipp,0)) i=ieor(i,iu(k,j-l))
        ipp=ipp/2
      end do
      iu(k,j)=i
    end do
  end do
  iv=reshape(iu,shape(iv))
deallocate(iu)
else
    im=in
    do j=1,MAXBIT
        if (.not. btest(im,0)) exit
        im=im/2
    end do
    if (j > MAXBIT) call nrerror('MAXBIT too small in sobseq')
    im=(j-1)*MAXDIM
    j=min(size(x),MAXDIM)
    ix(1:j)=ixor(ix(1:j),iv(1+im:j+im))
    x(1:j)=ix(1:j)*fac
    in=in+1
end if
END SUBROUTINE sobseq

if (present(init)) then ... allocate(iu(...)) ... iu=reshape(...)

Wanting to avoid the deprecated EQUIVALENCE statement, we must
reshape iv into a two-dimensional array, then un-reshape it after we
are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

⋆⋆⋆

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE
FUNCTION func(pt,wgt)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50

Performs Monte Carlo integration of a user-supplied d-dimensional function func
over a rectangular volume specified by region, a vector of length 2d consisting of d "lower left"
coordinates of the region followed by d "upper right" coordinates. The integration consists of
itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init
signals whether this call is a new start, or a subsequent call for additional iterations (see
comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a ($\chi^2$ per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,npg
Best make everything static.
INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg
allowing restarts.
REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,rci,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(MXDIM,NDMX), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt
ndim = size(region) / 2
if (init <= 0) then
    mds = 1
    ndo = 1
    xi(1, :) = 1.0
end if
if (init <= 1) then
    si = 0.0
    swgt = 0.0
    schi = 0.0
end if
if (init <= 2) then
    Enter here to inherit the previous grid and its answers.
end if
if (mds /= 0) then
    Set up for stratification.
end if
k = ng ** ndim
npg = max(ncall/k, 2)
calls = real(npg, sp) * real(k, sp)
dxg = 1.0_sp/ng
dv2q = (calls * dxg * ndim) ** 2 / npg / npg / (npg - 1.0_sp)
xnd = dxg * xnd
dxg = dxg * nd
dx(1: ndim) = region(1 + ndim: 2 * ndim) - region(1: ndim)
if (nd /= ndo) then
    Do binning if necessary.
end if
r(1:max(nd, ndo)) = 1.0
do j = 1, ndim
call rebin(ndo/xnd, nd, r, xin, xi(:, j))
end do
ndo = nd
if (nprn >= 0) write(*, 200) ndim, calls, it, itmx, nprn, &
   ALPH, mds, nd, (j, region(j), j, region(j+ndim), j=1, ndim)
end if
do it = 1, itmx
    Main iteration loop. Can enter here (init ≥ 3) to do an additional itmx iterations
    with all other parameters unchanged.
ti = 0.0
tsi = 0.0
kg(:, :) = 1
d(1: nd, :) = 0.0
di(1: nd, :) = 0.0
iterate: do
    fb = 0.0
    f2b = 0.0
    do k = 1, npg
        wgt = xjac
        do j = 1, ndim
            xn = (kg(j) - harvest) * dxg * 1.0_sp
            ia(j) = max(min(int(xn), ndMX), 1)
            if (ia(j) > 1) then
                xo = xi(ia(j), j) - xi(ia(j) - 1, j)
                rc = xi(ia(j) - 1, j) * (xn - ia(j)) * xo
            else
                xo = xi(ia(j), j)
                rc = (xn - ia(j)) * xo
            end if
        end do
        r(1:max(nd, ndo)) = 1.0
        do j = 1, ndim
            call rebin(ndo/xnd, nd, r, xin, xi(:, j))
        end do
        ndo = nd
        if (nprn >= 0) write(*, 200) ndim, calls, it, itmx, nprn, &
           ALPH, mds, nd, (j, region(j), j, region(j+ndim), j=1, ndim)
    end if
end do
end if
x(j)=region(j)+rc*dx(j)
wt=wt+xo*xd
end do
f=wt*func(x(1:ndim),wt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do j=1,ndim
di(ia(j),j)=di(ia(j),j)+f
if (mds >= 0) di(ia(j),j)=di(ia(j),j)+f2
end do
di
end do
f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
if (f2b <= 0.0) f2b=TINY

end do

end do

end do
refine the grid. Consult references to understand the subtlety of this procedure. The refinement is damped, to avoid rapid, destabilizing changes, and also compressed in range by the exponent ALPH.

where (d(1:nd,:) < TINY) d(1:nd,:)=TINY

end do

end do
\begin{verbatim}
 r(1:nd)=((1.0-sp-d(1:nd,j)/dt(j))/(log(dt(j))-log(d(1:nd,j))))**ALPH rc=sum(r(1:nd)) call rebin(rc/xnd,nd,r,xin,xi(:,j)) end do end do

200 format(/' input parameters for vegas: ndim=',i3,' ncall=',f8.0& /28x,' it=',i5,' itmx=',i5& /28x,' nprn=',i3,' alph=',f5.2/28x& /28x,' mds=',i3,' nd=',i4& /30x,'xl(',i2,')= ',g11.4,' xu(',i2,')= ',g11.4))

201 format(/' iteration no.',I3,': ','integral=',g14.7,' +/- ',g9.2,& /
' all iterations: integral =',g14.7,' +/- ',g9.2,& /
' chi**2/it''n =',g9.2)

202 format(/' data for axis ',I2/' X delta i ',& /
' x delta i ',& /
'(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

CONTAINS

SUBROUTINE rebin(rc,nd,r,xin,xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) :: nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) :: xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi
 Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by a vector r.
INTEGER(I4B) :: i,k
REAL(SP) :: dr,xn,xo
k=0
xo=0.0
dr=0.0
do i=1,nd-1
do if (rc <= dr) exit
k=k+1
dr=dr+r(k)
end do
if (k > 1) xo=xi(k-1)
xn=xi(k)
end do
xin(i)=xn-(xn-xo)*dr/r(k)
dr=dr-rc
end do
xi(1:nd-1)=xin(1:nd-1)
xi(nd)=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas

* * *

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func
END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts
\end{verbatim}
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave, var
REAL(SP), PARAMETER :: PFAC=0.1_sp, TINY=1.0e-30_sp, BIG=1.0e30_sp
INTEGER(I4B), PARAMETER :: MNPT=15, MNBS=60

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular volume specified by region, a 2×ndim vector consisting of ndim "lower-left" coordinates of the region followed by ndim "upper-right" coordinates. The function is sampled a total of npts times, at locations determined by the method of recursive stratified sampling. The mean value of the function in the region is returned as ave; an estimate of the statistical uncertainty of ave (square of standard deviation) is returned as var. The input parameter dith should normally be set to zero, but can be set to (e.g.) 0.1 if func's active region falls on the boundary of a power-of-2 subdivision of region.

Parameters: PFAC is the fraction of remaining function evaluations used at each stage to explore the variance of func. At least MNPT function evaluations are performed in any terminal subregion; a subregion is further bisected only if at least MNBS function evaluations are available.

REAL(SP), DIMENSION(:), ALLOCATABLE :: regn_temp
INTEGER(I4B) :: j, jb, n, ndim, npre, nptl, nptr
INTEGER(I4B), SAVE :: iran=0
REAL(SP) :: avel, varl, fmaxl, fminl, pt, rmid

ndim=assert_eq(size(regn), 2*ndim, 'miser')
allocate(pt(ndim))
if (npts < MNBS) then  
Too few points to bisect; do straight Monte Carlo.
  sm=0.0
  sm2=0.0
  do n=1, npts
    call ranpt(pt, regn)
    fval=func(pt)
    sm=sm+fval
    sm2=sm2+fval**2
  end do
  ave=sm/npts
  var=max(TINY, (sm2-sm**2/npts)/npts**2)
else  
  Do the preliminary (uniform) sampling.
  npre=max(int(npts*PFAC), MNPT)
  allocate(rmid(ndim), fmaxl(ndim), fmaxr(ndim), fminl(ndim), fminr(ndim))
  fminl(:)=BIG
  fmaxl(:)=BIG
  fminr(:)=BIG
  fmaxr(:)=BIG
  do j=1, ndim
    iran=mod(iran*2661+36979, 175000)
    s=sign(dith, real(iran-87500, sp))
    rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)
  end do
  do n=1, npre
    Loop over the points in the sample.
    call ranpt(pt, regn)
    fval=func(pt)
    where (pt <= rmid)
      Find the left and right bounds for each dimension.
      fminl=min(fminl, fval)
      fmaxl=max(fmaxl, fval)
    elsewhere
      fminr=min(fminr, fval)
      fmaxr=max(fmaxr, fval)
    end where
    end do
  sumb=BIG
  jb=0
  siglb=1.0
  sigrb=1.0
  do j=1, ndim
    Choose which dimension jb to bisect.
    if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then
      Do nothing.
    else
      Choose which dimension jb to bisect.
      jb=j
      sig=abs(fmaxl(j)-fminl(j)+fmaxr(j)-fminr(j))
      siglb=min(siglb, sig)
      sigrb=max(sigrb, sig)
      rmid(j)=(fminl(j)+fmaxl(j))/2
      rmid(ndim+j)=(fminr(j)+fmaxr(j))/2
      sumb=min(sumb, sig)
      end if
    end do
  end do
endif
Chapter B7. Random Numbers

sigl = max(TINY, (fmaxl(j) - fminl(j))**(2.0_sp/3.0_sp))
sigr = max(TINY, (fmaxr(j) - fminr(j))**(2.0_sp/3.0_sp))
sumr = sigl + sigr 

if (sumr <= sumb) then 
  j = j
  siglb = sigl
  sigrb = sigr
end if

end do

deallocate(fminr, fminl, fmaxr, fmaxl)

if (jb == 0) jb = 1 + (ndim * iran) / 175000 

rgl = regn(jb) 

rmid(jb) 

fracl = abs((rgm - rgl) / (rgr - rgl)) 

nptl = (npts - npre - 2 * MNPT) * fracl * siglb / (fracl * siglb + (1.0_sp - fracl) * sigrb) 

nptr = npts - npre - nptl

allocate(regn_temp(2 * ndim))

regn_temp(:) = regn(:)

regn_temp(ndim+jb) = rmid(jb) 

Dispatch recursive call; will return back here eventually.

regn_temp(ndim+jb) = reng(ndim+jb) 

Dispatch recursive call; will return back here eventually.

deallocate(regn_temp)

end if

deallocate(pt)

SUBROUTINE ranpt(pt, region)

USE nr, ONLY : ran1

IMPLICIT NONE

REAL(SP), DIMENSION(:), INTENT(OUT) :: pt

REAL(SP), DIMENSION(:), INTENT(IN) :: region

Returns a uniformly random point pt in a rectangular region of dimension d. Used by miser; calls ran1 for uniform deviates.

INTEGER(I4B) :: n

call ran1(pt)
n = size(pt)
pt(1:n) = region(1:n) + (region(n+1:2*n) - region(1:n)) * pt(1:n)

END SUBROUTINE ranpt

END SUBROUTINE miser

The Fortran 90 version of this routine is much more straightforward than the Fortran 77 version, because Fortran 90 allows recursion. (In fact, this routine is modeled on the C version of miser, which was recursive from the start.)

CITED REFERENCES AND FURTHER READING:
Chapter B8. Sorting

Caution! If you are expecting to sort efficiently on a parallel machine, whether its parallelism is small-scale or massive, you almost certainly want to use library routines that are specific to your hardware.

We include in this chapter translations into Fortran 90 of the general purpose serial sorting routines that are in Volume 1, augmented by several new routines that give pedagogical demonstrations of how parallel sorts can be achieved with Fortran 90 parallel constructions and intrinsics. However, we intend the above word “pedagogical” to be taken seriously: these new, supposedly parallel, routines are not likely to be competitive with machine-specific library routines. Neither do they compete successfully on serial machines with the all-serial routines provided (namely sort, sort2, sort3, indexx, and select).

```
* * *
SUBROUTINE sort_pick(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
 Sorts an array arr into ascending numerical order, by straight insertion. arr is replaced on output by its sorted rearrangement.
INTEGER(I4B) :: i,j,n
REAL(SP) :: a
n=size(arr)
do j=2,n
 a=arr(j)
do i=j-1,1,-1
 if (arr(i) <= a) exit
 arr(i+1)=arr(i)
 end do
 arr(i+1)=a
end do
END SUBROUTINE sort_pick
```

Not only is sort_pick (renamed from Volume 1’s piksort) not parallelizable, but also, even worse, it is an $N^2$ routine. It is meant to be invoked only for the most trivial sorting jobs, say, $N < 20$.

```
* * *
```
SUBROUTINE sort_shell(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
Sorts an array arr into ascending numerical order by Shell's method (diminishing increment sort). arr is replaced on output by its sorted rearrangement.
INTEGER(I4B) :: i,j,inc,n
REAL(SP) :: v
n=size(arr)
inc=1
  do
    if (inc > n) exit
  end do
  inc=inc/3
  do i=inc+1,n
    v=arr(i)
    j=i
    do
      if (arr(j-inc) <= v) exit
      arr(j)=arr(j-inc)
      j=j-inc
      if (j <= inc) exit
    end do
    arr(j)=v
  end do
  if (inc <= 1) exit
  end do
END SUBROUTINE sort_shell

The routine sort_shell is renamed from Volume 1's shell. Shell's Method, a diminishing increment sort, is not directly parallelizable. However, one can write a fully parallel routine (though not an especially fast one — see remarks at beginning of this chapter) in much the same spirit:

SUBROUTINE sort_byreshape(arr)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
Sort an array arr by bubble sorting a succession of reshapings into array slices. The method is similar to Shell sort, but allows parallelization within the vectorized masked swap calls.
REAL(SP), DIMENSION(:,:), ALLOCATABLE :: tab
REAL(SP), PARAMETER :: big=huge(arr)
INTEGER(I4B) :: inc,n,m
n=size(arr)
inc=1
  do
    if (inc > n) exit
  end do
  inc=inc/2
  do
    m=(n+inc-1)/inc
    allocate(tab(inc,m))
    tab=reshape(arr, (/inc,m/), (/big/))
    do
      Bubble sort all the rows in parallel.
      call swap(tab(:,1:m-1:2),tab(:,2:m:2), &
               tab(:,1:m-1:2)>tab(:,2:m:2))
      call swap(tab(:,2:m-1:2),tab(:,3:m:2), &
               tab(:,2:m-1:2)>tab(:,3:m:2))
    end do
  end do
END SUBROUTINE sort_byreshape
The basic idea is to reshape the given one-dimensional array into a succession of two-dimensional arrays, starting with “tall and narrow” (many rows, few columns), and ending up with “short and wide” (many columns, few rows). At each stage we sort all the rows in parallel by a bubble sort, giving something close to Shell’s diminishing increments.

We now arrive at those routines, based on the Quicksort algorithm, that we actually intend for use with general $N$ on serial machines:

```fortran
SUBROUTINE sort(arr)
USE nrtype; USE nrutil, ONLY : swap, nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50
Sorts an array arr into ascending numerical order using the Quicksort algorithm. arr is replaced on output by its sorted rearrangement.
Parameters: NN is the size of subarrays sorted by straight insertion and NSTACK is the required auxiliary storage.
REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=size(arr)
jstack=0
l=1
r=n
if (r-l < NN) then
 Insertion sort when subarray small enough.
 do j=l+1,r
 a=arr(j)
 do i=j-1,l,-1
 if (arr(i) <= a) exit
 arr(i+1)=arr(i)
 end do
 arr(i+1)=a
 end do
else
 Choose median of left, center, and right elements as partitioning element a. Also rearrange so that $a(l) \leq a(l+1) \leq a(r)$.
 k=(l+r)/2
 call swap(arr(k),arr(l+1))
 call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
 call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
 call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
 i=l+1
 j=r
 a=arr(l+1)
 do i=l+1
 Partitioning element.
 Here is the meat. Scan up to find element $\geq a$.
 do
```
if (arr(i) >= a) exit
end do

doi (arr(j) <= a) exit
end do

if (j < i) exit
Points crossed. Exit with partitioning complete.
call swap(arr(i),arr(j))
Exchange elements.
end do

arr(l+1)=arr(j)
Insert partitioning element.
arr(j)=a
jstack=jstack+2
Push pointers to larger subarray on stack; process smaller subarray immediately.

if (jstack > NSTACK) call nrerror('sort: NSTACK too small')

else
istack(jstack)=j-1
istack(jstack-1)=l
l=1
end if

end if
end do

END SUBROUTINE sort

A close surrogate for the Quicksort partition-exchange algorithm can be coded, parallelizable, by using Fortran 90’s pack intrinsic. On real compilers, unfortunately, the resulting code is not very efficient as compared with (on serial machines) the tightness of sort’s inner loop, above, or (on parallel machines) supplied library sort routines. We illustrate the principle nevertheless in the following routine.
RECURSIVE SUBROUTINE sort_bypack(arr)
USE nrtype; USE nrutil, ONLY : array_copy, swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
Sort an array arr by recursively applying the Fortran 90 pack intrinsic. The method is
similar to Quicksort, but this variant allows parallelization by the Fortran 90 compiler.
REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:), ALLOCATABLE, SAVE :: mask
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: temp
n=size(arr)
if (n <= 1) RETURN
k=(1+n)/2
call swap(arr(1),arr(k),arr(1)>arr(k)) Pivot element is median of first, middle,
call swap(arr(k),arr(n),arr(k)>arr(n)) and last.
call swap(arr(1),arr(k),arr(1)>arr(k))
if (n <= 3) RETURN
level=level+1 Keep track of recursion level to avoid allo-
call array_copy(pack(arr,mask(1:n)),temp,nl,nerr) location overhead.
a=arr(k)
mask(1:n) = (arr <= a) Which elements move to left?
mask(k) = .false. call array_copy(pack(arr,mask(1:n)),temp,nl,nerr) Move them.
mask(k) = .true.
temp(nl+2:n)=pack(arr,.not. mask(1:n)) Move others to right.
temp(nl+1)=a
arr=temp(1:n)
call sort_bypack(arr(1:nl)) And recurse.
call sort_bypack(arr(nl+2:n))
if (level == 1) deallocate(mask,temp)
level=level-1
END SUBROUTINE sort_bypack

* * *

The following routine, sort_heap, is renamed from Volume 1's hpsort.

SUBROUTINE sort_heap(arr)
USE nrtype
USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
Sorts an array arr into ascending numerical order using the Heapsort algorithm. arr is
replaced on output by its sorted rearrangement.
INTEGER(I4B) :: i,n
n=size(arr)
do i=n/2,1,-1
The index i, which here determines the “left” range of the sift-down, i.e., the element to
be sifted down, is decremented from n/2 down to 1 during the “hiring” (heap creation)
phase.
call sift_down(i,n)
end do

do i=n,2,-1
Here the “right” range of the sift-down is decremented from n-1 down to 1 during the
“retirement-and-promotion” (heap selection) phase.
call swap(arr(i),arr(i)) Clear a space at the end of the array, and
call sift_down(i,1,i-1) retire the top of the heap into it.
end do
CONTAINS
SUBROUTINE sift_down(i,r)
INTEGER(I4B), INTENT(IN) :: l,r
Chapter B8. Sorting

Carry out the sift-down on element \texttt{arr(l)} to maintain the heap structure.

\begin{verbatim}
INTEGER(I4B) :: j, jold
REAL(SP) :: a
a=arr(l)
jold=l
j=1+l
DO "Do while \( j <= r \)"
if (j > r) exit
if (j < r) then
if (arr(j) < arr(j+1)) j=j+1
Compare to the better underling.
end if
if (a >= arr(j)) exit
Found a's level. Terminate the sift-down. Otherwise, demote a and continue.
arr(jold)=arr(j)
jold=j
j=j+j
end do
arr(jold)=a
Put a into its slot.
END SUBROUTINE sift_down
END SUBROUTINE sort_heap
\end{verbatim}

Another opportunity provided by Fortran 90 for a fully parallelizable sort, at least pedagogically, is to use the language’s allowed access to the actual floating-point representation and to code a radix sort \cite{1} on its bits. This is not efficient, but it illustrates some Fortran 90 language features perhaps worthy of study for other applications.

\begin{verbatim}
SUBROUTINE sort_radix(arr)
USE nrtype; USE nrutil, ONLY : array_copy,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
Sort an array \texttt{arr} by radix sort on its bits.
INTEGER(I4B), DIMENSION(size(arr)) :: narr,temp
LOGICAL, DIMENSION(size(arr)) :: msk
INTEGER(I4B) :: k,negm,ib,ia,n,nl,nerr
Because we are going to transfer reals to integers, we must check that the number of bits is the same in each:
ib=bit_size(narr)
ia=ceiling(log(real(maxexponent(arr)-minexponent(arr),sp))/log(2.0_sp)) & + digits(arr)
if (ib /= ia) call nrerror('sort_radix: bit sizes not compatible')
Mask for all bits except sign bit.
msk=not(ishftc(1,-1))
where (btest(narr,ib-1)) narr=ieor(narr,negm)
Work from low- to high-order bits, and partition the array according to the value of the bit.
msk=btest(narr,k)
call array_copy(pack(narr,.not. msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,msk)
narr=temp
end do
msk=btest(narr,ib-1)
call array_copy(pack(narr,msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,.not. msk)
narr=temp
where (btest(narr,ib-1)) narr=ieor(narr,negm)
arr=transfer(narr,arr)
END SUBROUTINE sort_radix
\end{verbatim}
We overload the generic name `indexx` with two specific implementations, one for `SP` floating values, the other for `I4B` integers. (You can of course add more overloadings if you need them.)

```fortran
SUBROUTINE indexx_sp(arr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:,), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50

Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j)) is in ascending order for j = 1, 2, ..., N. The input quantity arr is not changed.

REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(arr),'indexx_sp')
index=arth(1,1,n)

l=1
r=n
do
if (r-l < NN) then
 do j=l+1,r
 indext=index(j)
 a=arr(indext)
 do i=j-1,l,-1
 if (arr(index(i)) <= a) exit
 index(i+1)=index(i)
 end do
 index(i+1)=indext
 end do
else
 k=(l+r)/2
 call swap(index(k),index(l+1))
 call icomp_xchg(index(l),index(r))
 call icomp_xchg(index(l+1),index(r))
 call icomp_xchg(index(l),index(l+1))
 i=l+1
 j=r
 indext=index(l+1)
 a=arr(indext)
 do
 i=i+1
 if (arr(index(i)) >= a) exit
 end do
 do
 j=j-1
 if (arr(index(j)) <= a) exit
 end do
 if (j < i) exit
 call swap(index(i),index(j))
end do
 index(l+1)=index(j)
 index(j)=indext
 jstack=jstack+2
 if (jstack > NSTACK) call nrerror('indexx:NSTACK too small')
 if (r-i+1 >= j-l) then
 istack(jstack)=r
end do
```

istack(jstack-1)=i
r=j-1
else
istack(jstack)=j-1
istack(jstack-1)=l
l=i
end if
end if
do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then
swp=i
i=j
j=swp
end if
END SUBROUTINE icomp_xchg

END SUBROUTINE indexx_sp

SUBROUTINE indexx_i4b(iarr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(:,), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50
INTEGER(I4B) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(iarr),'indexx_sp')
index=arth(1,1,n)
jstack=0
l=1
r=n
do
if (r-l < NN) then
do j=l+1,r
indext=index(j)
a=iarr(indext)
do i=j-1,1,-1
if (iarr(index(i)) <= a) exit
index(i+1)=index(i)
end do
index(i+1)=indext
end do
if (jstack == 0) RETURN
r=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2
else
k=(l+r)/2
call swap(index(k),index(k+1))
call icomp_xchg(index(l),index(r))
call icomp_xchg(index(l+1),index(r))
call icomp_xchg(index(l),index(l+1))
i=l+1
j=r
indext=index(l+1)
a=iarr(indext)
do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (iarr(j) < iarr(i)) then
  swp=i
  i=j
  j=swp
end if
END SUBROUTINE icomp_xchg

END SUBROUTINE indexx_i4b

* * *

SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave1,slave2
Sorts an array arr into ascending order using Quicksort, while making the corresponding rearrangement of the same-size arrays slave1 and slave2. The sorting and rearrangement are performed by means of an index array.
INTEGER(I4B) :: ndum
INTEGER(I4B), DIMENSION(size(arr)) :: index
ndum=assert_eq(size(arr),size(slave1),size(slave2),'sort3')
call indexx(arr,index) ! Make the index array.
arr=arr(index) ! Sort arr.
slave1=slave1(index) ! Rearrange slave1,
slave2=slave2(index) ! and slave2.
END SUBROUTINE sort3

* * *
FUNCTION rank(index)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: index
INTEGER(I4B), DIMENSION(size(index)) :: rank
Given index as output from the routine indexx, this routine returns a same-size array rank, the corresponding table of ranks.
rank(index(:))=arth(1,1,size(index))
END FUNCTION rank

* * *

Just as in the case of sort, where an approximation of the underlying Quicksort partition-exchange algorithm can be captured with the Fortran 90 pack intrinsic, the same can be done with indexx. As before, although it is in principle parallelizable by the compiler, it is likely not competitive with library routines.

RECURSIVE SUBROUTINE index_bypack(arr,index,partial)
USE nrtype; USE nrutil, ONLY : array_copy,arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:,), INTENT(INOUT) :: index
INTEGER, OPTIONAL, INTENT(IN) :: partial
Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j)) is in ascending order for j = 1, 2, ..., N. The method is to apply recursively the Fortran 90 pack intrinsic. This is similar to Quicksort, but allows parallelization by the Fortran 90 compiler. partial is an optional argument that is used only internally on the recursive calls.

REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,indext,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:,), ALLOCATABLE, SAVE :: mask
INTEGER(I4B), DIMENSION(:,), ALLOCATABLE, SAVE :: temp
if (present(partial)) then
  n=size(index)
else
  n=assert_eq(size(index),size(arr),'indexx_bypack')
  index=arth(1,1,n)
end if
if (n <= 1) RETURN
k=(1+n)/2
call icomp_xchg(index(1),index(k))  // Pivot element is median of first, middle, and last.
call icomp_xchg(index(k),index(n))
call icomp_xchg(index(1),index(k))
if (n <= 3) RETURN
level=level+1  // Keep track of recursion level to avoid allocation overhead.
if (level == 1) allocate(mask(n),temp(n))
indext=index(k)
a=arr(indext)
mask(1:n) = (arr(index) <= a)  // Which elements move to left?
mask(k) = .false.
call array_copy(pack(index,mask(1:n)),temp,nl,nerr)  // Move them.
mask(k) = .true.
temp(nl+2:n)=pack(index,.not. mask(1:n))  // Move others to right.
temp(nl+1)=indext
index=temp(1:n)
call index_bypack(arr,index(1:nl),partial=1)  // And recurse.
call index_bypack(arr,index(nl+2:n),partial=1)
if (level == 1) deallocate(mask,temp)
level=level-1
CONTAINS

SUBROUTINE icomp_xchg(i,j)
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: i,j
Swap or don’t swap integer arguments, depending on the ordering of their corresponding elements in an array arr.
INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then
swp=i
i=j
j=swp
end if
END SUBROUTINE icomp_xchg
END SUBROUTINE index_bypack

FUNCTION select(k,arr)
USE nrtype; USE nrutil, ONLY : assert, swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select
Return the kth smallest value in the array arr. The input array will be rearranged to have this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary order) and all larger elements in arr(k+1:) (also in arbitrary order).
INTEGER(I4B) :: i,r,j,l,n
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, 'select args')
l=1
r=n
do
if (r-l <= 1) then
Active partition contains 1 or 2 elements.
if (r-l == 1) call swap(arr(l),arr(r),arr(l)>arr(r))
select=arr(k)
RETURN
else
Choose median of left, center, and right elements as partitioning element a. Also rearrange so that arr(l) ≤ arr(l+1) ≤ arr(r).
i=(l+r)/2
call swap(arr(i),arr(l+1))
call swap(arr(l),arr(r),arr(l)>arr(r))
call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1
j=r
a=arr(l+1)
do
i=i+1
if (arr(i) >= a) exit
end do
j=j-1
if (arr(j) <= a) exit
end do
if (j < i) exit
Pointers crossed. Exit with partitioning complete.
call swap(arr(i),arr(j))
end do
arr(l+1)=arr(j)
arr(j)=a
if (j >= k) r=j-1
Keep active the partition that contains the kth element.
arr(1:i+k-j)=select
RETURN
end function select
The following routine, `select_inplace`, is renamed from Volume I's `selip`.

```fortran
FUNCTION select_inplace(k,arr)
USE nrtype
USE nr, ONLY : select
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP) :: select_inplace
Return the kth smallest value in the array arr, without altering the input array. In Fortran 90's assumed memory-rich environment, we just call `select` in scratch space.
REAL(SP), DIMENSION(size(arr)) :: tarr
tarr=arr
select_inplace=select(k,tarr)
END FUNCTION select_inplace
```

Volume I's `selip` routine uses an entirely different algorithm, for the purpose of avoiding any additional memory allocation beyond that of the input array. Fortran 90 presumes a richer memory environment, so `select_inplace` simply does the obvious (destructive) selection in scratch space. You can of course use the old `selip` if your in-core or in-cache memory is at a premium.

```fortran
FUNCTION select_bypack(k,arr)
USE nrtype; USE nrutil, ONLY : array_copy, assert, swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack
Return the kth smallest value in the array arr. The input array will be rearranged to have this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary order) and all larger elements in arr(k+1:) (also in arbitrary order). This implementation allows parallelization in the Fortran 90 `pack` intrinsic.
LOGICAL, DIMENSION(size(arr)) :: mask
REAL(SP), DIMENSION(size(arr)) :: temp
INTEGER(I4B) :: i,r,j,l,n,nl,nerr
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, 'select_bypack args')
l=1
r=n
do
if (r-l <= 1) exit
i=(l+r)/2
call swap(arr(l),arr(i),arr(l)>arr(i)) Pivot element is median of first, middle, and last.
call swap(arr(i),arr(r),arr(i)>arr(r))
call swap(arr(l),arr(i),arr(l)>arr(i))
a=arr(i)
mask(l:r) = (arr(l:r) <= a) Which elements move to left?
mask(i) = .false.
call array_copy(pack(arr(l:r),mask(l:r)),temp(l:),nl,nerr) Move them.
j=l+nl
```

* * *

You can of course use the old `selip` if your in-core or in-cache memory is at a premium.
The above routine \texttt{select\_bypack} is parallelizable, but as discussed above (\texttt{sort\_bypack}, \texttt{index\_bypack}) it is generally not very efficient.

\begin{verbatim}
SUBROUTINE select_heap(arr,heap)
USE nrtype; USE nrutil, ONLY : nrerror, swap
USE nr, ONLY : sort
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), DIMENSION(:), INTENT(OUT) :: heap

INTEGER(I4B) :: i,j,k,m,n
m=size(heap)
n=size(arr)
if (m > n/2 .or. m < 1) call nrerror('probable misuse of select_heap')
heap=arr(1:m)
call sort(heap)  
create initial heap by overkill! we assume m << n.
do i=m+1,n
if (arr(i) > heap(1)) then  
  put it on the heap?
  heap(1)=arr(i)
  j=1
  do  
    k=2*j
    if (k > m) exit
    if (k /= m) then  
      if (heap(k) > heap(k+1)) k=k+1
    end if
    if (heap(j) <= heap(k)) exit
    call swap(heap(k),heap(j))
  j=k
  end do
end if
end do
END SUBROUTINE select_heap
\end{verbatim}

The following routine, \texttt{select\_heap}, is renamed from Volume 1's \texttt{hpsel}.
FUNCTION eclass(lista, listb, n)
USE nrtype; USE nrutil, ONLY : arth, assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: lista, listb
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclass

Given $M$ equivalences between pairs of $n$ individual elements in the form of the input arrays
lista and listb of length $M$, this routine returns in an array of length $n$ the number
of the equivalence class of each of the $n$ elements, integers between 1 and $n$ (not all such
integers used).

INTEGER :: j, k, l, m
m = assert_eq(size(lista), size(listb), 'eclass')
eclass(1:n) = arth(1, 1, n)  -- Initialize each element its own class.
do i = 1, m
  j = lista(i)
do
    if (eclass(j) == j) exit
    j = eclass(j)
  end do
  k = listb(i)
do
    if (eclass(k) == k) exit
    k = eclass(k)
  end do
  if (j /= k) eclass(j) = k  -- If they are not already related, make them so.
end do
do j = 1, n
  do
    if (eclass(j) == eclass(eclass(j))) exit
    eclass(j) = eclass(eclass(j))
  end do
end do

END FUNCTION eclass

FUNCTION eclazz(equiv, n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE

INTERFACE
  FUNCTION equiv(i, j)
    USE nrtype
    IMPLICIT NONE
    LOGICAL(LGT) :: equiv
    INTEGER(I4B), INTENT(IN) :: i, j
  END FUNCTION equiv
END INTERFACE

INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclazz

Given a user-supplied logical function equiv that tells whether a pair of elements, each
in the range 1...$n$, are related, return in an array of length $n$ equivalence class numbers
for each element.

INTEGER :: i, j
eclazz(1:n) = arth(1, 1, n)
do i = 2, n
  do j = 1, i - 1
    eclazz(j) = eclazz(eclazz(j))  -- Loop over second element of all pairs.
    if (equiv(i, j)) eclazz(eclazz(j)) = i
    do
      eclass(j) = eclass(eclass(j))  -- Sweep it up this much.
      if (equiv(i, j)) eclazz(eclazz(j)) = i
    end do
  end do
  eclass(j) = eclass(eclass(j))  -- Final sweep up to highest ancestors.
end do

END FUNCTION eclazz
CITED REFERENCES AND FURTHER READING:
Chapter B9. Root Finding and Nonlinear Sets of Equations

SUBROUTINE scrsho(func)
  USE nrtype
  IMPLICIT NONE
  INTERFACE
    FUNCTION func(x)
      USE nrtype
      IMPLICIT NONE
      REAL(SP), INTENT(IN) :: x
      REAL(SP) :: func
    END FUNCTION func
  END INTERFACE
  INTEGER(I4B), PARAMETER :: ISCR=60, JSCR=21
  For interactive 'dumb terminal' use. Produce a crude graph of the function func over the prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.
  Parameters: Number of horizontal and vertical positions in display.
  INTEGER(I4B) :: i,j,jz
  REAL(SP) :: dx,dyj,x,x1,x2,ybig,ysml
  REAL(SP), DIMENSION(ISCR) :: y
  CHARACTER(1), DIMENSION(ISCR,JSCR) :: scr
  CHARACTER(1) :: blank=' ',zero='-',yy='l',xx='-',ff='x'
  do
    write (*,'(1x,1p,e10.3,1x,80a1)') xbig,(scr(i,JSCR),i=1,ISCR)
    do j=JSCR-1,2,-1
      write (*,'(12x,80a1)') (scr(i,j),i=1,ISCR)
    end do
    write (*,'(1x,1p,e10.3,1x,80a1)') ysmall,(scr(i,1),i=1,ISCR)
    write (*,*), ' Enter x1,x2 (= to stop)'
    call read (*,*) x1,x2
    if (x1 == x2) RETURN
    scr(1,1:JSCR)=yy
    scr(ISCR,1:JSCR)=yy
    scr(2:ISCR-1,1)=xx
    scr(2:ISCR-1,JSCR)=xx
    scr(2:ISCR-1,2:JSCR-1)=blank
    x=x1
doi=1,ISCR
    y(i)=func(x)
x=x+dx
  end do
  ysmall=min(minval(y(:)),0.0_sp)
ybig=max(maxval(y(:)),0.0_sp)
  if (ybig == ysmall) ybig=ysml+1.0
  dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj
  scr(1:ISCR,jz)=zero
  do i=1,ISCR
    j=1+(y(i)-ysml)*dyj
    scr(i,j)=ff
  end do
  write (*,') (1x,1p,e10.3,1x,80a1)') ybig,(scr(i,JSCR),i=1,ISCR)
  do j=JSCR-1,2,-1
    write (*,') (12x,80a1)') (scr(i,j),i=1,ISCR)
  end do
  write (*,') (1x,1p,e10.3,1x,80a1)') ysmall,(scr(i,1),i=1,ISCR)
  do i=1,ISCR
    scr(i,1:jz)=zero
  end do
  scr(1,1:jz)=yy
  scr(ISCR,1:jz)=yy
  scr(2:ISCR-1,1)=xx
  scr(2:ISCR-1,JSCR)=xx
  scr(2:ISCR-1,2:JSCR-1)=blank
  dx=(x2-x1)/(ISCR-1)
x=x1
doi=1,ISCR
  y(i)=func(x)
x=x+dx
end do

1182
write ('(*,(12x,1p,e10.3,40x,e10.3))') x1,x2
end do

END SUBROUTINE scrsho

**

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE

INTEGER(I4B), PARAMETER :: NTRY=50
REAL(SP), PARAMETER :: FACTOR=1.6_sp

Given a function func and an initial guessed range x1 to x2, the routine expands the range geometrically until a root is bracketed by the returned values x1 and x2 (in which case succes returns as .true.) or until the range becomes unacceptably large (in which case succes returns as .false.).

INTEGER(I4B) :: j
REAL(SP) :: f1,f2
if (x1 == x2) call nrerror('zbrac: you have to guess an initial range')
f1=func(x1)
f2=func(x2)
succes=.true.
do j=1,NTRY
if ((f1 > 0.0 .and. f2 < 0.0) .or. &
(f1 < 0.0 .and. f2 > 0.0)) RETURN
if (abs(f1) < abs(f2)) then
x1=x1+FACTOR*(x1-x2)
f1=func(x1)
else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)
end if
end do
succes=.false.
END SUBROUTINE zbrac

**
SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE

Given a function func defined on the interval from \( x_1 - x_2 \) subdivide the interval into \( n \) equally spaced segments, and search for zero crossings of the function. \( nb \) is returned as the number of bracketing pairs \( x_{b1}(1:nb), x_{b2}(1:nb) \) that are found. \( x_{b1} \) and \( x_{b2} \) are pointers to arrays of length \( nb \) that are dynamically allocated by the routine.

INTEGER(I4B) :: i
REAL(SP) :: dx
REAL(SP), DIMENSION(0:n) :: f,x
LOGICAL(LGT), DIMENSION(1:n) :: mask
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
  init=.false.
  nullify(xb1,xb2)
end if
if (associated(xb1)) deallocate(xb1)
if (associated(xb2)) deallocate(xb2)
dx=(x2-x1)/n
x=x1+dx*arth(0,1,n+1)
do i=0,n
  f(i)=func(x(i))
end do
mask=f(1:n)*f(0:n-1) <= 0.0
nb=count(mask)
Number of sign changes.
allocate(xb1(nb),xb2(nb))
xb1(1:nb)=pack(x(0:n-1),mask)
xb2(1:nb)=pack(x(1:n),mask)
END SUBROUTINE zbrak

This routine shows how to return arrays \( x_{b1} \) and \( x_{b2} \) whose size is not known in advance. The coding is explained in the subsection on pointers in §21.5.

FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE

Determine the spacing appropriate to the mesh.
Evaluate the function at the mesh points.
Record where the sign changes occur.
Number of sign changes.
Store the bounds of each bracket.
INTEGER(I4B), PARAMETER :: MAXIT=40
Using bisection, find the root of a function \( \text{func} \) known to lie between \( x_1 \) and \( x_2 \). The root, returned as \( \text{rtbis} \), will be refined until its accuracy is \( \pm x\text{acc} \).
Parameter: \( \text{MAXIT} \) is the maximum allowed number of bisections.

INTEGER(I4B) :: j
REAL(SP) :: dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if (f*fmid >= 0.0) call nrerror('rtbis: root must be bracketed')
if (f < 0.0) then
  Orient the search so that \( f>0 \) lies at \( x+dx \).
  rtbis=x1
  dx=x2-x1
else
  rtbis=x2
  dx=x1-x2
end if
do j=1,MAXIT
  Bisection loop.
  dx=dx*0.5_sp
  xmid=rtbis+dx
  fmid=func(xmid)
  if (fmid <= 0.0) rtbis=xmid
  if (abs(dx) < xacc .or. fmid == 0.0) RETURN
end do
call nrerror('rtbis: too many bisections')
END FUNCTION rtbis

FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror,swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE
  FUNCTION func(x)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP) :: func
  END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30
Using the false position method, find the root of a function \( \text{func} \) known to lie between \( x_1 \) and \( x_2 \). The root, returned as \( \text{rtflsp} \), is refined until its accuracy is \( \pm x\text{acc} \).
Parameter: \( \text{MAXIT} \) is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: del,dx,f,fh,fl,xh,xl
fl=func(x1)
fh=func(x2)
if ((fl > 0.0 .and. fh > 0.0) .or. &
  (fl < 0.0 .and. fh < 0.0)) call &
  nrerror('rtflsp: root must be bracketed between arguments')
if (fl < 0.0) then
  Identify the limits so that \( x_l \) corresponds to the low side.
  xl=x1
  xh=x2
else
  xl=x2
  xh=x1
end if
dx=xh-xl
do j=1,MAXIT
    rtflsp=xl+dx*f1/(f1-fh)
    f=func(rtflsp)
    if (f < 0.0) then
        x1=rtflsp
        fl=f
        del=xh-rtflsp
        xh=rtflsp
        fh=f
    else
        xh=rtflsp
        fl=f
        del=xl-rtflsp
        xl=rtflsp
        f=func(xl)
        if (abs(del) < xacc .or. f == 0.0) RETURN
    end if
    dx=xh-xl
    if (abs(dx) < xacc .or. f == 0.0) RETURN
end do
END FUNCTION rtflsp

FUNCTION rtsec(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror, swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsec
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

Using the secant method, find the root of a function func thought to lie between x1 and x2. The root, returned as rtsec, is refined until its accuracy is ±xacc. Parameter MAXIT is the maximum allowed number of iterations.

INTEGER(14B) :: j
REAL(SP) :: dx,f,f1,f2,xl
f1=func(x1)
f2=func(x2)
if (abs(f1) < abs(f2)) then
    rtsec=x1
    xl=x2
    xh=x1
    call swap(f1,f2)
else
    xl=x1
    rtsec=x2
end if
do j=1,MAXIT
    dx=(xl-rtsec)*f/(f-f1)
    x1=rtsec
    fl=f
    rtsec=rtsec+dx
    f=func(rtsec)
    if (abs(dx) < xacc .or. f == 0.0) RETURN
end do
END FUNCTION rtsec

* * *

FUNCTION rtflsp(func,xl,fh)
USE nrtype; USE nrutil, ONLY : nrerror, swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xl,fh
REAL(SP) :: rtflsp
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

False position loop.
Increment with respect to latest value.
Replace appropriate limit.
Increment with respect to latest value.
Replace appropriate limit.
Convergence.
Convergence.
FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=60
Using Ridders' method, return the root of a function func known to lie between x1 and x2. The root, returned as zriddr, will be refined to an approximate accuracy xacc.
REAL(SP), PARAMETER :: UNUSED=-1.11e30_sp
INTEGER(I4B) :: j
REAL(SP) :: fh,f1,fm,fnew,s,xh,xl,xm,xnew
f1=func(x1)
fh=func(x2)
if ((f1 > 0.0 .and. fh < 0.0) .or. (f1 < 0.0 .and. fh > 0.0)) then
    xl=x1
    xh=x2
    zriddr=UNUSED
else if (fl == 0.0) then
    zriddr=x1
else if (fh == 0.0) then
    zriddr=x2
else
    call nrerror('zriddr: root must be bracketed')
end if
END FUNCTION zriddr

⋆⋆⋆
FUNCTION zbrent(func,x1,x2,tol)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x1)

Using Brent's method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x1)

FUNCTION zbrent(func,x1,x2,tol)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x1)

Using Brent's method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.
Chapter B9. Root Finding and Nonlinear Sets of Equations

\[ d = \frac{p}{q} \]
\[ \text{else} \]
\[ d = x_m \]
\[ \text{end if} \]
\[ \text{else} \]
\[ d = x_m \]
\[ e = d \]
\[ \text{end if} \]

Interpolation failed; use bisection.

Bounds decreasing too slowly; use bisection.

Move last best guess to a.

Evaluate new trial root.

\[ a = b \]
\[ \text{Move last best guess to } a. \]
\[ f_a = f_b \]
\[ \text{Initial guess.} \]
\[ \text{do } j = 1, \text{MAXIT} \]
\[ \text{end do} \]
\[ \text{END FUNCTION zbrent} \]

\[ \text{REAL(SP), PARAMETER :: EPS=epsilon(x1)} \]

The routine zbrent works best when EPS is exactly the machine precision. The Fortran 90 intrinsic function epsilon allows us to code this in a portable fashion.

\[ \text{FUNCTION rtnewt(funcd,x1,x2,xacc)} \]
\[ \text{USE nrtype; USE nrutil, ONLY : nrerror} \]
\[ \text{IMPLICIT NONE} \]
\[ \text{REAL(SP), INTENT(IN) :: x1,x2,xacc} \]
\[ \text{REAL(SP) :: rtnewt} \]
\[ \text{INTERFACE} \]
\[ \text{SUBROUTINE funcd(x,fval,fderiv)} \]
\[ \text{USE nrtype} \]
\[ \text{IMPLICIT NONE} \]
\[ \text{REAL(SP), INTENT(IN) :: x} \]
\[ \text{REAL(SP), INTENT(OUT) :: fval,fderiv} \]
\[ \text{END SUBROUTINE funcd} \]
\[ \text{END INTERFACE} \]
\[ \text{INTEGER(I4B), PARAMETER :: MAXIT=20} \]

Using the Newton-Raphson method, find the root of a function known to lie in the interval \([x_1, x_2]\). The root rtnewt will be refined until its accuracy is known within \(\pm x_{acc}\). funcd is a user-supplied subroutine that returns both the function value and the first derivative of the function.

Parameter: MAXIT is the maximum number of iterations.

\[ \text{INTEGER(I4B) :: } j \]
\[ \text{REAL(SP) :: } df, dx, f \]
\[ \text{rtnewt=0.5_sp*(x1+x2)} \]
\[ \text{Initial guess.} \]
\[ \text{do } j = 1, \text{MAXIT} \]
\[ \text{call funcd(rtnewt,f,df)} \]
\[ dx=f/df \]
\[ \text{rtnewt=rtnewt-dx} \]
\[ \text{if } ((x1-rtnewt)*(rtnewt-x2) < 0.0) & \]
\[ \text{call nrerror(’rtnewt: values jumped out of brackets’)} \]
\[ \text{if } (\text{abs(dx) } < x_{acc}) \text{ RETURN} \]
\[ \text{Convergence.} \]
\[ \text{end do} \]
\[ \text{call nrerror(’rtnewt exceeded maximum iterations’)} \]
\[ \text{END FUNCTION rtnewt} \]

\[ \star \star \star \]
FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE
SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=100
Using a combination of Newton-Raphson and bisection, find the root of a function bracketed between x1 and x2. The root, returned as the function value rtsafe, will be refined until its accuracy is known within ±xacc. funcd is a user-supplied subroutine that returns both the function value and the first derivative of the function.

Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: df, dx, dxold, f, fh, fl, temp, xh, xl
call funcd(x1,fl,df)
call funcd(x2,fh,df)
if ((fl > 0.0 .and. fh > 0.0) .or. &
  (fl < 0.0 .and. fh < 0.0)) &
call nrerror('root must be bracketed in rtsafe')
if (fl == 0.0) then
  rtsafe=x1
  RETURN
else if (fh == 0.0) then
  rtsafe=x2
  RETURN
else if (fl < 0.0) then
  Orient the search so that f(xl) < 0.
  xl=x1
  xh=x2
else
  xh=x1
  xl=x2
end if
rtsafe=0.5_sp*(x1+x2)
initialize the guess for root,
dxold=abs(x2-x1)
and the last step.
call funcd(rtsafe,f,df)
do j=1,MAXIT
  Loop over allowed iterations.
  if (((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f) > 0.0 .or. &
    abs(2.0_sp*f) > abs(dxold*df) ) then
    Bisect if Newton out of range, or not decreasing fast enough.
dxold=dx
  dx=0.5_sp*(xh-xl)
  rtsafe=xl+dx
  if (xl == rtsafe) RETURN
  Change in root is negligible.
else
  Newton step acceptable. Take it.
dxold=dx
  dx=f/fdf
  temp=rtsafe
  rtsafe=rtsafe-dx
  if (temp == rtsafe) RETURN
end if
if (abs(dx) < xacc) RETURN
call funcd(rtsafe,f,df)
One new function evaluation per iteration.
if (f < 0.0) then
  Maintain the bracket on the root.
  xl=rtsafe
else
  xh=rtsafe
SUBROUTINE laguer(a,x,its)
USE nrtype; USE nrutil, ONLY : nrerror,poly,poly_term
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
REAL(SP), PARAMETER :: EPS=epsilon(1.0_sp)
INTEGER(I4B), PARAMETER :: MR=8,MT=10,MAXIT=MT*MR
 Given an array of $M+1$ complex coefficients $a$ of the polynomial $\sum_{i=1}^{M+1} a_i x^{i-1}$, and given a complex value $x$, this routine improves $x$ by Laguerre’s method until it converges, within the achievable roundoff limit, to a root of the given polynomial. The number of iterations taken is returned as $\text{its}$.

Parameters: EPS is the estimated fractional roundoff error. We try to break (rare) limit cycles with MR different fractional values, once every MT steps, for MAXIT total allowed iterations.

INTEGER(I4B) :: iter,m
REAL(SP) :: abx,abp,abm,err
COMPLEX(SPC) :: dx,x1,f,g,b,d
REAL(SP), DIMENSION(MR) :: frac = (/ 0.5_sp,0.25_sp,0.75_sp,0.13_sp,0.38_sp,0.62_sp,0.88_sp,1.0_sp /)
 Fractions used to break a limit cycle.

m=size(a)-1
 do iter=1,MAXIT
 iter=iter Loop over iterations up to allowed maximum.
 i=iter
dx=dx Efficient computation of the polynomial
 b(x=1.1) = poly_term(a(m+1:1:-1),x) and its first two derivatives.
d(m:1=-1)=poly_term(b(m+1:2:-1),x)
f=poly(x,d(2:m))
 err=EPS*poly(abs(b(1:m+1))) Estimate of roundoff in evaluating polynomial.
 if (abs(b(1)) <= err) RETURN We are on the root.
 g=d(1)/b(1) The generic case: Use Laguerre’s formula.
 g2=g*g
 h=g2-2.0_sp*f/b(1)
 sq=sqrt((m-1)*(m*h-g2))
 gp=g+sq
 gm=g-sq
 abp=abs(gp)
 abm=abs(gm)
 if (abp < abm) gp=gm
 if (max(abp,abm) > 0.0) then
 dx=gp/abp
 else
 dx=exp(cmplx(log(1.0_sp+abx),iter,kind=spc))
 end if
 x1=x-dx Converged.
 if (x == x1) RETURN
 if (mod(iter,MT) /= 0) then
 x=x-dx*frac(iter/MT)
 end if
 else
 x=x-dx*frac(iter/MT)
 end if
 call nrerror('laguer: too many iterations!') Very unusual — can occur only for complex roots. Try a different starting guess for the root.
 END SUBROUTINE laguer
The intrinsic function cmplx returns a quantity of type default complex unless the kind argument is present. To facilitate converting our routines from single to double precision, we always include the kind argument explicitly so that when you redefine spc in nrtype to be double-precision complex the conversions are carried out correctly.

See the discussion of why we include kind=spc just above. Note that while real(x) returns type default real if x is integer or real, it returns single or double precision correctly if x is complex.
Chapter B9. Root Finding and Nonlinear Sets of Equations

SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : balanc,hqr,indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti

Find all the roots of a polynomial with real coefficients, ∑_{i=1}^{M+1} a(i)x^{i-1}, given the array of M + 1 coefficients a. The method is to construct an upper Hessenberg matrix whose eigenvalues are the desired roots, and then use the routines balanc and hqr. The real and imaginary parts of the M roots are returned in rtr and rti, respectively.

INTEGER(I4B) :: k,m
INTEGER(I4B), DIMENSION(size(rtr)) :: indx
REAL(SP), DIMENSION(size(a)-1,size(a)-1) :: hess
m=assert_eq(size(rtr),size(rti),size(a)-1,'zrhqr')
if (a(m+1) == 0.0) call &
nrerror('zrhqr: Last value of array a must not be 0')
hess(1,:)=-a(m:1:-1)/a(m+1)
Construct the matrix.
hess(2:m,:)=0.0
do k=1,m-1
hess(k+1,k)=1.0
end do
call balanc(hess)
Find its eigenvalues.
call hqr(hess,rtr,rti)
call indexx(rtr,indx)
Sort roots by their real parts.
rtr=rtr(indx)
rti=rti(indx)
END SUBROUTINE zrhqr

* * *

SUBROUTINE qroot(p,b,c,eps)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : poldiv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: eps
INTEGER(I4B), PARAMETER :: ITMAX=20
REAL(SP), PARAMETER :: TINY=1.0e-6_sp

Given an array of N coefficients p of a polynomial of degree N−1, and trial values for the coefficients of a quadratic factor x^2 + bx + c, improve the solution until the coefficients b, c change by less than eps. The routine poldiv of §5.3 is used.

Parameters: ITMAX is the maximum number of iterations, TINY is a small number.

INTEGER(I4B) :: iter,n
decl,decl,div,r,rb,rc,s,sc,qq,rem
n=size(p)
d(3)=1.0
do iter=1,ITMAX
  d(2)=b
d(1)=c
  call poldiv(p,d,q,rem)
s=rem(1)
  First division gives r,s.
r=rem(2)
call poldiv(q(1:n-1),d(:),qq(1:n-1),rem(1:n-1))
s=rem(1)
  Second division gives partial r,s with respect
to c.
sb=c*rc
rb=sb-rc
  solve 2x2 equation.
```
delb=(r*sc-s*rc)*div
delc=-(r*sb+s*rb)*div
b=b+delb
c=c+delc
if ((abs(delb) <= eps*abs(b) .or. abs(b) < TINY) .and. &
 (abs(delc) <= eps*abs(c) .or. abs(c) < TINY)) RETURN Coefficients converged.
end do
```

```
call nrerror('qroot: too many iterations')
END SUBROUTINE qroot
```

```
SUBROUTINE mnewt(ntrial,x,tolx,tolf,usrfun)
USE nrtype
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx,tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE
SUBROUTINE usrfun(x,fvec,fjac)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun
END INTERFACE
G i v e na ni n i t i a lg u e s s
for a root in N dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.
INTEGER(I4B) :: i
INTEGER(I4B), DIMENSION(size(x)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(x)) :: fvec,p
REAL(SP), DIMENSION(size(x),size(x)) :: fjac
do i=1,ntrial
 call usrfun(x,fvec,fjac)
 if (sum(abs(fvec)) <= tolf) RETURN Check function convergence.
 p=-fvec
 call ludcmp(fjac,indx,d)
 call lubksb(fjac,indx,p)
 x=x+p
 if (sum(abs(p)) <= tolx) RETURN Check root convergence.
end do
END SUBROUTINE mnewt
```
SUBROUTINE lnsrch(xold, fold, g, p, f, stpmax, check, func)
USE nrtype; USE nrutil, ONLY : assert_eq, nrerror, vabs
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xold, g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold, stpmax
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: ALF=1.0e-4_sp, TOLX=epsilon(x)

Given an N-dimensional point xold, the value of the function and gradient there, fold
and g, and a direction p, finds a new point x along the direction p from xold where the
function func has decreased "sufficiently." xold, g, p, and x are all arrays of length N.
The new function value is returned in f. stpmax is an input quantity that limits the length
of the steps so that you do not try to evaluate the function in regions where it is undefined
or subject to overflow. p is usually the Newton direction. The output quantity check
is false on a normal exit. It is true when x is too close to xold. In a minimization algorithm,
this usually signals convergence and can be ignored. However, in a zero-finding algorithm
the calling program should check whether the convergence is spurious.

Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on Δx.

INTEGER(I4B) :: ndum
REAL(SP) :: a, alam, alam2, alamin, b, disc, f, rhs1, rhs2, slope, tmplam

ndum=assert_eq(size(g), size(p), size(x), size(xold), 'lnsrch')
check=.false.
pabs=vabs(p(:))
if (pabs > stpmax) p(:)=p(:)*stpmax/pabs Scale if attempted step is too big.
slope=dot_product(g, p)
if (slope >= 0.0) call nrerror('roundoff problem in lnsrch')
alamin=TOLX/maxval(abs(p(:))/max(abs(xold(:)), 1.0_sp)) Compute λmin.
alamin=1.0 Always try full Newton step first.
do Start of iteration loop.
    x(:)=xold(:)+alam*p(:)
    f=func(x)
    if (alam < alamin) then
        Convergence on Δx. For zero finding, the calling program should verify the
        convergence.
    else if (f <= fold+ALF*alam*slope) then
        Sufficient function decrease.
    else
        Backtrack.
        if (alam == 1.0) then
            tmplam=-slope/(2.0_sp*b)
        else
            disc=b*b-3.0_sp*a*slope
            if (disc < 0.0) then
                tmplam=0.5_sp*alam
            else if (b <= 0.0) then
                tmplam=-slope/(2.0_sp*b)
            else
                tmplam=slope/(2.0_sp*(f-fold-slope))
            end if
        end if
        rhs1=f-fold-alam*slope
        rhs2=f2-fold-alam2*slope
        a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
        b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/&
          (alam-alam2)
        if (a == 0.0) then
            tmplam=slope/(2.0_sp*b)
        else
            disc=b*b-3.0_sp*a*slope
            if (disc < 0.0) then
                tmplam=0.5_sp*alam
            else if (b <= 0.0) then
                tmplam=0.5_sp*alam
            else
                tmplam=slope/(2.0_sp*b)
            end if
        end if
    end if
end do
 tmplam=(-b+sqrt(disc))/(3.0_sp*a)
 else
   tmplam=-slope/(b+sqrt(disc))
 end if
 if (tmplam > 0.5_sp*alam) tmplam=0.5_sp*alam  \( \lambda \leq 0.5 \lambda_1 \).
 end if
 end if
 if (tmplam > 0.5_sp*alam) tmplam=0.5_sp*alam
 \( \lambda \leq 0.5 \lambda_1 \).
 end do
 END SUBROUTINE lnsrch

 SUBROUTINE newt(x,check)
 USE nrtype; USE nrutil, ONLY : nrerror,vabs
 USE nr, ONLY : fdjac,lnsrch,lubksb,ludcmp
 USE fminln
 Communicates with fmin.
 IMPLICIT NONE
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
 LOGICAL(LGT), INTENT(OUT) :: check
 INTEGER(I4B), PARAMETER :: MAXITS=200
 REAL(SP), PARAMETER :: TOLF=1.0e-4_sp,TOLMIN=1.0e-6_sp,TOLX=epsilon(x),&
 STPMX=100.0
 Given an initial guess \( x \) for a root in \( N \) dimensions, find the root by a globally
 convergent Newton's method. The length \( N \) vector of functions to be zeroed, called \( fvec \) in the
 routine below, is returned by a user-supplied routine that must be called \( \text{funcv} \) and have the
 declaration FUNCTION \( \text{funcv}(x) \). The output quantity \( \text{check} \) is false on a normal return
 and true if the routine has converged to a local minimum of the function \( fmin \) defined
 below. In this case try restarting from a different initial guess.
 Parameters: MAXITS is the maximum number of iterations; TOLF sets the convergence
 criterion on function values; TOLMIN sets the criterion for deciding whether spurious con-
 vergence to a minimum of \( fmin \) has occurred; TOLX is the convergence criterion on \( \delta x \);
 STPMX is the scaled maximum step length allowed in line searches.
 INTEGER(I4B) :: its
 INTEGER(I4B), DIMENSION(size(x)) :: indx
 REAL(SP) :: d,f,fold,stpmax
 REAL(SP), DIMENSION(size(x)) :: g,p,xold
 REAL(SP), DIMENSION(size(x),size(x)) :: fjac
 REAL(SP), DIMENSION(size(x),size(x)) :: fvec
 fmin \( \text{fvec} \rightarrow \text{fvec} \)
 if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then  \( \text{fvec is also computed by this call.} \)
   check=.false.
   RETURN
 end if
 stpmax=STPMX*max(vabs(x(:)),real(size(x),sp))  \( \text{Calculate stpmax for line searches.} \)
 do its=1,MAXITS  \( \text{Start of iteration loop.} \)
   call fdjac(x,fvec,fjac)
   If analytic Jacobian is available, you can replace the routine \( \text{fdjac} \) below with your own
   routine.
   g(:)=matmul(fvec(:),fjac(:,:)) \( \text{Compute } \nabla f \text{ for the line search.} \)
   xold(:)=x(:) \( \text{Store } x, \)
   fold=f \( \text{and } f. \)
   p(:)=fvec(:) \( \text{Right-hand side for linear equations.} \)
   call ludcmp(fjac,indx,d) \( \text{Solve linear equations by } LU \text{ decomposition.} \)
   call lubksb(fjac,indx,p)
   call lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin)
   lnsrch returns new \( x \) and \( f \). It also calculates \( fvec \) at the new \( x \) when it calls \( fmin \).
   if (maxval(abs(fvec(:))) < TOLF) then  \( \text{Test for convergence on function val-
     ues.} \)
     check=.false.
     RETURN
   else
     \( \text{Continue with line search.} \)
   end if
 end do
 END SUBROUTINE newt
USE fmin  Here we have an example of how to pass an array \( fvec \) to a function \( fmin \) without making it an argument of \( fmin \). In the language of \S 21.5, we are using Method 2: We define a pointer \( fmin\_fvecp \) in the module \( fmin\_ln \):

\[
\text{REAL(SP), DIMENSION(:,), POINTER :: } fmin\_fvecp
\]

\( fvec \) itself is declared as an automatic array of the appropriate size in \( newt \):

\[
\text{REAL(SP), DIMENSION(size(x)), TARGET :: } fvec
\]

On entry into \( newt \), the pointer is associated:

\[
fmin\_fvecp \Rightarrow fvec
\]

The pointer is then used in \( fmin \) as a synonym for \( fvec \). If you are sufficiently paranoid, you can test whether \( fmin\_fvecp \) has in fact been associated on entry into \( fmin \). Heeding our admonition always to deallocate memory when it no longer is needed, you may ask where the deallocation takes place in this example. Answer: On exit from \( newt \), the automatic array \( fvec \) is automatically freed.

The Method 1 way of setting up this task is to declare an allocatable array in the module:

\[
\text{REAL(SP), DIMENSION(:,), ALLOCATABLE :: } fvec
\]

On entry into \( newt \) we allocate it appropriately:

\[
\text{allocate}(fvec, \text{size}(x))
\]

and it can now be used in both \( newt \) and \( fmin \). Of course, we must remember to deallocate explicitly \( fvec \) on exit from \( newt \). If we forget, all kinds of bad things would happen on a second call to \( newt \). The status of \( fvec \) on the first return from \( newt \) becomes undefined. The status cannot be tested with if(allocated(...)), and \( fvec \) may not be referenced in any way. If we tried to guard against this by adding the \texttt{SAVE} attribute to the declaration of \( fvec \), then we would generate an error from trying to allocate an already-allocated array.
function funcv(x)
use nrtype
implicit none
real(sp), dimension(:), intent(in) :: x
real(sp), dimension(size(x)) :: funcv
end function funcv
end interface
real(sp), parameter :: eps=1.0e-4_sp

computes forward-difference approximation to Jacobian. on input, x is the point at which
the Jacobian is to be evaluated, and fvec is the vector of function values at the point,
both arrays of length n. df is the n x n output Jacobian. function funcv(x) is a
fixed-name, user-supplied routine that returns the vector of functions at x.
parameter: eps is the approximate square root of the machine precision.
integer(14b) :: j,n
real(sp), dimension(size(x)) :: xsav,xph,h
n=assert_eq(size(x),size(fvec),size(df,1),size(df,2),'fdjac')
xsav=x
h=eps*abs(xsav)
where (h == 0.0) h=eps
xph=xsav+h
trick to reduce finite precision error.
h=xph-xsav
do j=1,n
x(j)=xph(j)
df(:,j)=(funcv(x)-fvec(:))/h(j)
forward difference formula.
x(j)=xsav(j)
end do
end subroutine fdjac

module fminln
use nrtype; use nrutil, only : nrerror
real(sp), dimension(:,), pointer :: fmin_fvecp
contains
function fmin(x)
implicit none
real(sp), dimension(:,), intent(in) :: x
real(sp) :: fmin
returns f = 1/2 F . F at x. function funcv(x) is a fixed-name, user-supplied routine that
returns the vector of functions at x. the pointer fmin_fvecp communicates the function
values back to newt.
interface
function funcv(x)
use nrtype
implicit none
real(sp), dimension(:,), intent(in) :: x
real(sp), dimension(size(x)) :: funcv
end function funcv
end interface
if (.not. associated(fmin_fvecp)) call &
nrerror('fmin: problem with pointer for returned values')
fmin_fvecp=funcv(x)
fmin=0.5_sp*dot_product(fmin_fvecp,fmin_fvecp)
end function fmin
end module fminln

* * *
SUBROUTINE broydn(x, check)
USE nrtype; USE nrutil, ONLY: get_diag, lower_triangle, nrerror, & outerprod, put_diag, unit_matrix, vabs
USE nr, ONLY: fdjac, lnsrch, qrdcmp, qrupd, rsolv
USE fmin
Communicates with fmin.
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
INTEGER(I4B), PARAMETER :: MAXITS = 200
REAL(SP), PARAMETER :: EPS = epsilon(x), TOLF = 1.0e-4_sp, TOLMIN = 1.0e-6_sp, & TOLX = EPS, STPMX = 100.0

Given an initial guess x for a root in N dimensions, find the root by Broyden's method embedded in a globally convergent strategy. The length N vector of functions to be zeroed, called fvec in the routine below, is returned by a user-supplied routine that must be called funcv and have the declaration FUNCTION funcv(x). The subroutine fdjac and the function fmin from newt are used. The output quantity check is false on a normal return and true if the routine has converged to a local minimum of the function fmin or if Broyden's method can make no further progress. In this case try restarting from a different initial guess.

Parameters: MAXITS is the maximum number of iterations; EPS is the machine precision; TOLF sets the convergence criterion on function values; TOLMIN sets the criterion for deciding whether spurious convergence to a minimum of fmin has occurred; TOLX is the convergence criterion on δx; STPMX is the scaled maximum step length allowed in line searches.

INTEGER(I4B) :: i, its, k, n
REAL(SP) :: f, fold, stpmax
REAL(SP), DIMENSION(size(x)), TARGET :: fvec
REAL(SP), DIMENSION(size(x)) :: c, d, fvcold, g, p, s, t, w, xold
REAL(SP), DIMENSION(size(x), size(x)) :: qt, r
LOGICAL :: restrt, sing

fmin_fvecp=>fvec
n=size(x)
f=fmin(x) fvec is also computed by this call.
if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then
  Test for initial guess being a root.
  check=.false.
  RETURN
end if

stpmax=STPMX*max(vabs(x(:)),real(n,sp)) Calculate stpmax for line searches.
restrt=.true. Ensure initial Jacobian gets computed.
do its=1, MAXITS
  Start of iteration loop.
  if (restrt) then
    call fdjac(x, fvec, r)
    Initialize or reinitialize Jacobian in r.
    call qrdcmp(r, c, d, sing) QR decomposition of Jacobian.
    if (sing) call nrerror('singular Jacobian in broydn')
    call unit_matrix(qt)
    Form QT explicitly.
    do k=1, n-1
      if (c(k) /= 0.0) then
        qt(k:n,:) = qt(k:n,:) - outerprod(r(k:n,k), & matmul(r(k:n,k),qt(k:n,:))/c(k))
      end if
    end do
    where (lower_triangle(n,n)) r(:, :) = 0.0
    call put_diag(d(:), r(:, :)) Form R explicitly.
  else
    Carrying out Broyden update.
    s(:)=x(:)-xold(:)
    t(:, :) = dot_product(r(:, :), s(:))
    do i=1, n
      t(i)=dot_product(r(i, :), s(:))
    end do
    w(:)=fvec(:)-fvcold(:)-matmul(t(:, :), qt(:, :)) \ w = δF - B·s.
    where (abs(w(:)) < EPS*(abs(fvec(:))+abs(fvcold(:)))) & search
      w(:)=0.0 Don't update with noisy components of w.
    if (any(w(:) /= 0.0)) then
      t(:, :) = matmul(qt(:, :), w(:))
      t = QT·w.
    s(:)=w(:)/dot_product(s, s) Store s/(s·s) in s.
end if
end do

end if
call qrupd(t(r,qt,t,s))        Update R and Q^T.
d(:)=get_diag(r(:,:))         Diagonal of R stored in d.
if (any(d(:)==0.0)) &
call nrerror('r singular in broydn')
end if

if (check) then
  True if line search failed to find a new
  if (restrt .or. max(abs(g(:))*max(abs(x(:)), &
       1.0_sp)/max(f,0.5_sp*n)) < TOLMIN) RETURN
  If restrt is true we have failure: We have already tried reinitializing the Jacobian. The other test is for gradient of f zero, i.e., spurious convergence.
  restrt=.true.
else
  Successful step; will use Broyden update for next step.
  restrt=.false.
  if (maxval((abs(x(:)-xold(:)))/max(abs(x(:)), &
       1.0_sp)) < TOLX) RETURN
  Test for convergence on δx.
end if
end do

end if
end if

end subroutine broydn
Chapter B10. Minimization or Maximization of Functions

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE
  FUNCTION func(x)
  USE nrtype
  IMPLICIT NONE
  REAL(SP), INTENT(IN) :: x
  REAL(SP) :: func
  END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: GOLD=1.618034_sp,GLIMIT=100.0_sp,TINY=1.0e-20_sp

Given a function \( \text{func} \), and given distinct initial points \( \text{ax} \) and \( \text{bx} \), this routine searches in the downhill direction (defined by the function as evaluated at the initial points) and returns new points \( \text{ax}, \text{bx}, \text{cx} \) that bracket a minimum of the function. Also returned are the function values at the three points, \( \text{fa}, \text{fb}, \text{fc} \).

Parameters: \( \text{GOLD} \) is the default ratio by which successive intervals are magnified; \( \text{GLIMIT} \) is the maximum magnification allowed for a parabolic-fit step.

REAL(SP) :: fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if (fb > fa) then
  call swap(ax,bx)
  call swap(fa,fb)
end if

\( \text{cx}=\text{bx}+\text{GOLD}*(\text{bx}-\text{ax}) \)

Do-while-loop: Keep returning here until we bracket.

if (fb < fc) RETURN

Compute \( u \) by parabolic extrapolation from \( a, b, c \). \( \text{TINY} \) is used to prevent any possible division by zero.

\[
r=(\text{bx}-\text{ax})*(\text{fb}-\text{fc})
q=(\text{bx}-\text{cx})*(\text{fb}-\text{fa})
\]

\[
u=\text{bx}-((\text{bx}-\text{cx})*q-(\text{bx}-\text{ax})*r)/(2.0_sp*\text{sign(max(abs(q-r),TINY)},q-r))
ulim=bx+\text{GLIMIT}*(cx-bx)
\]

We won't go farther than this. Test various possibilities:

if ((bx-u)*(u-cx) > 0.0) then
  \( \text{fu}=\text{func}(u) \)
  if (fu < fc) then
    \( \text{ax} = \text{bx} \)
    \( \text{fa} = \text{fb} \)
    \( \text{bx} = u \)
    \( \text{fb} = \text{fu} \)
    RETURN
  else if (fu > fb) then
    \( \text{cx} = u \)
    \( \text{fc} = \text{fu} \)
    RETURN
  end if
  Parabolic \( u \) is between \( b \) and \( c \): try it.
  Got a minimum between \( b \) and \( c \).
else
  \( \text{fu}=\text{func}(u) \)
  if (fu < fc) then
    \( \text{ax} = \text{bx} \)
    \( \text{fa} = \text{fb} \)
    \( \text{bx} = u \)
    \( \text{fb} = \text{fu} \)
    RETURN
  else if (fu > fb) then
    \( \text{cx} = u \)
    \( \text{fc} = \text{fu} \)
    RETURN
  end if
  Got a minimum between \( a \) and \( u \).
end if

1201
end if
    u = cx + GOLD*(cx - bx)
    fu = func(u)
  end if
  else if ( (cx - u)*(u - ulim) > 0.0 ) then
    Parabolic fit is between c and its allowed limit.
    fu = func(u)
    if ( fu < fc ) then
      bx = cx
      cx = u
      u = cx + GOLD*(cx - bx)
      call shft(fb, fc, fu, func(u))
    end if
  else if ( (u - ulim)*(ulim - cx) >= 0.0 ) then
    Limit parabolic u to maximum allowed value.
    u = ulim
    fu = func(u)
  else
    Reject parabolic u, use default magnification.
    u = cx + GOLD*(cx - bx)
    fu = func(u)
  end if
  call shft(ax, bx, cx, u)
  call shft(fa, fb, fc, fu)
end do
CONTAINS
SUBROUTINE shft(a, b, c, d)
  REAL(SP), INTENT(OUT) :: a
  REAL(SP), INTENT(INOUT) :: b, c
  REAL(SP), INTENT(IN) :: d
  a = b
  b = c
  c = d
END SUBROUTINE shft
END SUBROUTINE mnbrak

f90 call... There are three places in mnbrak where we need to shift four variables around. Rather than repeat code, we make shft an internal subroutine, coming after a CONTAINS statement. It is invisible to all procedures except mnbrak.

* * *

FUNCTION golden(ax, bx, cx, func, tol, xmin)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax, bx, cx, tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE
  FUNCTION func(x)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP) :: func
  END FUNCTION func
END INTERFACE
REAL(SP), PARAMETER :: R=0.61803399_sp, C=1.0_sp-R

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is between ax and cx, and func(bx) is less than both func(ax) and func(cx)), this routine performs a golden section search for the minimum, isolating it to a fractional precision of about tol. The abscissa of the minimum is returned as xmin, and the minimum
function value is returned as $f$, the returned function value.

Parameters: The golden ratios.

```fortran
REAL(SP) :: f1, f2, x0, x1, x2, x3
x0=ax
x3=cx
if (abs(cx-bx) > abs(bx-ax)) then
 x1=bx
 x2=bx+C*(cx-bx)
else
 x2=bx
 x1=bx-C*(bx-ax)
end if
f1=func(x1)
f2=func(x2)
```

At any given time we will keep track of four points, $x_0, x_1, x_2, x_3$.

Make $x_0$ to $x_1$ the smaller segment, and fill in the new point to be tried.

```fortran
do
 if (abs(x3-x0) <= tol*(abs(x1)+abs(x2))) exit
 if (f2 < f1) then
 call shft3(x0, x1, x2, R*x2+C*x3)
 call shft2(f1, f2, func(x2))
 else
 call shft3(x3, x2, x1, R*x1+C*x0)
 call shft2(f2, f1, func(x1))
 end if
end do
```

Do-while-loop: We keep returning here.

One possible outcome, its housekeeping, and a new function evaluation.

The other outcome, and its new function evaluation.

Back to see if we are done.

We are done. Output the best of the two current values.

```fortran
if (f1 < f2) then
 golden=f1
 xmin=x1
else
 golden=f2
 xmin=x2
end if
```

CONTAINS

```fortran
SUBROUTINE shft2(a, b, c)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b
REAL(SP), INTENT(IN) :: c
a=b
b=c
END SUBROUTINE shft2
```

```fortran
SUBROUTINE shft3(a, b, c, d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b, c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft3
```

END FUNCTION golden

Call shft3... Call shft2... See discussion of shft for mnbrak on p. 1202.

*   *   *

Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their personal use and to display authors' names, to display internet addresses. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: CGOLD=0.3819660_sp,ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is between ax and cx, and func(bx) is less than both func(ax) and func(cx)), this routine isolates the minimum to a fractional precision of about tol using Brent's method.

The abscissa of the minimum is returned as xmin, and the minimum function value is returned as brent, the returned function value.

Parameters: Maximum allowed number of iterations; golden ratio; and a small number that protects against trying to achieve fractional accuracy for a minimum that happens to be exactly zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though the input abscissas need not be.
b=max(ax,cx)
v=bx
w=v
x=v
e=0.0
This will be the distance moved on the step before last.
fx=func(x)
fv=fx
fw=fx
do iter=1,ITMAX
xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) then
Test for done here.
xmin=x
Arrive here ready to exit with best values.
brent=fx
RETURN
end if
if (abs(e) > tol1) then
Construct a trial parabolic fit.
r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.0_sp*(q-r)
if (q > 0.0) p=-p
q=abs(q)
etemp=e
e=d
if (abs(p) >= abs(0.5_sp*q*etemp) .or. &
p <= q*(a-x) .or. p >= q*(b-x)) then
The above conditions determine the acceptability of the parabolic fit. Here it is not o.k., so we take the golden section step into the larger of the two segments.
e=merge(a-x,b-x, x >= xm )
d=CGOLD*e
else
Take the parabolic step.
d=p/q
u=x+d
if (u-a < tol2 .or. b-u < tol2) d=sign(tol1,xm-x)
end if
Sample page from NUMERICAL RECIPES IN FORTRAN 90: The Art of \textsc{parallel} Scientific Computing (ISBN 0-521-57439-0) Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. \textcopyright{} Cambridge University Press. Permission is granted for internet use to download this file and the original text files accompanying it, for personal use only, to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

\begin{verbatim}
else
    e=merge(a-x,b-x, x > x_m )
    d=COLD*e
end if
u=merge(x+d,x+sign(tol1,d), abs(d) > tol1 )
Arrive here with d computed either from parabolic fit, or else from golden section.
fu=func(u)
This is the one function evaluation per iteration.
if (fu < fx) then
    if (u > x) then
        a=x
    else
        b=x
    end if
    call shft(v,w,x,u)
call shft(fv,fw,fx,fu)
else
    if (u < x) then
        a=u
    else
        b=u
    end if
    if (fu <= fw .or. u == x) then
        v=w
        fv=fw
        w=u
        fw=fu
    else if (fu <= fv .or. v == x .or. v == u) then
        v=u
        fv=fu
    end if
end if
end do
Done with housekeeping. Back for another
call nrerror('brent: exceed maximum iterations') iteration.
\end{verbatim}

\begin{verbatim}
CONTAINS

SUBROUTINE shft(a,b,c,d)
    REAL(SP), INTENT(OUT) :: a
    REAL(SP), INTENT(INOUT) :: b,c
    REAL(SP) , INTENT(IN) :: d
    a=b
    b=c
    c=d
END SUBROUTINE shft

END FUNCTION brent

⋆⋆⋆

FUNCTION dbrent(ax,bx,cx,func,dfunc,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE
FUNCTION func(x)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP) :: func
    END FUNCTION func
FUNCTION dfunc(x)
\end{verbatim}
Given a function $f(x)$ and its derivative function $f'(x)$, and given a bracketing triplet of abscissas $a$, $b$, $c$ (such that $b$ is between $a$ and $c$, and $f(b)$ is less than both $f(a)$ and $f(c)$), this routine isolates the minimum to a fractional precision of about $\varepsilon$ using a modified version of Brent’s method that uses derivatives. The abscissa of the minimum is returned as $x_{\text{min}}$, and the minimum function value is returned as $f_{\text{min}}$, the returned function value.

Parameters: Maximum allowed number of iterations, and a small number that protects against trying to achieve fractional accuracy for a minimum that happens to be exactly zero.

```fortran
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,d,d1,d2,du,du1,du2,dw,dx,dv,dw1,dw2,
 f,fv,fw,dfunc
END INTERFACE

INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: ZEPS=1.0e-3_sp*epsilon(ax)

Given a function $f(x)$ and its derivative function $f'(x)$, and given a bracketing triplet of abscissas a, b, c (such that b is between a and c, and $f(b)$ is less than both $f(a)$ and $f(c)$), this routine isolates the minimum to a fractional precision of about ε using a modified version of Brent’s method that uses derivatives. The abscissa of the minimum is returned as x_{min}, and the minimum function value is returned as f_{min}, the returned function value.

Parameters: Maximum allowed number of iterations, and a small number that protects against trying to achieve fractional accuracy for a minimum that happens to be exactly zero.

```
e=merge(a,b, dx >= 0.0)-x
Decide which segment by the sign of the derivative.
d=0.5_sp*e

else
  e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e
end if
else
  e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e
if (abs(d) >= tol1) then
  u=x+d
fu=func(u)
else
  u=x+sign(tol1,d)
  if (fu > fx) exit
end if
if (fu <= fx) then
  if (u >= x) then
    a=x
  else
    b=x
  end if
  call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,x,fx,dx)
call mov3(x,fx,dx,u,fu,du)
else
  if (u < x) then
    a=u
  else
    b=u
  end if
  if (fu <= fw .or. w == x) then
    call mov3(v,fv,dv,u,fu,du)
  else if (fu <= fv .or. v == x .or. v == w) then
    call mov3(v,fv,dv,u,fu,du)
  end if
end if
end if
end do
if (iter > ITMAX) call nrerror('dbrent: exceeded maximum iterations')
xmin=x
dbrent=fx
CONTAINS
SUBROUTINE mov3(a,b,c,d,e,f)
REAL(SP), INTENT(IN) :: d,e,f
REAL(SP), INTENT(OUT) :: a,b,c
a=d
b=e
c=f
END SUBROUTINE mov3
END FUNCTION dbrent

*   *   *
SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,nrerror,swap
IMPLICIT NONE
INTEGER(4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: p
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(4B), PARAMETER :: ITMAX=5000
REAL(SP), PARAMETER :: TINY=1.0e-10
!
Minimization of the function \( f \) in \( N \) dimensions by the downhill simplex method of Nelder and Mead. The \( (N+1) \times N \) matrix \( p \) is input. Its \( N+1 \) rows are \( N \)-dimensional vectors that are the vertices of the starting simplex. Also input is the vector \( y \) of length \( N+1 \), whose components must be preinitialized to the values of \( f \) evaluated at the \( N+1 \) vertices (rows) of \( p \); and \( f \) the fractional convergence tolerance to be achieved in the function value (n.b.). On output, \( p \) and \( y \) will have been reset to \( N+1 \) new points all within \( f \) of a minimum function value, and \( iter \) gives the number of function evaluations taken.

Parameters: The maximum allowed number of function evaluations, and a small number.

INTEGER(4B) :: ihi,ndim
GLOBAL VARIABLES.
REAL(SP), DIMENSION(size(p,2)) :: psum
CALL amoeba_private
CONTAINS
SUBROUTINE amoeba_private
IMPLICIT NONE
INTEGER(4B) :: i,ilo,inhi
REAL(SP) :: rtol,ysave,ytry,ytmp
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,'amoeba')
iter=0
psum(:,)=sum(p(:,,:),dim=1)
do
   i=iminloc(y(:))
ihi=imaxloc(y(:))
ytmp=y(ihi)
y(ihi)=y(ilo)
inhi=imaxloc(y(:))
y(ihi)=ytmp
rtol=2.0_sp*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) then
   if (iter < ITMAX) call nrerror('ITMAX exceeded in amoeba')
   begin a new iteration. First extrapolate by a factor \(-1\) through the face of the simplex
   across from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(-1.0_sp)
   if (ytry < y(ilo)) then
      ytry=amotry(2.0_sp)
   end if
   if (ytry <= y(ilo)) then
      ytry=amotry(0.0_sp)
   else if (ytry >= y(inhi)) then
      ysave=y(ihi)
ytry=amotry(0.5_sp)
   end if
   CALL swap(y(1),y(ilo))
   CALL swap(p(1,:),p(ilo,:))
   RETURN
end if
if (iter >= ITMAX) call nrerror('ITMAX exceeded in amoeba')
begin a new iteration. First extrapolate by a factor \(-1\) through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(-1.0_sp)
   if (ytry < y(ilo)) then
      ytry=amotry(2.0_sp)
   end if
   if (ytry <= y(ilo)) then
      ytry=amotry(0.0_sp)
   else if (ytry >= y(inhi)) then
      ysave=y(ihi)
ytry=amotry(0.5_sp)
   end if
   CALL swap(y(1),y(ilo))
if (ytry >= ysave) then
    Can't seem to get rid of that high point. Better contract around the lowest
    (best) point.
    p(:,:, )=0.5_sp*(p(:,:, )+spread(p(ilo,:),1,size(p,1)))
    do i=1,ndim+1
        if (i /= ilo) y(i)=func(p(i,:))
    end do
    iter=iter+ndim
    psum(:,:, )=sum(p(:,:, ),dim=1)
    end if
end do
End SUBROUTINE amoeba_private

FUNCTION amotry(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotry
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:,:, )=psum(:,:, )*fac1-p(ihi,:)*fac2
ytry=func(ptry)
if (ytry < y(ihi)) then
    y(ihi)=ytry
    psum(:,:, )=psum(:,:, )-p(ihi,:)+ptry(:,:, )
    p(ihi,:)=ptry(:,:, )
end if
amotry=ytry
END FUNCTION amotry
END SUBROUTINE amoeba

The only action taken by the subroutine amoeba is to call the internal subroutine amoeba_private. Why this structure? The reason has to do with meeting the twin goals of data hiding (especially for “safe” scope of variables) and program readability. The situation is this: Logically, amoeba does most of the calculating, but calls an internal subroutine amotry at several different points, with several values of the parameter fac. However, fac is not the only piece of data that must be shared with amotry; the latter also needs access to several shared variables (ihi, ndim, psum) and arguments of amoeba (p, y, func).

The obvious (but not best) way of coding this would be to put the computational guts in amoeba, with amotry as the sole internal subprogram. Assuming that fac is passed as an argument to amotry (it being the parameter that is being rapidly altered), one must decide whether to pass all the other quantities to amotry (i) as additional arguments (as is done in the Fortran 77 version), or (ii) “automatically,” i.e., doing nothing except using the fact that an internal subprogram has automatic access to all of its host’s entities. Each of these choices has strong disadvantages. Choice (i) is inefficient (all those arguments) and also obscures the fact that fac is the primary changing argument. Choice (ii) makes the program extremely difficult to read, because it wouldn’t be obvious without careful cross-comparison of the routines which variables in amoeba are actually global variables that are used by amotry.

Choice (ii) is also “unsafe scoping” because it gives a nontrivially complicated internal subprogram, amotry, access to all the variables in its host. A common and difficult-to-find bug is the accidental alteration of a variable that one “thought”
was local, but is actually shared. (Simple variables like $i$, $j$, and $n$ are the most common culprits.)

We are therefore led to reject both choice (i) and choice (ii) in favor of a structure previously described in the subsection on Scope, Visibility, and Data Hiding in §21.5. The guts of amoeba are put in amoeba_private, a sister routine to amotry. These two siblings have mutually private name spaces. However, any variables that they need to share (including the top-level arguments of amoeba) are declared as variables in the enclosing amoeba routine. The presence of these “global variables” serves as a warning flag to the reader that data are shared between routines.

An alternative attractive way of coding the above situation would be to use a module containing amoeba and amotry. Everything would be declared private except the name amoeba. The global variables would be at the top level, and the arguments of amoeba that need to be passed to amotry would be handled by pointers among the global variables. Unfortunately, Fortran 90 does not support pointers to functions. Sigh!

$$ilo=iminloc...ihi=imaxloc...$$ See discussion of these functions on p. 1017.

call swap(y(1))...call swap(p(1),...) Here the swap routine in nrutil is called once with a scalar argument and once with a vector argument. Inside nrutil scalar and vector versions have been overloaded onto the single name swap, hiding all the implementation details from the calling routine.

```fortran
* * *
SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
INTERFACE
 FUNCTION func(p)
 USE nrtype
 IMPLICIT NONE
 REAL(SP), DIMENSION(:), INTENT(IN) :: p
 REAL(SP) :: func
 END FUNCTION func
END INTERFACE
 INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: TINY=1.0e-25_sp
Minimization of a function $func$ of N variables. ($func$ is not an argument, it is a fixed function name.) Input consists of an initial starting point p, a vector of length N; an initial $N \times N$ matrix xi whose columns contain the initial set of directions (usually the N unit vectors); and $ftol$, the fractional tolerance in the function value such that failure to decrease by more than this amount on one iteration signals doneness. On output, p is set to the best point found, xi is the then-current direction set, $fret$ is the returned function value at p, and $iter$ is the number of iterations taken. The routine linmin is used.
Parameters: Maximum allowed iterations, and a small number.
```

```fortran
INTEGER(I4B) :: i,ibig,n
REAL(SP) :: del,fp,fptt,t
REAL(SP), DIMENSION(size(p)) :: pt,ptt,xit
n=assert_eq(size(p),size(xi,1),size(xi,2),'powell')
fret=func(p)
```
pt(:)=p(:)  
Save the initial point.

iter=0  

DO

iter=iter+1  
fp=fret

ibig=0  

del=0.0  

Will be the biggest function decrease.

DO i=1,n  
Loop over all directions in the set.

xit(:)=xi(:,i)  
Copy the direction,

fptt=fret

call linmin(p,xit,fret)  
minimize along it,  
and record it if it is the largest decrease so far.

if (fptt-fret > del) then

   del=fptt-fret  
   ibig=i

end if

END DO

if (2.0_sp*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) RETURN

Termination criterion.

if (iter == ITMAX) call & nrerror('powell exceeding maximum iterations')

ptt(:)=2.0_sp*p(:)-pt(:)  
Construct the extrapolated point and the average direction moved. Save the old starting point.

xit(:)=p(:)-pt(:)

fptt=func(ptt)  
Function value at extrapolated point.

if (fptt >= fp) cycle  
One reason not to use new direction.

t=2.0_sp*(fp-2.0_sp*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2

if (t >= 0.0) cycle  
Other reason not to use new direction.

call linmin(p,xit,fret)  
Move to minimum of the new direction, and save the new direction.

xit(:,ibig)=xi(:,n)

xi(:,n)=xit(:)

END DO  
Back for another iteration.

END SUBROUTINE powell

* * *

MODULE f1dim_mod  
Used for communication from linmin to f1dim.

USE nrtype

INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom

CONTAINS

FUNCTION f1dim(x)  
Used by linmin as the one-dimensional function passed to mnbrak and brent.

IMPLICIT NONE

REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

FUNCTION func(x)

USE nrtype

REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func

END FUNCTION func

END INTERFACE

REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
allocate(xt(ncom))
xt(:)=pcom(:,:)*x*xicom(:)

f1dim=func(xt)
deallocate(xt)

END FUNCTION f1dim

END MODULE f1dim_mod
SUBROUTINE linmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,brent
USE f1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an $N$-dimensional point $p$ and an $N$-dimensional direction $xi$, both vectors of length $N$, moves and resets $p$ to where the fixed-name function $func$ takes on a minimum along the direction $xi$ from $p$, and replaces $xi$ by the actual vector displacement that $p$ was moved. Also returns as $fret$ the value of $func$ at the returned location $p$. This is actually all accomplished by calling the routines $mnbrak$ and $brent$.

Parameter: Tolerance passed to $brent$.
REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),'linmin')
pcom=>p
Communicate the global variables to $f1dim$.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,exp(xmin))
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
xi=xmin*xi
Construct the vector results to return.
p=p+xi
END SUBROUTINE linmin

USE f1dim_mod At first sight this situation is like the one involving USE $fminln$ in $newt$ on p. 1197: We want to pass arrays $p$ and $xi$ from $linmin$ to $f1dim$ without having them be arguments of $f1dim$. If you recall the discussion in §21.5 and on p. 1197, there are two ways of effecting this: via pointers or via allocatable arrays. There is an important difference here, however. The arrays $p$ and $xi$ are themselves arguments of $linmin$, and so cannot be allocatable arrays in the module. If we did want to use allocatable arrays in the module, we would have to copy $p$ and $xi$ into them. The pointer implementation is much more elegant, since no unnecessary copying is required. The construction here is identical to the one in $fminln$ and $newt$, except that $p$ and $xi$ are arguments instead of automatic arrays.

⋆⋆⋆

MODULE df1dim_mod
Used for communication from $dlinmin$ to $f1dim$ and $df1dim$.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim
Used by $dlinmin$ as the one-dimensional function passed to $mnbrak$.
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
allocate(xt(ncom))
x(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim

FUNCTION df1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: df1dim

Use by dlinmin as the one-dimensional function passed to dbrent.
INTERFACE
FUNCTION dfunc(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dfunc
END FUNCTION dfunc
END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt, df
allocate(xt(ncom),df(ncom))
x(:)=pcom(:)+x*xicom(:)
df(:)=dfunc(xt)
df1dim=dot_product(df, xicom)
deallocate(xt,df)
END FUNCTION df1dim
END MODULE df1dim_mod

SUBROUTINE dlinmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak, dbrent
USE df1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET :: p, xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N-dimensional point p and an N-dimensional direction xi, both vectors of length N, moves and resets p to where the fixed-name function func takes on a minimum along the direction xi from p, and replaces xi by the actual vector displacement that p was moved. Also returns as fret the value of func at the returned location p. This is actually all accomplished by calling the routines mnbrak and dbrent. dfunc is a fixed-name user-supplied function that computes the gradient of func.

Parameter: Tolerance passed to dbrent.
REAL(SP) :: ax,bx, fa, fb, fx, xmin, xx
ncom=assert_eq(size(p),size(xi),'dlinmin')
pcom=p
Communicate the global variables to f1dim.
xicom=xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE dlinmin

USE df1dim_mod See discussion of USE f1dim_mod on p. 1212.
SUBROUTINE frprmn(p, ftol, iter, fret)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: p
INTERFACE
FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func
FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc
END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: EPS=1.0e-10_sp

Given a starting point \( p \) that is a vector of length \( N \), Fletcher-Reeves-Polak-Ribiere minimization is performed on a function \( \text{func} \), using its gradient as calculated by a routine \( \text{dfunc} \). The convergence tolerance on the function value is input as \( \text{ftol} \). Returned quantities are \( p \) (the location of the minimum), \( \text{iter} \) (the number of iterations that were performed), and \( \text{fret} \) (the minimum value of the function). The routine \( \text{linmin} \) is called to perform line minimizations.

Parameters: \( \text{ITMAX} \) is the maximum allowed number of iterations; \( \text{EPS} \) is a small number to rectify the special case of converging to exactly zero function value.

INTEGER(I4B) :: its
REAL(SP) :: dgg, fp, gam, gg
REAL(SP), DIMENSION(size(p)) :: g, h, xi
fp=func(p)  ! Initializations.
xi=dfunc(p)
g=-xi
h=g
xi=h
do its=1,ITMAX
  Loop over iterations.
  iter=its
  call \text{linmin}(p, xi, fret)  
  Next statement is the normal return:
  if (2.0_sp*abs(fret-fp) <= ftol*(abs(fret)+abs(fp)+EPS)) RETURN
  fp=fret
  xi=dfunc(p)
  gg=dot_product(g, g)  ! This statement for Fletcher-Reeves.
  dgg=dot_product(xi, xi)
  dgg=dot_product(xi*g, xi)
  If (gg == 0.0) RETURN  ! This statement for Polak-Ribiere.
  gam=dgg/gg
  h=g+gam*h
  xi=h
end do

call nrerror('frprmn: maximum iterations exceeded')
END SUBROUTINE frprmn

* * *
SUBROUTINE dfpmin(p, gtol, iter, fret, func, dfunc)
USE nrtype; USE nrutil, ONLY : nrerror, outerprod, unit_matrix, vabs
USE nr, ONLY : lnsrch
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE
FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func
FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc
END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: STPMX=100.0_sp, EPS=epsilon(p), TOLX=4.0_sp*EPS
Given a starting point $p$ that is a vector of length $N$, the Broyden-Fletcher-Goldfarb-Shanno
variant of Davidon-Fletcher-Powell minimization is performed on a function $func$, using its
gradient as calculated by a routine $dfunc$. The convergence requirement on zeroing the
gradient is input as $gtol$. Returned quantities are $p$ (the location of the minimum), $iter$ (the number of iterations that were performed), and $fret$ (the minimum value of the
function). The routine $lnsrch$ is called to perform approximate line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; STPMX is the scaled
maximum step length allowed in line searches; EPS is the machine precision; TOLX is the
convergence criterion on $x$ values.
INTEGER :: its
LOGICAL :: check
REAL(SP) :: den, fac, fae, fp, g, stpmax, sumdg, sumxi
REAL(SP), DIMENSION(size(p)) :: dg, g, hdg, pnew, xi
REAL(SP), DIMENSION(size(p),size(p)) :: hessin
fp=func(p)  
Calculate starting function value and gradi-
gent.
g=dfunc(p)
call unit_matrix(hessin)  
Initialize inverse Hessian to the unit matrix.
xi=-g  
Initial line direction.
stpmax=STPMX*max(vabs(p),real(size(p),sp))
do its=1,ITMAX
Main loop over the iterations.
iter=its

call lnsrch(p,fp,g,xi,pnew,fret,stpmax,check,func)
The new function evaluation occurs in $lnsrch$; save the function value in $fp$ for the next
line search. It is usually safe to ignore the value of check.
fp=fret

xi=pnew
p=pnew
if (maxval(abs(xi)/max(abs(p),1.0_sp)) < TOLX) RETURN
Test for convergence on $\Delta x$.
dg=g  
Save the old gradient,
g=dfunc(p)

den=max(fret,1.0_sp)
if (maxval(abs(g)*max(abs(p),1.0_sp)/den) < gtol) RETURN
Test for convergence on zero gradient.
dg=g-dg

dhdg=matmul(hessin,dg)
fac=dot_product(dg,xi)
fae=dot_product(dg,hdg)
sumdg=dot_product(dg,dg)
Calculate dot products for the denominators.
sumxi=dot_product(xi,xi)
if (fac > sqrt(EPS*sumdg*sumxi)) then
  ! Skip update if fac not sufficiently positive.
  fac=1.0_sp/fac
  fad=1.0_sp/fae
  dg=fac*xi-fad*hdg
  Vector that makes BFGS different from DFP.
  hessin=hessin+fac*outerprod(xi,xi)-&
  The BFGS updating formula.
  fae*outerprod(hdg,hdg)+fae*outerprod(dg,dg)
end if
xi=-matmul(hessin,g)
! Now calculate the next direction to go,
end do
! and go back for another iteration.
call nrerror(‘dfpmin: too many iterations’)
END SUBROUTINE dfpmin

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,ifirstloc,imaxloc,&nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Simplex method for linear programming. Input parameters a, m1, m2, and m3, and output
parameters a, icase, izrov, and iposv are described above the routine in Vol. 1. Dimensions are
(M + 2) × (N + 1) for a, M for iposv, N for izrov, with m1 + m2 + m3 = M.

Parameter: EPS is the absolute precision, which should be adjusted to the scale of your
variables.

INTEGER(I4B) :: ip,k,kh,kp,nl1,m,n
INTEGER(I4B), DIMENSION(size(a,2)) :: l1
INTEGER(I4B), DIMENSION(m2) :: l3
REAL(SP) :: bmax
LOGICAL(LGT) :: init

m=assert_eq(size(a,1)-2,size(iposv),’simplx:m’)
if (m /= m1+m2+m3) call nrerror(‘simplx:bad input constraint counts’)
if (any(a(2:m+1,1) < 0.0)) call nrerror(‘bad input tableau in simplx’)

Constants b_i must be nonnegative.

nl1=n
l1(1:n)=arth(1,1,n)

! Initialize index list of columns admissible for exchange.
izrov(:)=l1(1:n)
! Initially make all variables right-hand.
iposv(:)=arth(1,1,m)

! Initial left-hand variables. m1 type constraints are represented by having their slack variable
! initially left-hand, with no artificial variable. m2 type constraints have their slack variable
! initially left-hand, with a minus sign, and their artificial variable handled implicitly during
! their first exchange. m3 type constraints have their artificial variable initially left-hand.

init=.true.
phase1: do
  if (init) then
    ! Initial pass only.
    ! Origin is a feasible solution. Go to phase two.
    init=.false.
    l3(1:m2)=1
    ! Initialize list of m2 constraints whose slack variables have never been exchanged out
! of the initial basis.
    a(m2+1:m+1,1:n+1)=sum(a(m2+1:m+1,1:n+1),dim=1)
    ! Compute the auxiliary objective function.
  end if
if (nl1 > 0) then
    kp=11(imaxloc(a(m+2,11(1:nl1)+1)))
    bmax=a(m+2,kp+1)
else
    bmax=0.0
end if

phase1a: do
    if (bmax <= EPS .and. a(m+2,1) < -EPS) then
        Auxiliary objective function is still negative and can't be improved, hence no feasible solution exists.
        icase=-1
        RETURN
    else if (bmax <= EPS .and. a(m+2,1) <= EPS) then
        Auxiliary objective function is zero and can't be improved. This signals that we have a feasible starting vector. Clean out the artificial variables corresponding to any remaining equality constraints and then eventually exit phase one.
        do ip=m1+m2+1,m
            if (iposv(ip) == ip+n) then
                Found an artificial variable for an equality constraint.
            end if
            if (nl1 > 0) then
                kp=l1(imaxloc(abs(a(ip+1,l1(1:nl1)+1))))
                bmax=a(ip+1,kp+1)
            else
                bmax=0.0
            end if
            if (bmax > EPS) exit phase1a
            end if
        end do
        where (spread(l3(1:m2),2,n+1) == 1) &
        a(m1+2:m1+m2+1,1:n+1)=-a(m1+2:m1+m2+1,1:n+1)
        Change sign of row for any m2 constraints still present from the initial basis.
        exit phase1
    end if
    call simp1
    if (ip == 0) then
        Maximum of auxiliary objective function is unbounded, so no feasible solution exists.
        icase=-1
        RETURN
    end if
    exit phase1a
end do phase1a

call simp2(m+1,n)

if (iposv(ip) >= n+m1+m2+1) then
    Exchanged out an artificial variable for an equality constraint. Make sure it stays out by removing it from the l1 list.
    k=ifirstloc(l1(1:nl1) == kp)
    nl1=nl1-1
    l1(k:nl1)=l1(k+1:nl1+1)
else
    kh=iposv(ip)-m1-n
    if (kh > 1) then
        Exchanged out an m2 type constraint.
    end if
    if (l3(kh) /= 0) then
        If it's the first time, correct the pivot column for the minus sign and the implicit artificial variable.
        a(m+2,kp+1)=a(m+2,kp+1)+1.0_sp
        a(1:m+2,kp+1)=-a(1:m+2,kp+1)
    end if
end if

call swap(izrov(kp),iposv(ip))
end do phase1

end do phase2

We have an initial feasible solution. Now optimize it.
if (nl1 > 0) then
    kp=11(imaxloc(a(1,11(1:nl1)+1)))
    bmax=a(1,kp+1)
else
    bmax=0.0
end if
if (bmax <= EPS) then
    icase=0
    RETURN
end if
if (ip == 0) then
    icase=1
    RETURN
end if
call simp1
do phase2
CONTAINS
SUBROUTINE simp1
    Locate a pivot element, taking degeneracy into account.
    IMPLICIT NONE
    INTEGER(I4B) :: i,k
    REAL(SP) :: q,q0,q1,qp
    ip=0
    i=ifirstloc(a(2:m+1,kp+1) < -EPS)
    if (i > m) RETURN
    q1=-a(i+1,1)/a(i+1,kp+1)
    ip=i
    do i=ip+1,m
        if (a(i+1,kp+1) < -EPS) then
            q=-a(i+1,1)/a(i+1,kp+1)
            if (q < q1) then
                ip=i
                q1=q
            else if (q == q1) then
                We have a degeneracy.
                do k=1,n
                    qp=-a(ip+1,k+1)/a(ip+1,kp+1)
                    q0=-a(i+1,k+1)/a(i+1,kp+1)
                    if (q0 /= qp) exit
                end do
                if (q0 < qp) ip=i
            end if
        end if
    end do
END SUBROUTINE simp1

SUBROUTINE simp2(i1,k1)
    Matrix operations to exchange a left-hand and right-hand variable (see text).
    IMPLICIT NONE
    INTEGER(I4B), INTENT(IN) :: i1,k1
    INTEGER(I4B) :: ip1,kp1
    REAL(SP) :: piv
    INTEGER(I4B) :: icol
    INTEGER(I4B) :: irow
    INTEGER(I4B), DIMENSION(max(i1,k1)+1) :: itmp
    ip1=ip+1
    kp1=kp+1
    piv=1.0_sp/a(ip1,kp1)
    itmp(1:k1+1) = arth(1,1,k1+1)
    icol=pack(itmp(1:k1+1),itmp(1:k1+1) /= kp1)
    itmp(1:i1+1) = arth(1,1,i1+1)
    irow=pack(itmp(1:i1+1),itmp(1:i1+1) /= ip1)
    a(irow,kp1)=a(irow,kp1)*piv
    a(ip1,icol)=a(ip1,icol)-outerprod(a(ip1,icol),a(ip1,icol))
    a(ip1,kp1)=-a(ip1,kp1)*piv
END SUBROUTINE simp2
END SUBROUTINE simplx
The routine `simplx` makes extensive use of named do-loops to control the program flow. The various `exit` statements have the names of the do-loops attached to them so we can easily tell where control is being transferred to. We believe that it is almost never necessary to use `goto` statements: Code will always be clearer with well-constructed block structures.

This is not a real do-loop: It is executed only once, as you can see from the unconditional `exit` before the end `do`. We use this construction to define a block of code that is traversed once but that has several possible exit points.

These lines are equivalent to

```fortran
where (spread(l3(1:m12-m1),2,n+1) == 1) &
a(m12+2:m12+1,1:n+1) = -a(m12+2:m12+1,1:n+1)
```

These lines are equivalent to

```fortran
where (spread(l3(1:m12-m1),2,n+1) == 1) &
a(m12+2:m12+1,1:n+1) = -a(m12+2:m12+1,1:n+1)
```

These lines are equivalent to

```fortran
do i=m1+1,m12
 if (l3(i-m1) == 1) a(i+1,1:n+1) = -a(i+1,1:n+1)
end do
```

```fortran
SUBROUTINE anneal(x,y,iorder)
USE nrtype; USE nrutil, ONLY : arth, assert_eq, swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
```

This algorithm finds the shortest round-trip path to \( N \) cities whose coordinates are in the length \( N \) arrays \( x, y \). The length \( N \) array \( iorder \) specifies the order in which the cities are visited. On input, the elements of \( iorder \) may be set to any permutation of the numbers 1, ..., \( N \). This routine will return the best alternative path it can find.

```fortran
INTEGER(I4B), DIMENSION(6) :: n
INTEGER(I4B) :: i1,i2,j,k,nlimit,ncity,nn,nover,nsucc
REAL(SP) :: de,harvest,path,t,tfactr
LOGICAL(LGT) :: ans
ncity=assert_eq(size(x),size(y),size(iorder),'anneal')
nover=100*ncity
```

Maximum number of paths tried at any temperature, and of successful path changes before continuing.

```fortran
tfactr=0.9_sp
```

Annealing schedule: \( t \) is reduced by this factor on each step.

```fortran
t=0.5_sp
```

Each step.

```fortran
path=sum(alen_v(x(iorder(1:ncity-1)),x(iorder(2:ncity)),&
y(iorder(1:ncity-1)),y(iorder(2:ncity))))
```

Calculate initial path length.

```fortran
i1=iorder(ncity)
```

Close the loop by tying path ends together.

```fortran
i2=iorder(1)
```

```fortran
path=path+alen(x(i1),x(i2),y(i1),y(i2))
```

Try up to 100 temperature steps.

```fortran
nsucc=0
```

```fortran
do j=1,100
 nsucc=0
 do k=1,nover
 call ran1(harvest)
 n(1)=1+int(ncity*harvest)
 call ran1(harvest)
 n(2)=1+int((ncity-1)*harvest)
 if (n(2) >= n(1)) n(2)=n(2)+1
 nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn
```

is the number of cities not on the segment.

```fortran
 if (nn <= 3) exit
 end do
```

Choose beginning of segment...

```fortran
 and end of segment.
```

```fortran
```

```fortran```
```
call ran1(harvest)

Decide whether to do a reversal or a transport.
if (harvest < 0.5_sp) then
    call ran1(harvest)
    n(3)=n(2)+int(abs(nn-2)*harvest)+1
    call trncst(x,y,iorder,n,de)
    call metrop(de,t,ans)
    if (ans) then
        nsucc=nsucc+1
        path=path+de
        call trnspt(iorder,n)
    end if
else
    call revcst(x,y,iorder,n,de)
    call metrop(de,t,ans)
    if (ans) then
        nsucc=nsuc+1
        path=path+de
        call revers(iorder,n)
    end if
end if
if (nsucc >= nlimit) exit
end do
write(*,*) 'T =',t,' Path Length =',path
write(*,*) 'Successful Moves:',nsucc
end if

CONTAINS
FUNCTION alen(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,y1,y2
REAL(SP) :: alen
alen=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen

FUNCTION alen_v(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,x2,y1,y2
REAL(SP), DIMENSION(size(x1)) :: alen_v
alen_v=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen_v

SUBROUTINE metrop(de,t,ans)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: de,t
LOGICAL(LGT), INTENT(OUT) :: ans
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a reconfiguration that leads to a change de in the objective function. If de<0, ans=.true., while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature determined by the annealing schedule.
call ran1(harvest)
an= (.true.) .or. (harvest < exp(-de/t))
END SUBROUTINE metrop

SUBROUTINE revcst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(14B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(14B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(INOUT) :: de
This subroutine returns the value of the cost function for a proposed path reversal. The arrays \( x \) and \( y \) give the coordinates of these cities. \( \text{order} \) holds the present itinerary. The first two values \( n(1) \) and \( n(2) \) of array \( n \) give the starting and ending cities along the path segment which is to be reversed. On output, \( \text{de} \) is the cost of making the reversal. The actual reversal is not performed by this routine.

```fortran
INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(4) :: xx,yy
ncity=size(x)
n(3)=1+mod(n(1)+ncity-2,ncity) ! Find the city before \(n(1) \) ...
n(4)=1+mod(n(2),ncity) ! ... and the city after \(n(2) \).
xx(1:4)=x(order(n(1:4))) ! Find coordinates for the four cities involved.
yy(1:4)=y(order(n(1:4)))
de=-alen(xx(1),xx(3),yy(1),yy(3))&
 -alen(xx(2),xx(4),yy(2),yy(4))&
 +alen(xx(1),xx(4),yy(1),yy(4))&
 +alen(xx(2),xx(3),yy(2),yy(3))
END SUBROUTINE revcst
```

**SUBROUTINE revers(order,n)**

```fortran
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: order
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
This routine performs a path segment reversal. \(\text{order} \) is an input array giving the present itinerary. The vector \(n \) has as its first four elements the first and last cities \(n(1), n(2) \) of the path segment to be reversed, and the two cities \(n(3) \) and \(n(4) \) that immediately precede and follow this segment. \(n(3) \) and \(n(4) \) are found by subroutine revcst. On output, \(\text{order} \) contains the segment from \(n(1) \) to \(n(2) \) in reversed order.
```

```fortran
INTEGER(I4B) :: j,k,l,nn,ncity
ncity=size(order)
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2
do j=1,nn
 k=1+mod((n(1)+j-2),ncity)
 l=1+mod((n(2)-j+ncity),ncity)
 call swap(order(k),order(l))
end do
END SUBROUTINE revers
```

**SUBROUTINE trncst(x,y,order,n,de)**

```fortran
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: order
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de
This subroutine returns the value of the cost function for a proposed path segment transport. Arrays \(x \) and \(y \) give the city coordinates. \(\text{order} \) is an array giving the present itinerary. The first three elements of array \(n \) give the starting and ending cities of the path to be transported, and the point among the remaining cities after which it is to be inserted. On output, \(\text{de} \) is the cost of the change. The actual transport is not performed by this routine.
```

```fortran
INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(6) :: xx,yy
ncity=size(order)
n(4)=1+mod(n(3),ncity)
n(5)=1+mod(n(1)+ncity-2,ncity)
n(6)=1+mod(n(2),ncity)
xx(1:6)=x(order(n(1:6)))
yy(1:6)=y(order(n(1:6)))
de=-alen(xx(2),xx(6),yy(2),yy(6))&
 -alen(xx(1),xx(5),yy(1),yy(5))&
 -alen(xx(3),xx(4),yy(3),yy(4))&
 +alen(xx(1),xx(3),yy(1),yy(3))&
 +alen(xx(2),xx(4),yy(2),yy(4))&
 +alen(xx(5),xx(6),yy(5),yy(6))
END SUBROUTINE trncst
```

**SUBROUTINE trnspt(order,n)**

```fortran
IMPLICIT NONE
```

---

Permissions: Permission is granted for internet users to make one paper copy for their own personal use or to mail to others. Further reproduction, or any copying of machine-readable lists (including this one) to any server computer, is strictly prohibited.
Chapter B10. Minimization or Maximization of Functions

INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
This routine does the actual path transport, once metrop has approved. iorder is an input array giving the present itinerary. The array n has as its six elements the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3) and n(4) between which the path is to be placed, and the cities n(5) and n(6) that precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst. On output, iorder is modified to reflect the movement of the path segment.

INTEGER(I4B) :: m1,m2,m3,nn,ncity
INTEGER(I4B), DIMENSION(size(iorder)) :: jorder
ncity=size(iorder)
m1=1+mod((n(2)-n(1)+ncity),ncity)  Find number of cities from n(1) to n(2)...
m2=1+mod((n(5)-n(4)+ncity),ncity)  ...and the number from n(4) to n(5).
m3=1+mod((n(3)-n(6)+ncity),ncity)  ...and the number from n(6) to n(3).
jorder(1:m1)=iorder(1+mod((arth(1,1,m1)+n(1)-2),ncity))  Copy the chosen segment.
nn=m1
jorder(nn+1:nn+m2)=iorder(1+mod((arth(1,1,m2)+n(4)-2),ncity))
Then copy the segment from n(4) to n(6).
nn=nn+m2
jorder(nn+1:nn+m3)=iorder(1+mod((arth(1,1,m3)+n(6)-2),ncity))
Finally, the segment from n(6) to n(3).

INTEGER(I4B) :: ihi,ndim
Global variables.
REAL(SP) :: yhi
REAL(SP), DIMENSION(size(p,2)) :: psum
call amebsa_private

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: NMAX=200
Minimization of the N-dimensional function func by simulated annealing combined with the downhill simplex method of Nelder and Mead. The (N+1) x N matrix p is input. Its N+1 rows are N-dimensional vectors that are the vertices of the starting simplex. Also input is the vector y of length N+1, whose components must be preinitialized to the values of func evaluated at the N+1 vertices (rows) of p. ftol, the fractional convergence tolerance to be achieved in the function value for an early return; iter, and temptr. The routine makes iter function evaluations at an annealing temperature temptr, then returns. You should then decrease temptr according to your annealing schedule, reset iter, and call the routine again (leaving other arguments unaltered between calls). If iter is returned with a positive value, then early convergence and return occurred. If you initialize yb to a very large value on the first call, then yb and pb (an array of length N) will subsequently return the best function value and point ever encountered (even if it is no longer a point in the simplex).
INTEGER(I4B) :: ihi,ndim
REAL(SP) :: yb
REAL(SP), DIMENSION(size(p,2)) :: psum
call amebsa_private
Chapter B10. Minimization or Maximization of Functions

CONTAINS

SUBROUTINE amebsa_private
INTEGER(I4B) :: i, ilo, inhi
REAL(SP) :: rtol, ylo, yhi, ysave, ytry
REAL(SP), DIMENSION(size(y)) :: yt, harvest
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,size(pb),'amebsa')
psum(:)=sum(p(:,,:),dim=1)
doIteration loop.
call ran1(harvest)
yt(:)=y(:)-temptr*log(harvest)
Whenever we "look at" a vertex, it gets a random thermal fluctuation.
ilo=iminloc(yt(:)) Determine which point is the highest (worst),
ithi=imaxloc(yt(:)) next-highest, and lowest (best).
yhi=y(ihi)
yt(ihi)=y(ihi)
ylo=y(i)
ylo=yt(i)
inhi=imaxloc(yt(:))
yhni=yt(ihni)
rtol=2.0_sp*abs(yhi-ylo)/(abs(yhi)+abs(ylo))
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol .or. iter < 0) then If returning, put best point and value in
  call swap(y(1),y(ilo)) slot 1.
call swap(p(1,:),p(ilo,:)) RETURN
end if
Begin a new iteration. First extrapolate by a factor $-1$ through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.
ytry=amotsa(-1.0_sp)
iter=iter-1
if (ytry <= ylo) then Gives a result better than the best point, so
  ytry=amotsa(2.0_sp) try an additional extrapolation by a fac-
  iter=iter-1 tor of 2.
else if (ytry >= yhni) then The reflected point is worse than the second-
ysave=yhi highest, so look for an intermediate lower
ytry=amotsa(0.5_sp) point, i.e., do a one-dimensional contrac-
ter=iter-1 tion.
if (ytry > ysave) then Can't seem to get rid of that high point. Better contract around the lowest
  ytry=ysave then (best) point.
p(:,1)=0.5_sp*p(:,1)+spread(p(ihni,:),1,size(p,1))
do i=1,ndim+1
  if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter-ndim Keep track of function evaluations.
psum(:)=sum(p(:,,:),dim=1)
end if
end if
end do
END SUBROUTINE amebsa_private

FUNCTION amotsa(fac)
IMPLICIT NONE
REAL(SP) :: amotsa
REAL(SP) :: fac1, fac2, yflu, ytry, harv
REAL(SP) :: fac1=1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)+spread(p(ihni,:),1,size(p,1))
ytry=func(ptry)
if (ytry <= yb) then Save the best-ever.
pb(:)=ptry(:)
fac=2.0_sp*abs(yhni-yilo)/harv
yb=ytry
end if

call ranl(harv)
yflu=ytry*temp*r*log(harv)
if (yflu < yhi) then
  y(hi)=ytry
  yhi=yflu
  psum(:)=psum(:)-p(ihi,:)+ptry(:)
  p(ihi,:)=ptry(:)
end if

amotsa=yflu
END FUNCTION amotsa
END SUBROUTINE amebsa

We added a thermal fluctuation to all the current vertices, but we subtract it here, so as to give the simplex a thermal Brownian motion: It likes to accept any suggested change.

See the discussion of amoeba on p. 1209 for why the routine is coded this way.
Chapter B11. Eigensystems

SUBROUTINE jacobi(a,d,v,nrot)
USE nrtype; USE nrutil, ONLY : assert_eq, get_diag, nrerror, unit_matrix, &
upper_triangle
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: nrot
REAL(SP), DIMENSION(:,), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: v
Computes all eigenvalues and eigenvectors of a real symmetric \( N \times N \) matrix \( a \). On output, elements of a above the diagonal are destroyed. \( d \) is a vector of length \( N \) that returns the eigenvalues of \( a \). \( v \) is an \( N \times N \) matrix whose columns contain, on output, the normalized eigenvectors of \( a \). \( nrot \) returns the number of Jacobi rotations that were required.

INTEGER(I4B) :: i,ip,iq,n
REAL(SP) :: c,g,h,s,sm,t,tau,theta,tresh
REAL(SP), DIMENSION(size(d)) :: b,z
n=assert_eq((/size(a,1),size(a,2),size(d),size(v,1),size(v,2)/),'jacobi')
call unit_matrix(v(:,:)) Initialize \( v \) to the identity matrix.
b(:)=get_diag(a(:,:)) Initialize \( b \) and \( d \) to the diagonal of \( a \).
d(:)=b(:)
z(:)=0.0 This vector will accumulate terms of the form \( t a_{pq} \) as in eq. (11.1.14).
nrot=0
do i=1,50
sm=sum(abs(a),mask=upper_triangle(n,n)) Sum off-diagonal elements.
if (sm == 0.0) RETURN
The normal return, which relies on quadratic convergence to machine underflow.
tresh=merge(0.2_sp*sm/n**2,0.0_sp, i < 4 )
On the first three sweeps, we will rotate only if \( tresh \) exceeded.
do ip=1,n-1
do iq=ip+1,n
  g=100.0_sp*abs(a(ip,iq))
  if ((i < 4) .and. (abs(d(ip))+g == abs(d(ip))) &
      .and. (abs(d(iq))+g == abs(d(iq)))) then
    a(ip,iq)=0.0
  else if (abs(a(ip,iq)) > tresh) then
    h=d(ip);
    if (abs(h)+g == abs(h)) then
      t=1.0_sp/(abs(theta)+sqrt(1.0_sp+theta**2))
      theta=0.5_sp*h/a(ip,iq)
      Equation (11.1.10).  
      if (theta < 0.0) t=-t
    end if
    c=1.0_sp/sqrt(1+t**2)
    s=t*c
    tau=/(1.0_sp+c)
    h=t*a(ip,iq)
    z(ip)=z(ip)-h
    z(iq)=z(iq)+h
    d(ip)=d(ip)-h
    d(iq)=d(iq)+h
    a(ip,iq)=0.0
As discussed in Volume 1, jacobi is generally not competitive with tqli in terms of efficiency. However, jacobi can be parallelized whereas tqli uses an intrinsically serial algorithm. The version of jacobi implemented here is likely to be adequate for a small-scale parallel (SSP) machine, but is probably still not competitive with tqli. For a massively multiprocessor (MMP) machine, the order of the rotations needs to be chosen in a more complicated pattern than here so that the rotations can be executed in parallel. In this case the Jacobi algorithm may well turn out to be the method of choice. Parallel replacements for tqli based on a divide and conquer algorithm have also been proposed. See the discussion after tqli on p. 1229.

These routines in nrutil both require access to the diagonal of a matrix, an operation that is not conveniently provided for in Fortran 90. We have split them off into nrutil in case your compiler provides parallel library routines so you can replace our standard versions.

This internal subroutine also uses the values of s and tau from the calling subroutine jacobi. Variables in the calling routine are visible to an internal subprogram, but you should be circumspect in making use of this fact. It is easy to overwrite a value in the calling program inadvertently, and it is
often difficult to figure out the logic of an internal routine if not all its variables are declared explicitly. However, \texttt{jrotate} is so simple that there is no danger here.

\begin{verbatim}
**
SUBROUTINE eigsrt(d,v)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: v
Given the eigenvalues \texttt{d} and eigenvectors \texttt{v} as output from \texttt{jacobi} (§11.1) or \texttt{tqli} (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of \texttt{v}
correspondingly. The method is straight insertion.
INTEGER(I4B) :: i,j,n
n=assert_eq(size(d),size(v,1),size(v,2),'eigsrt')
do i=1,n-1
  j=imaxloc(d(i:n))+i-1
  if (j /= i) then
    call swap(d(i),d(j))
    call swap(v(:,i),v(:,j))
  end if
end do
END SUBROUTINE eigsrt
\end{verbatim}

\texttt{call swap...} See discussion of \texttt{imaxloc} on p. 1017.

\begin{verbatim}
90 j=imaxloc... See discussion of \texttt{imaxloc} on p. 1017.
\end{verbatim}

\begin{verbatim}
SUBROUTINE tred2(a,d,e,novectors)
USE nrtype; USE nrutil, ONLY : assert_eq,outerprod
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: d,e
LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors
Householder reduction of a real, symmetric, \(N \times N\) matrix \texttt{a}.
On output, \texttt{a} is replaced by the orthogonal matrix \(Q\) effecting the transformation.
\texttt{d} returns the diagonal elements of the tridiagonal matrix, and \texttt{e} the off-diagonal elements, with \texttt{e(1)=0}.
If the optional argument \texttt{novectors} is present, only eigenvalues are to be found subsequently, in which
\end{verbatim}

\begin{verbatim}
case \texttt{a} contains no useful information on output.
INTEGER(I4B) :: i,j,l,n
REAL(SP) :: f,g,h,hh,scale
REAL(SP), DIMENSION(size(a,1)) :: gg
LOGICAL(LGT), SAVE :: yesvec=.true.
n=assert_eq(size(a,1),size(a,2),size(d),size(e),'tred2')
if (present(novectors)) yesvec=.not. novectors
do i=n,2,-1
  l=i-1
  h=0.0
  if (l > 1) then
    scale=sum(abs(a(i,1:l)))
    if (scale == 0.0) then
      Skip transformation.
    else
      e(i)=a(i,l)
      a(i,1:l)=a(i,1:l)/scale
      h=sum(a(i,1:l)**2)
      Form \(\sigma\) in \texttt{h}.
      Use scaled \texttt{a}'s for transformation.
    end if
  endif
end do
\end{verbatim}
$f = a(i,1)$
$g = \text{sign}(\sqrt{h}, f)$
$e(i) = \text{scale} \times g$

$h = h - f \times g$
$a(i,1) = f \times g$
if (yesvec) $a(1:1,i) = a(1:1,h) / h$

for $i = 1, 1$

$e(j) = (\text{dot_product}(a(j,1:j), a(1,1:j)) + \text{dot_product}(a(j+1:l,j), a(1:j+1:1))/h$
$e(i:1) = e(i:1) - h \times a(i,1:1)$

for $j = 1, 1$

$a(j,1:j) = a(j,1:j) - a(i,j) \times e(1:j) - e(j) \times a(i,1:j)$
$e(j) =\text{dot_product}(a(j,1:j), a(1:j,1:1))$
$e(j) = e(j) - h \times a(i,1:j)$
end do

$h = h + h$
for $i = 1, n$

$d(i) = a(i,i)$
end if
if (yesvec) $d(1) = 0.0$
end do
$e(i) = a(i,1)$
end if

SUBROUTINE tred2

This routine gives a nice example of the usefulness of optional arguments.
The routine is written under the assumption that usually you will want to
find both eigenvalues and eigenvectors. In this case you just supply
the arguments $a$, $d$, and $e$. If, however, you want only eigenvalues, you supply the
additional logical argument $\text{novectors}$ with the value .true.. The routine then skips the unnecessary computations. Supplying $\text{novectors}$ with the value .false. has the same effect as omitting it.

* * *

SUBROUTINE tqli(d,e,z)

USE nrtype; USE nutil, ONLY : assert_eq,nrerror
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: d,e
REAL(SP), DIMENSION(:,,:), OPTIONAL, INTENT(INOUT) :: z

QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real, symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2.
11.2. \( \mathbf{d} \) is a vector of length \( N \). On input, its elements are the diagonal elements of the tridiagonal matrix. On output, it returns the eigenvalues. The vector \( \mathbf{e} \) inputs the subdiagonal elements of the tridiagonal matrix, with \( \mathbf{e}(1) \) arbitrary. On output \( \mathbf{e} \) is destroyed. When finding only the eigenvalues, the optional argument \( \mathbf{z} \) is omitted. If the eigenvectors of a tridiagonal matrix are desired, the \( N \times N \) matrix \( \mathbf{z} \) is input as the identity matrix. If the eigenvectors of a matrix that has been reduced by \texttt{tred2} are required, then \( \mathbf{z} \) is input as the matrix output by \texttt{tred2}. In either case, the \( k \)th column of \( \mathbf{z} \) returns the normalized eigenvector corresponding to \( \lambda(k) \).

```fortran
INTEGER(I4B) :: i,iter,l,m,n,ndum
REAL(SP) :: b,c,dd,f,g,p,r,s
REAL(SP), DIMENSION(size(e)) :: ff
n=assert_eq(size(d),size(e),'tqli:n')
e(:)=eoshift(e(:),1)
Convenient to renumber the elements of
do l=1,n
iter=0
iterate: do
 do m=l,n-1
 Look for a single small subdiagonal element to split the matrix.
 dd=abs(d(m))+abs(d(m+1))
 if (abs(e(m))+dd == dd) exit
 end do
 if (m == l) exit iterate
 if (iter == 30) call nrerror('too many iterations in tqli')
 iter=iter+1
 g=(d(l+1)-d(l))/(2.0_sp*e(l))
 Form shift.
 r=pythag(g,1.0_sp)
 g=d(m)-d(l)+e(l)/(g+sign(r,g))
 This is \(\lambda_m - k_k \).
 s=1.0
 c=1.0
 p=0.0
 do i=m-1,l,-1
 A plane rotation as in the original QL,
 followed by Givens rotations to restore tridiagonal form.
 f=s*e(i)
 b=c*e(i)
 r=pythag(f,g)
 end if
 s=f/r
 c=g/r
 g=d(i+1)-p
 r=(d(i)-g)*s+2.0_sp*c*b
 p=s*r
 d(i+1)=g*p
 g=c*r-b
 if (present(z)) then
 Form eigenvectors.
 ff(1:n)=z(1:n,i+1)
 z(1:n,i+1)=s*z(1:n,i)*c+ff(1:n)
 z(1:n,i)=c*z(1:n,i)-s*ff(1:n)
 end if
 end do
 d(l)=d(l)-p
 e(l)=g
 e(m)=0.0
 end do iterate
END SUBROUTINE tqli
```

The routine \texttt{tqli} is intrinsically serial. A parallel replacement based on a divide and conquer algorithm has been proposed [1,2]. The idea is to split the tridiagonal matrix recursively into two tridiagonal matrices of
half the size plus a correction. Given the eigensystems of the two smaller tridiagonal matrices, it is possible to join them together and add in the effect of the correction. When some small size of tridiagonal matrix is reached during the recursive splitting, its eigensystem is found directly with a routine like tqli. Each of these small problems is independent and can be assigned to an independent processor. The procedures for sewing together can also be done independently. For very large matrices, this algorithm can be an order of magnitude faster than tqli even on a serial machine, and no worse than a factor of 2 or 3 slower, depending on the matrix. Unfortunately the parallelism is not well expressed in Fortran 90. Also, the sewing together requires quite involved coding. For an implementation see the LAPACK routine SSTEDC. Another parallel strategy for eigensystems uses inverse iteration, where each eigenvalue and eigenvector can be found independently [3].

This routine uses z as an optional argument that is required only if eigenvectors are being found as well as eigenvalues.

iterative: do  See discussion of named do loops after simp1x on p. 1219.

*   *   *

SUBROUTINE balanc(a)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(SP), PARAMETER :: RADX=radix(a), SQRADX=RADX**2
Given an $N \times N$ matrix $a$, this routine replaces it by a balanced matrix with identical eigenvalues. A symmetric matrix is already balanced and is unaffected by this procedure.
The parameter RADX is the machine's floating-point radix.
INTEGER(I4B) :: i, last, ndum
REAL(SP) :: c, f, g, r, s
ndum=assert_eq(size(a,1), size(a,2), 'balanc')
do
  last=1
  do i=1, size(a,1)
    c=sum(abs(a(:,i)))-a(i,i)
    r=sum(abs(a(i,:)))-a(i,i)
    if (c /= 0.0 .and. r /= 0.0) then
      g=r/RADX
      f=1.0
      s=c+r
      do
        if (c >= g) exit
        f=f*RADX
        c=c*SQRADX
      end do
      g=r*RADX
      do
        if (c <= g) exit
        f=f/RADX
        c=c/SQRADX
      end do
      if ((c+r)/f < 0.95_sp*s) then
        last=0
        g=1.0_sp/f
        a(i,:)=a(i,:) * g
        a(:,i)=a(:,i) * f
      end if
    end if
  end do
REAL(SP), PARAMETER :: RADX=radix(a)...

Fortran 90 provides a nice collection of numeric inquiry intrinsic functions. Here we find the machine’s floating-point radix. Note that only the type of the argument affects the returned function value.

```
end do
if (last /= 0) exit
end do
END SUBROUTINE balanc

SUBROUTINE elmhes(a)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a

Reduction to Hessenberg form by the elimination method. The real, nonsymmetric, \(N \times N \) matrix \(a \) is replaced by an upper Hessenberg matrix with identical eigenvalues. Recommended, but not required, is that this routine be preceded by balanc. On output, the Hessenberg matrix is in elements \(a(i,j) \) with \(i \leq j + 1 \). Elements with \(i > j + 1 \) are to be thought of as zero, but are returned with random values.

INTEGER(I4B) :: i,m,n
REAL(SP) :: x
REAL(SP), DIMENSION(size(a,1)) :: y

n=assert_eq(size(a,1),size(a,2),'elmhes')
do m=2,n-1
 i=imaxloc(abs(a(m:n,m-1)))+m-1
 x=a(i,m-1)
 if (i /= m) then
 call swap(a(i,m-1:n),a(m,m-1:n))
 call swap(a(:,i),a(:,m))
 end if
 if (x /= 0.0) then
 y(m+1:n)=a(m+1:n,m-1)/x
 a(m+1:n,m-1)=y(m+1:n)
 a(m+1:n,m:n)=a(m+1:n,m:n)-outerprod(y(m+1:n),a(m,m:n))
 a(:,m)=a(:,m)*matmul(a(:,m+1:n),y(m+1:n))
 end if
end do
END SUBROUTINE elmhes
```

If the four lines of code starting here were all coded for a serial machine in a single do-loop starting with \( do i=m+1,n \) (see Volume 1), it would pay to test whether \( y \) was zero because the next three lines could then be skipped for that value of \( i \). There is no convenient way to do this here, even with a where, since the shape of the arrays on each of the three lines is different. For a parallel machine it is probably best just to do a few unnecessary multiplies and skip the test for zero values of \( y \).
SUBROUTINE hqr(a,wr,wi)
USE nrtyp; USE nrutil, ONLY : assert_eq, diagadd, nrerror, upper_triangle
IMPLICIT NONE

REAL(SP), DIMENSION(:,), INTENT(OUT) :: wr, wi
REAL(SP), DIMENSION(:, :, ) , INTENT(INOUT) :: a

Finds all eigenvalues of an \( N \times N \) upper Hessenberg matrix \( a \). On input \( a \) can be exactly as output from elmhess §11.5; on output it is destroyed. The real and imaginary parts of the \( N \) eigenvalues are returned in \( w_r \) and \( w_i \), respectively.

INTEGER(I4B) :: i, its, k, l, m, n, nn, mnk
REAL(SP) :: anorm, p, q, r, s, t, u, v, x, y, z
REAL(SP), DIMENSION(size(a,1)) :: pp

n=assert_eq(size(a,1), size(a,2), size(wr), size(wi), 'hqr')
anorm=sum(abs(a), mask=upper_triangle(n, n, extra=2))

Compute matrix norm for possible use in locating single small subdiagonal element.

nn=n

nn=nn-2

end do

end if

if (l == nn) then

One root found.

wr(nn)=x+t
wi(nn)=0.0

nn=nn-1
exit iterate

else

Two roots found ...

p=0.5_sp*(y-x)
q=p**2+w
z=sqrt(abs(q))
x=x+t
if (q >= 0.0) then
z=p+sign(z,p)
wr(nn)=x+z
wi(nn)=0.0
else
z=p-0.4375_sp*s**2
wr(nn)=x+p
wi(nn)=z
wi(nn-1)=-z
end if

nn=nn-2
exit iterate

end if

No roots found. Continue iteration.

if (its == 30) call nrerror('too many iterations in hqr')

if (its == 10 or. its == 20) then

Form exceptional shift.

t=t+x
call diagadd(a(1:nn,1:nn),-x)
s=abs(a(nn,nn-1))+abs(a(nn-1,nn-2))
x=0.75_sp*s
y=x
w=-0.4375_sp*s**2
end if
its=its+1
m=mn-2,1,-1
Form shift and then look for 2 consecutive small subdiagonal elements.
z=a(m,m)
r=x-z
s=y-z
p=(r*s-w)/a(m+1,m)*a(m,m+1)
q=a(m+1,m+1)-z-r-s
r=a(m+2,m+1)
s=abs(p)*abs(q)*abs(r)
p=p/s
q=q/s
r=r/s
if (m == l) exit
u=abs(a(m,m-1))*(abs(q)+abs(r))
v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
(u+v == v) exit
end do
i=m+2,nn
if (i /= m+2) a(i,i-3)=0.0
end do
if (k /= m) then
p=a(k,k-1)
Begin setup of Householder vector.
q=a(k+1,k-1)
r=0.0
if (k /= nn-1) r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if (x /= 0.0) then
p=p/x
Scale to prevent overflow or underflow.
qu=q/x
rr=r/x
end if
end if
s=sign(sqrt(p**2+q**2+r**2),p)
if (s /= 0.0) then
if (k == m) then
if (l /= m) a(k,k-1)=-a(k,k-1)
else
a(k,k-1)=-s*x
end if
p=p+s
Equations (11.6.24).
x=p/s
y=q/s
z=r/s
q=q/p
r=r/p
Ready for row modification.
pp(k:nn)=a(k,k:nn)+q*a(k+1,k:nn)
end if
if (k+1,k:nn)=a(k+1,k:nn)-pp(k:nn)*y
a(k,k:nn) a(k,k:nn)-pp(k:nn)*x
a(k,k:nn)=a(k,k:nn)-pp(k:nn)*x
mnknk=min(nn,k+3)
Column modification.
pp(l:mnknk)=x*a(l:mnknk,k)*y*a(l:mnknk,k+1)
if (k /= nn-1) then
pp(l:mnknk)=pp(l:mnknk)+r*a(k+2,k:nn)
a(k+2,k:nn)=a(k+2,k:nn)-pp(l:mnknk)*x
end if
a(k+1,k:nn)=a(k+1,k:nn)-pp(l:mnknk)*y
a(k,k:nn)=a(k,k:nn)-pp(l:mnknk)*x
a(k+1,k:nn)=a(k+1,k:nn)-pp(l:mnknk)*y
a(k,k:nn)=a(k,k:nn)-pp(l:mnknk)*x
end if
a(l:mnknk,k+1)=a(l:mnknk,k+1)-pp(l:mnknk)*q
a(l:mnknk,k)=a(l:mnknk,k)-pp(l:mnknk)
end if
end do
end do iterate
end do
END SUBROUTINE hqr

anorm = sum(abs(a), mask=upper_triangle(n,n, extra=2))  See the discussion of upper_triangle after jacobi on p. 1226. Setting extra=2 here picks out the upper Hessenberg part of the matrix.

iterate: do  We use a named loop to improve the readability and structuring of the routine. The if-blocks that test for one or two roots end with exit iterate, transferring control back to the outermost loop and thus starting a search for the next root.

call diagadd...  The routines that operate on the diagonal of a matrix are collected in nrutil partly so you can write clear code and partly in the hope that compiler writers will provide parallel library routines. Fortran 90 does not provide convenient parallel access to the diagonal of a matrix.

CITED REFERENCES AND FURTHER READING:
Chapter B12. Fast Fourier Transform

The algorithms underlying the parallel routines in this chapter are described in §22.4. As described there, the basic building block is a routine for simultaneously taking the FFT of each row of a two-dimensional matrix:

```
SUBROUTINE fourrow_sp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each row (constant first index) of data(1:M,1:N) by its discrete Fourier transform (transform on second index). if isign is input as 1, or replaces each row of data by N times its inverse discrete Fourier transform, if isign is input as -1. N must be an integer power of 2. Parallelism is M-fold on the first index of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp

Double precision for the trigonometric recurrences.

n=size(data,2)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in fourrow_sp')
n2=n/2
j=n2

This is the bit-reversal section of the routine.
do i=1,n-2
 if (j > i) call swap(data(:,j+1),data(:,i+1))
 m=n2
 do
 if (m < 2 .or. j < m) exit
 j=j-m
 m=m/2
 end do
 j=j+m
end do

mmax=1
Here begins the Danielson-Lanczos section of the routine.
do
 if (n <= mmax) exit
 istep=2*mmax
 theta=PI_D/(isign*mmax)
 wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
 w=cmplx(1.0_dp,0.0_dp,kind=dpc)
 do m=1,mmax
 ws=w
 do i=m,n,istep
 j=i+mmax
 temp=ws*data(:,j)
 data(:,j)=data(:,i)-temp
 data(:,i)=data(:,i)+temp
 end do
 w=w*wp+w
 end do
 mmax=istep

1235
```
Chapter B12. Fast Fourier Transform

All the Fourier routines in this chapter require the dimension $N$ of the data to be a power of 2. This is easily tested for by AND’ing $N$ and $N - 1$: $N$ should have the binary representation $10000...$, in which case $N - 1 = 01111...$. 

SUBROUTINE fourrow_dp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(DPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp
COMPLEX(DPC) :: ws
n=size(data,2)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in fourrow_dp')
n2=n/2
j=n2
do i=1,n-2
   if (j > i) call swap(data(:,j+1),data(:,i+1))
   m=n2
do if (m < 2 .or. j < m) exit
      j=j-m
      m=m/2
   end do
   j=j+m
end do
mmax=1
do if (n <= mmax) exit
   istep=2*mmax
   theta=DPI/(isign*mmax)
   wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
   w=cmplx(1.0_dp,0.0_dp,kind=dpc)
   do m=1,mmax
      ws=w
      do i=m,n,istep
         j=i+m
         temp=ws*data(:,j)
         data(:,j)=data(:,i)-temp
         data(:,i)=data(:,i)+temp
      end do
      w=w*wp+w
   end do
   mmax=istep
end do
END SUBROUTINE fourrow_dp

SUBROUTINE fourrow_3d(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:, :, :) , INTENT(INOUT) :: data
INTEGER(I4B) , INTENT(IN) :: isign
If isign is input as 1, replaces each third-index section (constant first and second indices) of data(1:L,1:M,1:N) by its discrete Fourier transform (transform on third index); or
replaces each third-index section of \texttt{data} by \( N \) times its inverse discrete Fourier transform, if \texttt{isign} is input as \(-1\). \( N \) must be an integer power of 2. Parallelism is \( L \times M \)-fold on the first and second indices of \texttt{data}.

\begin{verbatim}
INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1),size(data,2)) :: temp
COMPLEX(DPC) :: w,wp

n=size(data,3)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in fourrow_3d')
n2=n/2
j=n/2
This is the bit-reversal section of the routine.
do i=1,n-2
   if (j > i) call swap(data(:,:,j+1),data(:,:,i+1))
m=n2
do
   if (m < 2 .or. j < m) exit
   j=j-m
   m=m/2
end do
j=j+m
end do

mmax=1
Here begins the Danielson-Lanczos section of the routine.
do
   if (n <= mmax) exit
   istep=2*mmax
   theta=PI_D/(isign*mmax)  \text{ Initialize for the trigonometric recurrence.}
   wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
   do m=1,mmax  \text{ Here are the two nested inner loops.}
      ws=w
      do i=m,n,istep
         j=i+mmax
temp=ws*data(:,:,j)
This is the Danielson-Lanczos formula.
data(:,:,j)=data(:,:,i)-temp
data(:,:,i)=data(:,:,i)+temp
end do
w=w*wp+w
end do
mmax=istep
end do
END SUBROUTINE fourrow_3d
\end{verbatim}

Exactly as in the preceding routines, we can take the FFT of each \textit{column} of a two-dimensional matrix, and for each \textit{first-index} section of a three-dimensional array.

\begin{verbatim}
SUBROUTINE fourcol(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each column (constant second index) of \texttt{data}(1:N,1:M) by its discrete Fourier transform (transform on first index), if \texttt{isign} is input as 1; or replaces each row of \texttt{data}
\end{verbatim}
by \( N \) times its inverse discrete Fourier transform, if \( \text{isign} \) is input as \(-1\). \( N \) must be an integer power of 2. Parallelism is \( M \)-fold on the second index of \( \text{data} \).

\begin{verbatim}
INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2)) :: temp
COMPLEX(DPC) :: w,wp

n=size(data,1)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in fourcol')
n2=n/2
j=n2
This is the bit-reversal section of the routine.
do i=1,n-2
   if (j > i) call swap(data(j+1,:),data(i+1,:))
m=n2
do
      if (m < 2 .or. j < m) exit
      j=j-m
      m=m/2
   end do
   j=j+m
end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.
do
   if (n <= mmax) exit
   istep=2*mmax
   theta=P1_D_(isign*mmax)
   wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
   w=cmplx(1.0_dp,0.0_dp,kind=dpc)
   do m=1,mmax
      ws=w
      do i=m,n,istep
         j=i+mmax
         temp=ws*data(j,:)
         This is the Danielson-Lanczos formula.
data(j,:)=data(i,:)-temp
         data(i,:)=data(i,:)+temp
      end do
      w=w*wp+w
   end do
   mmax=istep
end do
END SUBROUTINE fourcol
\end{verbatim}

\begin{verbatim}
SUBROUTINE fourcol_3d(data,isign)
USE nrtype; USE nrutil, ONLY: assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

If \( \text{isign} \) is input as 1, replaces each first-index section (constant second and third indices) of \( \text{data}(1:N,1:M,1:L) \) by its discrete Fourier transform (transform on first index); or replaces each first-index section of \( \text{data} \) by \( N \) times its inverse discrete Fourier transform, if \( \text{isign} \) is input as \(-1\). \( N \) must be an integer power of 2. Parallelism is \( M \times L \)-fold on the second and third indices of \( \text{data} \).

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2),size(data,3)) :: temp
COMPLEX(DPC) :: w,wp

n=size(data,1)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in fourcol_3d')
n2=n/2
\end{verbatim}
Chapter B12. Fast Fourier Transform

1239

j=n2
This is the bit-reversal section of the routine.
do i=1,n-2
   if (j > i) call swap(data(j+1,:,:),data(i+1,:,:))
m=n2
   do
      if (m < 2 .or. j < m) exit
      j=j-m
      m=m/2
   end do
   j=j+m
end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.
do Outer loop executed $\log_2 N$ times.
   if (n <= mmax) exit
   istep=2*mmax
   theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
do m=1,mmax Here are the two nested inner loops.
   do i=m,n,istep
      j=i+mmax
      temp=wp*data(j,:,:)
      This is the Danielson-Lanczos formula.
data(j,:,:)=data(i,:,:)-temp
data(i,:,:)=data(i,:,:)+temp
   end do
   w=w*wp+w Trigonometric recurrence.
end do
mmax=istep
end do
END SUBROUTINE fourcol_3d

⋆⋆⋆
Here now are implementations of the method of §22.4 for the FFT of one-dimensional single- and double-precision complex arrays:

SUBROUTINE four1_sp(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
Replaces a complex array data by its discrete Fourier transform, if isign is input as 1; or replaces data by its inverse discrete Fourier transform times the size of data, if isign is input as −1. The size of data must be an integer power of 2. Parallelism is achieved by internally reshaping the input array to two dimensions. (Use this version if fourrow is faster than fourcol on your machine.)
COMPLEX(SPC), DIMENSION(:,), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:,), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:,), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in four1_sp')
Find dimensions as close to square as possible, allocate space, and reshape the input array.
m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
call fourrow(dat,isign) Transform on second index.
theta = arth(0, isign, m1) * TWOPI_D / n  \quad \text{Set up recurrence.}

wp = cmplx(-2.0_dp * sin(0.5_dp * theta)**2, sin(theta), kind=dpc)
w = cmplx(1.0_dp, 0.0_dp, kind=dpc)
do j=2, m2
    \quad w = w * wp + w \quad \text{Multiply by the extra phase factor.}
    \quad dat(:,j) = dat(:,j) * w
end do

temp = transpose(dat)
call fourrow(temp, isign)
data = reshape(temp, shape(data))
deallocate(dat, w, wp, theta, temp)

END SUBROUTINE four1_sp

SUBROUTINE four1_dp(data, isign)
USE nrtype; USE nrutil, ONLY: arth, assert
USE nr, ONLY: fourrow
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(14B), INTENT(IN) :: isign
COMPLEX(DPC), ALLOCATABLE :: dat, theta
REAL(DP), ALLOCATABLE :: wp
INTEGER(14B) :: n, m1, m2, j

n = size(data)
call assert(iand(n, n-1) == 0, 'n must be a power of 2 in four1_dp')
m1 = 2**ceiling(0.5_sp*log(real(n, sp))/0.693147_sp)
m2 = n / m1
allocate(dat(m1, m2), theta(m1), wp(m1, m2))
dat = reshape(data, shape(dat))
call fourrow(dat, isign)
theta = arth(0, isign, m1) * TWOPI_D / n
wp = cmplx(-2.0_dp * sin(0.5_dp * theta)**2, sin(theta), kind=dpc)
w = cmplx(1.0_dp, 0.0_dp, kind=dpc)
do j = 2, m2
    \quad w = w * wp + w \quad \text{Multiply by the extra phase factor.}
    \quad dat(:,j) = dat(:,j) * w
end do

temp = transpose(dat)
call fourrow(temp, isign)
data = reshape(temp, shape(data))
deallocate(dat, w, wp, theta, temp)

END SUBROUTINE four1_dp

The above routines use fourrow exclusively, on the assumption that it is faster than its sibling fourcol. When that is the case (as we typically find), it is likely that four1_sp is also faster than Volume 1's scalar four1. The reason, on scalar machines, is that fourrow's parallelism is taking better advantage of cache memory locality.

If fourrow is not faster than fourcol on your machine, then you should instead try the following alternative FFT version that uses fourcol only.

SUBROUTINE four1_alt(data, isign)
USE nrtype; USE nrutil, ONLY: arth, assert
USE nr, ONLY: fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(14B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1; or replaces data by its inverse discrete Fourier transform times the size of data, if isign is
input as $-1$. The size of $\text{data}$ must be an integer power of 2. Parallelism is achieved by internally reshaping the input array to two dimensions. (Use this version only if $\text{fourcol}$ is faster than $\text{fourrow}$ on your machine.)

```
COMPLEX(SPC), DIMENSION(:,,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:,), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:,), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in four1_alt')
Find dimensions as close to square as possible, allocate space, and reshape the input array.
m1=2**ceiling(0.5_dp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
temp=transpose(dat)
Transpose and transform on (original) second index.
call fourcol(temp,isign)
theta=arth(0,isign,m1)*TWOPI_D/n
Set up recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2
 w=w*wp+w
 temp(j,:)=temp(j,:)*w
 Multiply by the extra phase factor.
end do
dat=transpose(temp)
Transpose and then reshape the result back to one dimension.
call fourcol(dat,isign)
temp=transpose(dat)
Transpose into data.
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_alt
```

With all the machinery of $\text{fourrow}$ and $\text{fourcol}$, two-dimensional FFTs are extremely straightforward. Again there is an alternative version provided in case your hardware favors $\text{fourcol}$ (which would be, we think, unusual).

```
SUBROUTINE four2(data,isign)
USE nrtype
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
call fourrow(data,isign)
Transform in second dimension.
call fourrow(temp,isign)
Transform in (original) first dimension.
data=reshape(temp)
Transpose into data.
END SUBROUTINE four2
```
SUBROUTINE four2_alt(data,isign)
USE nrtype
USE nr, ONLY: fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
Replaces a 2-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 2-d discrete Fourier transform times the product of
its two sizes, if isign is input as -1. Both of data’s sizes must be integer powers of 2
(this is checked for in fourcol). Parallelism is by use of fourcol. (Use this version only
if fourcol is faster than fourrow on your machine.)
COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
temp=transpose(data) Transpose.
call fourcol(temp,isign) Transform in (original) second dimension.
data=transpose(temp) Transpose.
call fourcol(data,isign) Transform in (original) first dimension.
END SUBROUTINE four2_alt

* * *

Most of the remaining routines in this chapter simply call one or another of the
above FFT routines, with a small amount of auxiliary computation, so they are fairly
straightforward conversions from their Volume 1 counterparts.

SUBROUTINE twofft(data1,data2,fft1,fft2)
USE nrtype; USE nrutil, ONLY: assert,assert_eq
USE nr, ONLY: four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2
Given two real input arrays data1 and data2 of length N, this routine calls four1 and
returns two complex output arrays, fft1 and fft2, each of complex length N, that contain
the discrete Fourier transforms of the respective data arrays. N must be an integer power
of 2.
INTEGER(I4B) :: n,n2
COMPLEX(SPC), PARAMETER :: C1=(0.5_sp,0.0_sp), C2=(0.0_sp,-0.5_sp)
COMPLEX, DIMENSION(size(data1)/2+1) :: h1,h2
n=assert_eq(size(data1),size(data2),size(fft1),size(fft2),'twofft')
call assert(iand(n,n-1)==0, 'n must be a power of 2 in twofft')
 fft1=cmplx(data1,data2,kind=spc) Pack the two real arrays into one complex array.
call four1(fft1,1) Transform the complex array.
 fft2(1)=cmplx(aimag(fft1(1)),0.0_sp,kind=spc)
 fft1(1)=cmplx(real(fft1(1)),0.0_sp,kind=spc)
n2=n/2+1
h1(2:n2)=C1*(fft1(2:n2)+conjg(fft1(n:n2:-1))) Use symmetries to separate the
h2(2:n2)=C2*(fft1(2:n2)-conjg(fft1(n:n2:-1))) two transforms.
fft1(2:n2)=h1(2:n2) Ship them out in two complex arrays.
fft1(n:n2:-1)=conjg(h1(2:n2))
fft2(2:n2)=h2(2:n2)
fft2(n:n2:-1)=conjg(h2(2:n2))
END SUBROUTINE twofft

* * *
SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata

When \( \text{isign} = 1 \), calculates the Fourier transform of a set of \( N \) real-valued data points, input in the array \( \text{data} \). If the optional argument \( \text{zdata} \) is not present, the data are replaced by the positive frequency half of its complex Fourier transform. The real-valued first and last components of the complex transform are returned as elements \( \text{data}(1) \) and \( \text{data}(2) \), respectively. If the complex array \( \text{zdata} \) of length \( N/2 \) is present, \( \text{data} \) is unchanged and the transform is returned in \( \text{zdata} \). \( N \) must be a power of 2. If \( \text{isign} = -1 \), this routine calculates the inverse transform of a complex data array if it is the transform of real data. (Result in this case must be multiplied by \( 2/N \).) The data can be supplied either in \( \text{data} \), with \( \text{zdata} \) absent, or in \( \text{zdata} \).

INTEGER(I4B) :: n,ndum, nh, nq
COMPLEX(SPC), DIMENSION(size(data)/4) :: w
COMPLEX(SPC), DIMENSION(size(data)/4-1) :: h1, h2
COMPLEX(SPC), DIMENSION(:), POINTER :: cdata
COMPLEX(SPC) :: z
REAL(SP) :: c1=0.5_sp,c2
n=size(data)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in realft_sp')
nh=n/2
nq=n/4
if (present(zdata)) then
  ndum=assert_eq(n/2,size(zdata),'realft_sp')
cdata=>zdata
else
  allocate(cdata(n/2))
  have to allocate storage ourselves.
end if
if (isign == 1) then
  c2=-0.5_sp
  call four1(cdata,+1)
else
  Otherwise set up for an inverse transform.
  c2=0.5_sp
end if
w=zroots_unity(sign(n,isign),n/4)
w=compx(-aimag(w),real(w),kind=spc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1)))
the two separate transforms are separated out of cdata.
h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
Next they are recombined to form the true transform of the original real data:
cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1)
if (isign == 1) then
  the forward transform is here.
  squeeze the first and last data together to get them all within the
  original array.
cdata(1)=compx(real(z)+aimag(z),real(z)-aimag(z),kind=spc)
call four1(cdata,-1)
else
  call four1(cdata,+1)
end if
if (present(zdata)) then
  ship out answer in \( \text{data} \) if required.
  if (isign /= 1) then
    data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)
  end if
else
  data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
dallocate(cdata)
end if
SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY: four1
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
INTEGER(I4B) :: n,ndum,nh,nq
COMPLEX(DPC), DIMENSION(size(data)/4) :: w
COMPLEX(DPC), DIMENSION(size(data)/4-1) :: h1,h2
COMPLEX(DPC), DIMENSION(:), POINTER :: cdata
COMPLEX(DPC) :: z
REAL(DP) :: c1=0.5_dp,c2
n=size(data)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in realft_dp')
nh=n/2
nq=n/4
if (present(zdata)) then
  ndum=assert_eq(n/2,size(zdata),'realft_dp')
cdata=>zdata
  if (isign == 1) cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)
  else
    allocate(cdata(n/2))
cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)
  end if
  if (isign == 1) then
    c2=-0.5_dp
    call four1(cdata,+1)
  else
    c2=0.5_dp
  end if
  w=zroots_unity(sign(n,isign),n/4)
w=cmplx(-aimag(w),real(w),kind=dpc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1)))
h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1)
  if (isign == 1) then
    cdata(1)=cmplx(real(z)+aimag(z),real(z)-aimag(z),kind=dpc)
  else
    cdata(1)=cmplx(c1*(real(z)+aimag(z)),c1*(real(z)-aimag(z)),kind=dpc)
    call four1(cdata,-1)
  end if
  if (present(zdata)) then
    if (isign /= 1) then
      data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)
    else
data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)
  end if
END SUBROUTINE realft_dp
SUBROUTINE sinft(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the sine transform of a set of \( N \) real-valued data points stored in array \( y \). The number \( N \) must be a power of 2. On exit \( y \) is replaced by its transform. This program, without changes, also calculates the inverse sine transform, but in this case the output array should be multiplied by \( 2/N \).

REAL(SP), DIMENSION(size(y)/2+1) :: wi
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
INTEGER(I4B) :: n,nh

n=size(y)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in sinft')

nh=n/2
wi=aimag(zroots_unity(n+n,nh+1))

y(1)=0.0

y1=wi(2:nh+1)*y(2:nh+1)+y(n:nh+1:-1)

Construct the two pieces of the auxiliary array.

y2=0.5_sp*(y(2:nh+1)-y(n:nh+1:-1))

Put them together to make the auxiliary array.

y(1:nh+1)=y1+y2
y(n:nh+1:-1)=y1-y2

call realft(y,+1)

y(1)=0.5_sp*y(1)

Initialize the sum used for odd terms.

y(2)=0.0

y1=cumsum(y(1:n-1:2))

Odd terms are determined by this running sum.

y(1:n-1:2)=y(2:n:2)

Even terms in the transform are determined directly.

y(2:n:2)=y1

END SUBROUTINE sinft

SUBROUTINE cosft1(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the cosine transform of a set of \( N+1 \) real-valued data points \( y \). The transformed data replace the original data in array \( y \). \( N \) must be a power of 2. This program, without changes, also calculates the inverse cosine transform, but in this case the output array should be multiplied by \( 2/N \).

COMPLEX(SPC), DIMENSION((size(y)-1)/2) :: w
REAL(SP), DIMENSION((size(y)-1)/2-1) :: y1,y2
REAL(SP) :: summ

n=size(y)-1
call assert(iand(n,n-1)==0, 'n must be a power of 2 in cosft1')

nh=n/2
w=zroots_unity(n+n,nh)

y1=0.5_sp*(y(1)+y(n+1))
y(1)=0.5_sp*(y(1)+y(n+1))

Construct the two pieces of the auxiliary array.

y2=y(2:nh)-y(n:nh+2:-1)

carry along this sum for later use in unfolding the transform.

y2*2=aimag(w(2:nh))
y(2:nh)=y2
y(n:nh+2:-1)=y2

call realft(y(1:n),1)

Calculate the auxiliary function.

y(n+1)=y(2)
y(2)=summ

Equation (12.3.20).

y(2:n:2)=cumsum(y(2:n:2))
SUBROUTINE cosft2(y,isign)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY: realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
INTEGER(I4B), INTENT(IN) :: isign
Calculates the "staggered" cosine transform of a set of \(N\) real-valued data points \(y\). The transformed data replace the original data in array \(y\). \(N\) must be a power of 2. Set \(isign\) to \(+1\) for a transform, and to \(-1\) for an inverse transform. For an inverse transform, the output array should be multiplied by \(2/N\).

COMPLEX(SPC), DIMENSION(size(y)) :: w
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
REAL(SP) :: ytemp
INTEGER(I4B) :: n,nh
n=size(y)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in cosft2')
nh=n/2
w=zroots_unity(4*n,n)

if (isign == 1) then
Forward transform.
y1=0.5_sp*(y(1:nh)+y(n:nh+1:-1))
Calculate the auxiliary function.
y2=aimag(w(2:n:2))*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=y1+y2
y(n:nh+1:-1)=y1-y2
call realft(y,1)
Calculate transform of the auxiliary function.
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) \&
Even terms.
y2(1:nh-1)=-y(4:n:2)*aimag(w(3:n-1:2)) \&
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
ytemp=0.5_sp*y(2)
Initialise recurrence for odd terms with \(\frac{1}{2\sqrt{N}}\).
y(n-2:2:-2)=cumsum(y(n:4:-2),ytemp)
Recurrence for odd terms.
y(n)=ytemp
else if (isign == -1) then
Inverse transform.
ytemp=y(n)
y(4:n:2)=y(2:n-2:2)-y(4:n:2)
Form difference of odd terms.
y(2)=2.0_sp*ytemp
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) \&
Calculate \(R_k\) and \(I_k\).
y2(1:nh-1)=y(4:n:2)*aimag(w(3:n-1:2)) \&
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
call realft(y,-1)
Invert auxiliary array.
y1=0.5_sp*aimag(w(2:n:2))\*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=0.5_sp*y(1:-y)
y(n:nh+1:-1)=0.5_sp*y(1-y)
end if
END SUBROUTINE cosft2

SUBROUTINE four3(data,isign)
USE nrtype
USE nr, ONLY : fourrow_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:, :, :) , INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
Replaces a 3-d complex array \(d\) by its discrete 3-d Fourier transform, if \(isign\) is input as \(1\); or replaces data by its inverse 3-d discrete Fourier transform times the product of its

* * *
three sizes, if isign is input as $-1$. All three of data’s sizes must be integer powers of 2
(this is checked for in fourrow_3d). Parallelism is by use of fourrow_3d.

COMPLEX(SPC), DIMENSION(:, :, :), ALLOCATABLE :: dat2, dat3

call fourrow_3d(data, isign)  Transform in third dimension.
allocate(dat2(size(data, 2), size(data, 3), size(data, 1)))
dat2=reshape(data, shape=shape(dat2), order=(/3, 1, 2/))  Transpose.
call fourrow_3d(dat2, isign)  Transform in (original) first dimension.
allocate(dat3(size(data, 3), size(data, 1), size(data, 2)))
dat3=reshape(dat2, shape=shape(dat3), order=(/3, 1, 2/))  Transpose.
deallocate(dat2)
call fourrow_3d(dat3, isign)  Transform in (original) second dimension.
data=reshape(dat3, shape=shape(data), order=(/3, 1, 2/))  Transpose back to output or-
dere.
deallocate(dat3)
END SUBROUTINE four3

The reshape intrinsic, used with an order= parameter, is the multidimen-
sional generalization of the two-dimensional transpose operation. The line

\[
\text{dat2}=\text{reshape}(\text{data}, \text{shape}=\text{shape}(\text{dat2}), \text{order}=(/3, 1, 2/))
\]

is equivalent to the do-loop

\[
\text{do } j=1, \text{size(data}, 1) \\
\text{dat2}(\ldots, j) = \text{data}(j, \ldots) \\
\text{end do}
\]

Incidentally, we have found some Fortran 90 compilers that (for scalar machines) are
significantly slower executing the reshape than executing the equivalent do-loop. This, of course, shouldn’t happen, since the reshape basically \textit{is} an implicit do-loop.

If you find such inefficient behavior on your compiler, you should report it as a
bug to your compiler vendor! (Only thus will Fortran 90 compilers be brought to
mature states of efficiency.)

SUBROUTINE four3_alt(data, isign)
USE nrtype
USE nr, ONLY: fourcol_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:, :, :), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 3-d complex array data by its discrete 2-d Fourier transform, if isign is input
as $1$; or replaces data by its inverse 3-d discrete Fourier transform times the product of
its three sizes, if isign is input as $-1$. All three of data’s sizes must be integer powers
of 2 (this is checked for in fourcol_3d). Parallelism is by use of fourcol_3d. (Use this
version only if fourcol_3d is faster than fourrow_3d on your machine.)

COMPLEX(SPC), DIMENSION(:, :, :), ALLOCATABLE :: dat2, dat3

call fourcol_3d(data, isign)  Transform in first dimension.
allocate(dat2(size(data, 2), size(data, 3), size(data, 1)))
dat2=reshape(data, shape=shape(dat2), order=(/3, 1, 2/))  Transpose.
call fourcol_3d(dat2, isign)  Transform in (original) second dimension.
allocate(dat3(size(data, 3), size(data, 1), size(data, 2)))
dat3=reshape(dat2, shape=shape(dat3), order=(/3, 1, 2/))  Transpose.
deallocate(dat2)
call fourcol_3d(dat3, isign)  Transform in (original) third dimension.
data=reshape(dat3, shape=shape(data), order=(/3, 1, 2/))  Transpose back to output or-
dere.
deallocate(dat3)
END SUBROUTINE four3_alt
Note that four3 uses fourrow_3d, the three-dimensional counterpart of fourrow, while four3_alt uses fourcol_3d, the three-dimensional counterpart of fourcol. You may want to time these programs to see which is faster on your machine.

* * *

In Volume 1, a single routine named rlft3 was able to serve both as a three-dimensional real FFT, and as a two-dimensional real FFT. The trick is that the Fortran 77 version doesn’t care whether the input array data is dimensioned as two- or three-dimensional. Fortran 90 is not so indifferent, and better programming practice is to have two separate versions of the algorithm:

SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY: assert,assert_eq
USE nr, ONLY: four2
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a two-dimensional real array data(1:M,1:N), this routine returns (for isign=1) the complex fast Fourier transform as two complex arrays: On output, spec(1:M/2,1:N) contains the zero and positive frequency values of the first frequency component, while speq(1:N) contains the Nyquist critical frequency values of the first frequency component. The second frequency components are stored for zero, positive, and negative frequencies, in standard wrap-around order. For isign=-1, the inverse transform (times M*N as a constant multiplicative factor) is performed, with output data deriving from input spec and speq. For inverse transforms on data not generated first by a forward transform, make sure the complex input data array satisfies property (12.5.2). The size of all arrays must always be integer powers of 2.

INTEGER :: i1,j1,nn1,nn2
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
nn1=assert_eq(size(data,1),2*size(spec,1),'rlft2: nn1')
nn2=assert_eq(size(data,2),size(spec,2),size(speq),'rlft2: nn2')
call assert(iand((/nn1,nn2/),(/nn1,nn2/)-1)==0, &
'dimensions must be powers of 2 in rlft2')
c2=cmplx(0.0_sp,-0.5*isign,kind=spc)
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=spc)
if (isign == 1) then
  Case of forward transform.
  spec(:,1)=cmplx(data(1:nn1:2,:),data(2:nn1:2,:),kind=spc)
call four2(spec,isign)
  Here is where most all of the compute time
  speq=spec(1,1) is spent.
end if

h1=c1*(spec(1,1)+conjg(speq(1)))
h1a=c1*(spec(1,2:nn2)+conjg(spec(2:nn2:-1)))
h2=c2*(spec(1,1)-conjg(speq(1)))
h2a=c2*(spec(1,2:nn2)-conjg(spec(2:nn2:-1)))
spec(1,1)=h1+h2
spec(1,2:nn2)=h1a+h2a
speq(1)=conjg(h1-h2)
speq(nn2:-1:-1)=conjg(h1a-h2a)
ww=cmplx(1.0_dp,0.0_dp,kind=dpc) Initialize trigonometric recurrence.
do i1=2,nn1/4+1
  j1=nn1/2-i1+2
  Corresponding negative frequency.
  ww=ww*wp+ww
  Do the trig recurrence.
  w1h1=c1*(spec(j1,1)+conjg(spec(j1,1)))
  Equation (12.3.5).
h1a=c1*(spec(j1,2:nn2)+conjg(spec(j1,2:nn2:-1)))
Chapter B12. Fast Fourier Transform

1249

... Case of reverse transform.
call four2(spec,isign)
data(1:nn1:2,:)=real(spec)
data(2:nn1:2,:)=aimag(spec)
end if
END SUBROUTINE rlft2

SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY: assert,assert_eq
USE nr, ONLY: four3
REAL(SP), DIMENSION(:,:,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:,:,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a three-dimensional real array $data(1:L,1:M,1:N)$, this routine returns (for $isign=1$) the complex Fourier transform as two complex arrays: On output, the zero and positive frequency values of the first frequency component are in $spec(1:L/2,1:M,1:N)$, while $speq(1:M,1:N)$ contains the Nyquist critical frequency values of the first frequency component. The second and third frequency components are stored for zero, positive, and negative frequencies, in standard wrap-around order. For $isign=-1$, the inverse transform (times $L \times M \times N/2$ as a constant multiplicative factor) is performed, with output data deriving from input $spec$ and $speq$. For inverse transforms on data not generated first by a forward transform, make sure the complex input data array satisfies property (12.5.2). The size of all arrays must always be integer powers of 2.

INTEGER :: i1,i3,j1,j3,nn1,nn2,nn3
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
c2=cmplx(0.0_sp,-0.5_sp*isign,kind=spc)
nn1=assert_eq(size(data,1),2*size(spec,1),'rlft2: nn1')
nn2=assert_eq(size(data,2),size(spec,2),size(speq,1),'rlft2: nn2')
nn3=assert_eq(size(data,3),size(spec,3),size(speq,2),'rlft2: nn3')
call assert(iand((/nn1,nn2,nn3/),(/nn1,nn2,nn3/)-1)==0, &
'dimensions must be powers of 2 in rlft3')
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)

if (isign == 1) then
Case of forward transform.
spec(:,:,1,:)=cmplx(data(1:nn1:2,:,:),data(2:nn1:2,:,:),kind=spc)
call four3(spec,isign)
speq=spec(1,:,:)
end if

do i3=1,nn3
j3=1
if (i3 /= 1) j3=nn3-i3+2
h1=c1*(spec(1,1,i3)+conjg(speq(1,j3)))
h2=c2*(spec(1,2:nn2,i3)+conjg(speq(nn2:2:-1,j3)))

...
Chapter B12. Fast Fourier Transform

**speq(1,j3)=conjg(h1-h2)**
**speq(nn2:2:-1,j3)=conjg(h1a-h2a)**
**ww=cmplx(1.0_dp,0.0_dp,kind=dpc)**  
Initialize trigonometric recurrence.

**do i1=2,nn1/4+1**
**j1=nn1/2-i1+2**  
Corresponding negative frequency.

**ww=ww*wp+ww**  
Do the trig recurrence.

**w=ww**

**h1=c1*(spec(i1,1,i3)+conjg(spec(j1,1,j3)))**  
Equation (12.3.5).

**h1a=c1*(spec(i1,2:nn2,i3)+conjg(spec(j1,nn2:2:-1,j3)))**

**h2=c2*(spec(i1,1,i3)-conjg(spec(j1,1,j3)))**

**h2a=c2*(spec(i1,2:nn2,i3)-conjg(spec(j1,nn2:2:-1,j3)))**

**spec(i1,1,i3)=h1+w*h2**

**spec(i1,2:nn2,i3)=h1a+w*h2a**

**spec(j1,1,j3)=conjg(h1-w*h2)**

**spec(j1,nn2:2:-1,j3)=conjg(h1a-w*h2a)**

**end do**

**if (isign == -1) then**

Case of reverse transform.

**call four3(spec,isign)**

**data(1:nn1:2,:,:)=real(spec)**

**data(2:nn1:2,:,:)=aimag(spec)**

**end if**

**END SUBROUTINE rlft3**

* * *

Referring back to the discussion of parallelism, §22.4, that led to four1's implementation with $\sqrt{N}$ parallelism, you might wonder whether Fortran 90 provides sufficiently powerful high-level constructs to enable an FFT routine with $N$-fold parallelism. The answer is, "It does, but you wouldn't want to use them!" Access to arbitrary interprocessor communication in Fortran 90 is through the mechanism of the "vector subscript" (one-dimensional array of indices in arbitrary order). When a vector subscript is on the right-hand side of an assignment statement, the operation performed is effectively a "gather": when it is on the left-hand side, the operation is effectively a "scatter."

It is quite possible to write the classic FFT algorithm in terms of gather and scatter operations. In fact, we do so now. The problem is efficiency: The computations involved in constructing the vector subscripts for the scatter/gather operations, and the actual scatter/gather operations themselves, tend to swamp the underlying very lean FFT algorithm. The result is very slow, though theoretically perfectly parallelizable, code. Since small-scale parallel (SSP) machines can saturate their processors with $\sqrt{N}$ parallelism, while massively multiprocessor (MMP) machines inevitably come with architecture-optimized FFT library calls, there is really no niche for these routines, except as pedagogical demonstrations. We give here a one-dimensional routine, and also an arbitrary-dimensional routine modeled on Volume 1's fourn.

Note the complete absence of do-loops of size $N$; the loops that remain are over $\log N$ stages, or over the number of dimensions.

SUBROUTINE four1_gather(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(14B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1; or replaces data by size(data) times its inverse discrete Fourier transform, if isign is input as -1. The size of data must be an integer power of 2. This routine demonstrates coding the FFT algorithm in high-level Fortran 90 constructs. Generally the result is very
much slower than library routines coded for specific architectures, and also significantly slower than the parallelization-by-rows method used in the routine four1.

```fortran
INTEGER(14B) :: n,n2,m,mm
REAL(DP) :: theta
COMPLEX(SPC) :: wp
INTEGER(14B), DIMENSION(size(data)) :: jarr
INTEGER(14B), DIMENSION(:,), ALLOCATABLE :: jrev
COMPLEX(SPC), DIMENSION(:,), ALLOCATABLE :: wtab,dtemp
n=size(data)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in four1_gather')
allocate(jrev(n))
Begin bit-reversal section of the routine.
jarr=arth(0,1,n)
jrev=0
n2=n/2
m=n2
do
 where (iand(jarr,1) /= 0) jrev=jrev+m
 jarr=jarr/2
 m=m/2
if (m == 0) exit
end do
data=data(jrev+1)
deallocate(jrev)
allocate(dtemp(n),wtab(n2))
Begin Danielson-Lanczos section of the routine.
jarr=arth(0,1,n)
m=1
mm=n2
wtab(1)=(1.0_sp,0.0_sp)
Seed the roots-of-unity table.
do
 where (iand(jarr,m) /= 0)
 The basic idea is to address the correct root-of-unity for each Danielson-Lanczos multiplication by tricky bit manipulations.
 data=data*wtab(mm*iand(jarr,m-1)+1)
 data=eoshift(data,-m)-dtemp
 This is half of Danielson-Lanczos.
elsewhere
 data=data+eoshift(dtemp,m)
 This is the other half. The referenced elements of dtemp will have been set in the where clause.
end where
m=m*2
if (m >= n) exit
mm=mm/2
theta=PI_D/(isign*m)
Ready for trigonometry?
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2, sin(theta),kind=spc)
Add entries to the table for the next iteration.
wtab(mm+1:n2:2*mm)=wtab(1:n2-mm:2*mm)*wp+wtab(1:n2-mm:2*mm)
end do
deallocate(dtemp,wtab)
END SUBROUTINE four1_gather
```

SUBROUTINE fourn_gather(data,nn,isign)
USE nrtype; USE nrutil, ONLY: arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(14B), DIMENSION(:,), :: nn
INTEGER(14B), INTENT(IN) :: isign
For data a one-dimensional complex array containing the values (in Fortran normal ordering) of an \( M \)-dimensional complex array, this routine replaces data by its \( M \)-dimensional discrete Fourier transform, if isign is input as 1. nn(1:M) is an integer array containing the lengths of each dimension (number of complex values), each of which must be a power of 2. If isign is input as -1, data is replaced by its inverse transform times the product of the lengths of all dimensions. This routine demonstrates coding the multidimensional FFT algorithm in high-level Fortran 90 constructs. Generally the result is very much slower than
library routines coded for specific architectures, and significantly slower than routines four2 and four3 for the two- and three-dimensional cases.

INTEGER(14B), DIMENSION(:,), ALLOCATABLE :: jarr
INTEGER(14B) :: ndim,idim,n,ntot,n2,msk0,msk1,msk2,m,mm,mn
REAL(DP) :: theta
COMPLEX(SPC) :: wp
COMPLEX(SPC), DIMENSION(:,), ALLOCATABLE :: wtab,dtemp
call assert(iand(nn,nn-1)==0, 
   'each dimension must be a power of 2 in fourn_gather')

ndim=size(nn)
ntot=product(nn)
nprev=1
allocate(jarr(ntot))
do idim=1,ndim
   jarr=arth(0,1,ntot)
   n=nn(idim)
n2=n/2
   msk0=nprev
   msk1=nprev*n2
   msk2=msk0+msk1
   do
      if (msk1 <= msk0) exit
      where (iand(jarr,msk0) == 0 .neqv. iand(jarr,msk1) == 0) 
         jarr=ieor(jarr,msk2)
      msk0=msk0*2
      msk1=msk1/2
      msk2=msk0+msk1
   end do
   data=data(jarr+1)
allocate(dtemp(ntot),wtab(n2))
   jarr=iand(n-1,arth(0,1,ntot)/nprev)
   m=1
   mm=n2
   mn=m*nprev
   wtab(1)=(1.0_sp,0.0_sp)
   do
      if (mm == 0) exit
      where (iand(jarr,m) /= 0)
         The basic idea is to address the correct root-of-unity for each Danielson-Lanczos
         multiplication by tricky bit manipulations.
         dtemp=data+eoshift(data,-mn)-dtemp
      elsewhere
         This is half of Danielson-Lanczos.
         data=eoshift(data,mm)
      end where
      m=m*2
      if (m >= n) exit
      mn=mn*nprev
      mm=mm/2
      theta=PI_D/isign*m
      wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
      Add entries to the table for the next iteration.
      wtab(mm+1:mm+2:mm)=wtab(1:mm-mm:mm)*wp &
      +wtab(1:mm-mm:mm)
   end do
   deallocate(dtemp,wtab)
nprev=n*nprev
end do
allocate(jarr(ntot))
END SUBROUTINE fourn_gather

call assert(iand(nn,nn-1)==0 ... Once again the vector version of assert is used to test all the dimensions stored in nn simultaneously.
FUNCTION convlv(data, respns, isign)
USE nrtype; USE nrutil, ONLY : assert, nrerror
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
REAL(SP), DIMENSION(:), INTENT(IN) :: respns
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv

Convolves or deconvolves a real data set data (of length \(N\), including any user-supplied zero padding) with a response function \(\text{respns}\), stored in wrap-around order in a real array of length \(M \leq N\). \((M\) should be an odd integer, \(N\) a power of 2.) Wrap-around order means that the first half of the array \(\text{respns}\) contains the impulse response function at positive times, while the second half of the array contains the impulse response function at negative times, counting down from the highest element \(\text{respns}(M)\). On input \(\text{isign}\) is +1 for convolution, −1 for deconvolution. The answer is returned as the function \(\text{convlv}\), an array of length \(N\). data has INTENT(INOUT) for consistency with \text{realft}, but is actually unchanged.

INTEGER(I4B) :: no2,n,m
COMPLEX(SPC), DIMENSION(size(data)/2) :: tmpd, tmpr
n=size(data)
m=size(respns)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in convlv')
call assert(mod(m,2)==1, 'm must be odd in convlv')
convlv(1:m)=respns(:) Put \(\text{respns}\) in array of length \(n\).
convlv(n-(m-3)/2:n)=convlv((m+3)/2:m) Pad with zeros.
o2=n/2

call realft(data,1,tmpd) FFT both arrays.
call realft(convlv,1,tmpr)
if (isign == 1) then Multiply FFTs to convolve.
   tmpr(1)=cmplx(real(tmpr(1))*real(tmpd(1))/no2, &
   aimag(tmpd(1))*aimag(tmpr(1))/no2, kind=spc)
   tmpr(2:)=tmpd(2:)*tmpr(2:)/no2
else if (isign == -1) then Divide FFTs to deconvolve.
   if (any(abs(tmpr(2:)) == 0.0) .or. real(tmpr(1)) == 0.0 &
      .or. aimag(tmpr(1)) == 0.0) call nrerror &
      ("deconvolving at response zero in convlv")
   tmpr(1)=cmplx(real(tmpr(1))/real(tmpd(1))/no2, &
   aimag(tmpr(1))/aimag(tmpd(1))/no2, kind=spc)
   tmpr(2:)=tmpr(2:)/tmpr(2:)/no2
else call nrerror('no meaning for isign in convlv')
end if

call realft(convlv,-1,tmpr) Inverse transform back to time domain.
END FUNCTION convlv
The intrinsic function cmplx returns a quantity of type default complex unless the kind argument is present. It is therefore a good idea always to include this argument. The intrinsic functions real and aimag, on the other hand, when called with a complex argument, return the same kind as their argument. So it is a good idea not to put in a kind argument for these. (In fact, aimag doesn’t allow one.) Don’t confuse these situations, regarding complex variables, with the completely unrelated use of real to convert a real or integer variable to a real value of specified kind. In this latter case, kind should be specified.

FUNCTION correl(data1, data2)
USE nrtype; USE nrutil, ONLY : assert, assert_eq
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data1, data2
REAL(SP), DIMENSION(size(data1)) :: correl
Computes the correlation of two real data sets data1 and data2 of length \( N \) (including any user-supplied zero padding). \( N \) must be an integer power of 2. The answer is returned as the function correl, an array of length \( N \). The answer is stored in wrap-around order, i.e., correlations at increasingly negative lags are in \( \text{correl}(N/2+1) \) down to \( \text{correl}(N) \) on down to \( \text{correl}(1) \) (zero lag) on up to \( \text{correl}(N/2) \). Sign convention of this routine: If \( \text{data1} \) lags \( \text{data2} \), i.e., is shifted to the right of it, then \( \text{correl} \) will show a peak at positive lags.

COMPLEX(SPC), DIMENSION(size(data1)/2) :: cdat1, cdat2
INTEGER(I4B) :: no2, n
Normalization for inverse FFT.
\( n = \text{assert_eq(size(data1), size(data2), 'correl')} \)
call assert(iand(n, n-1)==0, 'n must be a power of 2 in correl')
no2 = n/2
call realft(data1, 1, cdat1)
Transform both data vectors.
call realft(data2, 1, cdat2)
cdat1(1) = cmplx(real(cdat1(1))*real(cdat2(1))/no2, &
Multiply to find FFT of their correlation.
aimag(cdat1(1))*aimag(cdat2(1))/no2, kind=spc)
cdat1(2:) = cdat1(2:)*conjg(cdat2(2:))/no2
\( \text{end function correl} \)

SUBROUTINE spctrm(p, k, ovrlap, unit, n_window)
USE nrtype; USE nrutil, ONLY : arth, nrerror
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:,:) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(1), INTENT(IN) :: ovrlap
INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window, unit
Reads data from input unit 9, or if the optional argument unit is present, from that input unit. The output is an array \( p \) of length \( M \) that contains the data’s power (mean square amplitude) at frequency \( (j - 1)/2M \) cycles per grid point, for \( j = 1, 2, \ldots, M \), based on \( (2k+1) \) \( M \) data points (if ovrlap is set .true.) or \( 4kM \) data points (if ovrlap is set .false.). The number of segments of the data is \( 2k^2 \) in both cases. The routine calls four1k times, each call with 2 partitions each of \( 2M \) real data points. If the optional argument n_window is present, the routine uses the Bartlett window, the square window,
or the Welch window for \( n_{\text{window}} = 1, 2, 3 \) respectively. If \( n_{\text{window}} \) is not present, the Bartlett window is used.

```fortran
INTEGER(I4B) :: j, joff, joffn, kk, m, m4, m43, m44, mm, iunit, nn_window
REAL(SP) :: den, facm, facp, sumw
REAL(SP), DIMENSION(2*size(p)) :: w
REAL(SP), DIMENSION(4*size(p)) :: w1
REAL(SP), DIMENSION(size(p)) :: w2
COMPLEX(SPC), DIMENSION(2*size(p)) :: cw1
m = size(p)
if (present(n_window)) then
 nn_window = n_window
else
 nn_window = 1
end if
if (present(unit)) then
 iunit = unit
else
 iunit = 9
end if
mm = m + m
m4 = mm + m
m44 = m4 + 4
m43 = m4 + 3
den = 0.0
facm = m
facp = 1.0_sp/m
w1(1:mm) = window(arth(1, 1, mm), facm, facp, nn_window)
sumw = dot_product(w1(1:mm), w1(1:mm))
p(:) = 0.0
if (ovrlap) then
 do joff = -1, 0, 1
 do kk = 1, k
 do joffn = joff + mm
 if (ovrlap) then
 w1(joffn + 2:joffn + mm:2) = w2(1:m)
 read (iunit, *) (w2(j), j = 1, m)
 joffn = joffn + mm
 else
 read (iunit, *) (w1(j), j = joff + 2, m44, 2)
 end if
 end do
 w = window(arth(1, 1, mm), facm, facp, nn_window)
 w1(2:m44:2) = w1(2:m44:2) * w
 w1(1:m44:2) = w1(1:m44:2) * w
 cw1(1:mm) = cmplx(w1(1:m44:2), w1(2:m44:2), kind=spc)
 call four1(cw1(1:mm), 1)
 w1(2:m44:2) = real(cw1(1:mm))
 w1(3:2*m-1:2) = aimag(cw1(1:mm))
 p(1) = (p(1) + w1(1)**2 + w1(2)**2)**2
 p(2:m) = p(2:m) + w1(4:2*m:2)**2 + w1(3:2*m-1:2)**2 + w1(m44-4:m44-2*m:-2)**2 + w1(m44-4:m44-2*m:-2)**2
 end do
 den = den + sumw
 end do
end if
p(:) = p(:) / (m4 * den)
CONTAINS
FUNCTION window(j, facm, facp, nn_window)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: j
INTEGER(I4B), INTENT(IN) :: nn_window
REAL(SP), INTENT(IN) :: facm, facp
REAL(SP), DIMENSION(size(j)) :: window
select case(nn_window)
case(1)
```

Useful factors.

Factors used by the window function.

Accumulate the squared sum of the weights.

Initialize the spectrum to zero.

Initialize the "save" half-buffer.

Get two complete segments into workspace.

Loop over data segments in groups of two.

Get two complete segments into workspace.

Apply the window to the data.

Fourier transform the windowed data.

Sum results into previous segments.

Sum results into previous segments.

Normalize the output.

CONTAINS

FUNCTION window(j, facm, facp, nn_window)
The Fortran 90 optional argument feature allows us to make unit 9 the default output unit in this routine, but leave the user the option of specifying a different output unit by supplying an actual argument for unit. We also use an optional argument to allow the user the option of overriding the default selection of the Bartlett window function.

FUNCTION window(j,facm,facp,nn_window)
In Fortran 77 we coded this as a statement function. Here the internal function is equivalent, but allows full specification of the interface and so is preferred.

SUBROUTINE memcof(data,xms,d)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: xms
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(OUT) :: d

Given a real vector data of length N, this routine returns M linear prediction coefficients in a vector d of length M, and returns the mean square discrepancy as xms.

INTEGER(I4B) :: k,m,n
REAL(SP) :: denom,pneum
REAL(SP), DIMENSION(size(data)) :: wk1,wk2,wktmp
REAL(SP), DIMENSION(size(d)) :: wkm
m=size(d)

The algorithm is recursive, although it is implemented as an iteration. It builds up the answer for larger and larger values of m until the desired value is reached. At this point in the algorithm, one could return the vector d and scalar xms for a set of LP coefficients with k (rather than m) terms.

END SUBROUTINE memcof
SUBROUTINE fixrts(d)
USE nrtype
USE nr, ONLY : zroots
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: d
Given the LP coefficients d, this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients in d.
INTEGER(I4B) :: i,m
LOGICAL(LGT) :: polish
COMPLEX(SPC), DIMENSION(size(d)+1) :: a
COMPLEX(SPC), DIMENSION(size(d)) :: roots
m=size(d)
a(m+1)=cmplx(1.0_sp,kind=spc)  ! Set up complex coefficients for polynomial
a(m:1:-1)=cmplx(-d(1:m),kind=spc)  ! root finder.
polish=.true.
call zroots(a(1:m+1),roots,polish)  ! Find all the roots.
where (abs(roots) > 1.0) roots=1.0_sp/conjg(roots)  ! Reflect all roots outside the unit circle back inside.
a(1)=-roots(1)  ! Now reconstruct the polynomial coefficients,
a(2:m+1)=cmplx(1.0_sp,kind=spc)  ! by looping over the roots
do i=2,m
  a(2:i)=a(1:i-1)-roots(i)*a(2:i)  ! and synthetically multiplying.
a(i)=roots(i)*a(1)  !
end do
END SUBROUTINE fixrts

FUNCTION predic(data,d,nfut)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: data,d
INTEGER(I4B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic
Given an array data, and given the data's LP coefficients d in an array of length \( M \), this
routine applies equation (13.6.11) to predict the next \( N \) data points, which it returns in
an array as the function value \( \text{predic} \). Note that the routine references only the last \( M \)
values of data, as initial values for the prediction.
INTEGER(I4B) :: j,ndata,m
REAL(SP) :: discrp,sm
REAL(SP), DIMENSION(size(d)) :: reg
m=size(d)
ndata=size(data)
reg(1:m)=data(ndata:ndata+i-m:-1)
do j=1,nfut
  discrp=0.0
  This is where you would put in a known discrepancy if you were reconstructing a function
  by linear predictive coding rather than extrapolating a function by linear prediction. See
text.
  sm=discrp+dot_product(d,reg)
  reg=eoshift(reg,-1,sm)  ![If you want to implement circular arrays, you can
    predcic(j)=sm
  end do
END FUNCTION predic

* * *
FUNCTION evlmem(fdt, d, xms)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fdt, xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem
Given d and xms as returned by memcof, this function returns the power spectrum estimate 
\[ P(f) = \frac{1}{\Delta} \]

COMPLEX(SPC) :: z, zz
REAL(DP) :: theta
Trigonometric recurrences in double precision.
theta=TWOPI_D*fdt
z=cmplx(cos(theta),sin(theta),kind=spc)
zz=1.0_sp-z*poly(z,d)
evlmem=xms/abs(zz)**2  Equation (13.7.4).
END FUNCTION evlmem

zz=...poly(z,d)  The poly function in nrutil returns the value of the polynomial with coefficients d(:) at z. Here a version that takes real coefficients and a complex argument is actually invoked, but all the different versions have been overloaded onto the same name poly.

SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc
USE nr, ONLY : avevar
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(IN) :: ofac, hifac
REAL(SP), INTENT(OUT) :: prob
REAL(SP), INTENT(IN) :: x(:), y(:)
REAL(SP), DIMENSION(:), POINTER :: px, py
Input is a set of N data points with abscissas x (which need not be equally spaced) and ordinates y, and a desired oversampling factor ofac (a typical value being 4 or larger). The routine returns pointers to internally allocated arrays px and py. px is filled with an increasing sequence of frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and py is filled with the values of the Lomb normalized periodogram at those frequencies. The length of these arrays is 0.5*ofac*hifac*N. The arrays x and y are not altered. The routine also returns jmax such that py(jmax) is the maximum element in py, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present.

INTEGER(I4B) :: i,n,nout
REAL(SP) :: ave,cwtau,effm,expy,pnow,sumc,sumcy,sumsh,sumsy,swtau,var,wtau,xave,xdif,xmax,xmin
REAL(DP), DIMENSION(size(x)) :: tmp1,tmp2,wi,wpi,wpr,wr
LOGICAL(LGT), SAVE :: init=.true.

n=assert_eq(size(x),size(y),'period')
if (init) then
   init=.false.
end if
allocate(px(nout),py(nout))
call avevar(y(:),ave, var)
xmax=maxval(x(:))
xmin=minval(x(:))
xdif=xmax-xmin
Get mean and variance of the input data. Go through data to get the range of abscissas.
Chapter B13. Fourier and Spectral Applications

xave=0.5_sp*(xmax+xmin)
pnow=1.0_sp/(dif*ofac)
tmpl(:)=TWOPI_D*((x(:)-xave)*pnow)
wpr(:)=-2.0_dp*sin(0.5_dp*tmpl(:)**2)
wpi(:)=sin(tmpl(:))
wr(:)=cos(tmpl(:))
wi(:)=wpi(:)
do i=1,nout
  px(i)=pnow
  sumsh=dot_product(wi,wr)
  utau=0.5_sp*atan2(2.0_sp*sumsh,sumc)
  swtau=sin(utau)
cwtau=cos(utau)
tmp1(:)=wi(:)*cwtau-wr(:)*swtau
  px(:)=px(:)+(wr(:)*wpr(:)-wi(:)*wpi(:))+px(:)
  wi(:)=(wi(:)*wpr(:)+tmp1(:)*wpi(:))+wi(:)
  py(i)=0.5_sp*(sumcy**2/sumc+sumsy**2/sums)/var
  pnow=pnow+1.0_sp/(ofac*xdif)
end do

jmax=imaxloc(py(1:nout))
expy=exp(-py(jmax))
effm=2.0_sp*nout/ofac
prob=effm*expy
if (prob > 0.01_sp) prob=1.0_sp-(1.0_sp-expy)**effm
END SUBROUTINE period

This routine shows another example of how to return arrays whose size is not known in advance (cf. zbrac in Chapter B9). The coding is explained in the subsection on pointers in §21.5. The size of the output arrays, nout in the code, is available as size(px).

jmax=imaxloc... See discussion of imaxloc on p. 1017.
periodic signal is present.
Parameter: MACC is the number of interpolation points per 1/4 cycle of highest frequency.

```fortran
INTEGER(I4B) :: j,k,n,ndim,nfreq,nfreqt,nout
REAL(SP) :: ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,&
hs2wt,hypo,sterm,svar,xdif,xmax,xmin
REAL(SP), DIMENSION(:), ALLOCATABLE :: wk1,wk2
LOGICAL(LGT), SAVE :: init=.true.
n=assert_eq(size(x),size(y),'fasper')
if (init) then
 init=.false.
 nullify(px,py)
else
 if (associated(px)) deallocate(px)
 if (associated(py)) deallocate(py)
end if
nfreqt=ofac*hifac*n*MACC
nfreq=64
 do Size the FFT as next power of 2 above nfreq.
 if (nfreq >= nfreqt) exit
 nfreq=nfreq*2
 end do
ndim=2*nfreq
allocate(wk1(ndim),wk2(ndim))
call avevar(y(1:n),ave,svar)
Compute the mean, variance, and range of the data.
xmax=maxval(x(:))
xmin=minval(x(:))
xdif=xmax-xmin
wk1(1:ndim)=0.0
Zero the workspaces.
wk2(1:ndim)=0.0
fac=nx/(xdif*ofac)
fndim=ndim
do j=1,n
 Extrapolate the data into the workspaces.
 cterm=(cterm+sterm)**2
 cterm+sterm**2
 hypd=sqrt FTC1(k)**2
 hc2wt=0.5_sp*wc2(k)*hypo
 hs2wt=0.5_sp*wc2(k+1)/hypo
 cterm=cwtk+swk2(k+1)**2
 sterm=cwtk+swk2(k)**2
 px(j)=j*df
 py(j)=(cterm+sterm)/(2.0_sp*var)
 k=k+2
end do
allocate(px(nout),py(nout))
k=3
do j=1,nout
 Compute the Lomb value for each frequency.
 hypo=sqrt FTC1(k)**2
 hc2wt=0.5_sp*wc2(k)/hypo
 hs2wt=0.5_sp*wc2(k+1)/hypo
 cterm=cwtk+swk2(k+1)**2
 sterm=cwtk+swk2(k)**2
 px(j)=j*df
 py(j)=(cterm+sterm)/(2.0_sp*var)
 k=k+2
end do
allocate(px(nout),py(nout))
k=3
```

Estimate significance of largest peak value.
`effm=2.0_sp*nout/ofac`
`if ( prob > 0.01_sp ) prob=1.0_sp-(1.0_sp-expy)**effm`
CONTAINS
SUBROUTINE spreadval(y,yy,x,m)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: y,x
REAL(SP), DIMENSION(:), INTENT(INOUT) :: yy
INTEGER(I4B), INTENT(IN) :: m

Given an array yy of length N, extrapolate (spread) a value y into m actual array elements that best approximate the “fictional” (i.e., possibly noninteger) array element number x.

The weights used are coefficients of the Lagrange interpolating polynomial.

INTEGER(14B) :: ihi,ilo,ix,nden,n
REAL(SP) :: fac
INTEGER(I4B), DIMENSION(10) :: nfac = (/ & 1,1,2,6,24,120,720,5040,40320,362880 /)
if (m > 10) call nrerror(’factorial table too small in spreadval’)
end if

if (x == real(ix,sp)) then
  yy(ix)=yy(ix)+y
else
  ilo=min(max(int(x-0.5_sp*m+1.0_sp),1),n-m+1)
  nden=nfac(m)
  fac=product(x-arth(ilo,1,m))
  yy(ihi)=yy(ihi)+y*fac/(nden*(x-ihi))
  do j=ihi-1,ilo,-1
    nden=(nden/(j+1-ilo))*(j-ihi)
    yy(j)=yy(j)+y*fac/(nden*(x-j))
  end do
end if
END SUBROUTINE spreadval

This routine shows another example of how to return arrays whose size is not known in advance (cf. zbrac in Chapter B9). The coding is explained in the subsection on pointers in §21.5. The size of the output arrays, nout in the code, is available as size(px).

jmax=imaxloc... See discussion of imaxloc on p. 1017.

if (x == real(ix,sp)) then
  Without the explicit kind type parameter sp, real returns a value of type default real for an integer argument. This prevents automatic conversion of the routine from single to double precision. Here all you have to do is redefine sp in nrtype to get double precision.

* * *

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), DIMENSION(4) :: endpts

For an integral approximated by a discrete Fourier transform, this routine computes the correction factor that multiplies the DFT and the endpoint correction to be added. Input is the angular frequency w, stepsize delta, lower and upper limits of the integral a and b, while the array endpts of length 8 contains the first 4 and last 4 function values. The
correction factor $W(\theta)$ is returned as corfac, while the real and imaginary parts of the endpoint correction are returned as corre and corim.

```fortran
REAL(SP) :: a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,s1,sr,t,&
t2,t4,t6
REAL(DP) :: cth,ctth,spth2,sth,sthd4i,stth,th,th2,th4,&
tmth2,thm4i

th=w*delta

call assert(a < b, th >= 0.0, th <= PI_D, 'dftcor args')
if (abs(th) < 5.0e-2_dp) then
 Use series.
 t=th
 t2=t*t
 t4=t2*t2
 t6=t4*t2
 corfac=1.0_sp-(11.0_sp/720.0_sp)*t4+(23.0_sp/15120.0_sp)*t6
 a0r=(-2.0_sp/3.0_sp)*t2/45.0_sp+(103.0_sp/15120.0_sp)*t4-&
 (169.0_sp/226800.0_sp)*t6
 a1r=(7.0_sp/24.0_sp)-(7.0_sp/180.0_sp)*t2+(5.0_sp/3456.0_sp)*t4-&
 (11.0_sp/25920.0_sp)*t6
 a2r=(-1.0_sp/6.0_sp)*t2/45.0_sp+(23.0_sp/15120.0_sp)*t4/64800.0_sp
 a3r=(1.0_sp/24.0_sp)*t2/180.0_sp+(5.0_sp/241920.0_sp)*t4/64800.0_sp
 a0i=t*(2.0_sp/45.0_sp+(2.0_sp/105.0_sp)*t2-&
 (8.0_sp/2835.0_sp)*t4/64800.0_sp)*t2&t2
 a1i=t*(7.0_sp/72.0_sp-t2/168.0_sp+(11.0_sp/72576.0_sp)*t4&
 (8.0_sp/233280.0_sp)*t4)*t4/64800.0_sp
 a2i=t*(-7.0_sp/90.0_sp)*t2/216.0_sp+(11.0_sp/72576.0_sp)*t4&
 (19.0_sp/622080.0_sp)*t4)*t4/64800.0_sp
 a3i=t*(-7.0_sp/360.0_sp)*t2/840.0_sp+(11.0_sp/362880.0_sp)*t4&
 (13.0_sp/29937600.0_sp)*t4)&
 end if
else
 Use trigonometric formulas in double precision.
 cth=cos(th)
 sth=sin(th)
 ctth=cth**2-sth**2
 stth=2.0_dp*sth*cth
 th2=th*th
 th4=th2*th2
 tmth2=3.0_dp-th2
 spth2=6.0_dp+th2
 sthd4i=1.0_sp/(6.0_dp*th4)
 thm4i=2.0_dp*sth4i
 corfac=sth4i*spth2*ctth*ctth
 a0r=sth4i*(-42.0_dp+5.0_dp*th2+spth2*cth)
 a1r=sth4i*(-14.0_dp+2.0_dp*tmth2-7.0_dp*ctth)
 a2r=sth4i*(-4.0_dp+2.0_dp*tmth2*ctth)
 a3r=sth4i*(2.0_dp+tmth2-2.0_dp*sthd4i)
end if

cl=thm4i*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
s1=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=s0r*endpts(8)+s1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
argw=(b-a)
c=cos(argw)
s=sin(argw)
corre=cl*c+cr*s
corim=s1+s*cr+c*sr
END SUBROUTINE dftcor
```
SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : dftcor,polint,realft
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE
FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
INTEGER(I4B), PARAMETER :: M=64,NDFT=1024,MPOL=6
Examplesubroutineillustratinghowtousetheroutine
dftcor. Theusersuppliesanexter-
nalfunction func thatreturnsthequantity
h(t). Therooutinethenreturns
∫b
a cos(ωt)h(t) dt
as cosint and
∫b
a sin(ωt)h(t) dt
as sinint.
Parameters: Thevalues of M, NDFT, and MPOL aremerely illustrative and should be opti-
mized foryour particular application. M is thenumberof subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.
INTEGER(I4B) :: nn
INTEGER(I4B), SAVE :: init=0
INTEGER(I4B), DIMENSION(MPOL) :: nnmpol
REAL(SP) :: c,cdft,cerr,corfac,corim,corre,en,s,sdft,serr
REAL(SP), SAVE :: delta
REAL(SP), DIMENSION(MPOL) :: cpol,spol,xpol
REAL(SP), DIMENSION(NDFT), SAVE :: data
REAL(SP), DIMENSION(8), SAVE :: endpts
REAL(SP), SAVE :: aold=-1.0e30_sp,bold=-1.0e30_sp
if (init /= 1 .or. a /= aold .or. b /= bold) then
  Do we need to initialize, or
  is only ω changed?
  init=1
  aold=a
  bold=b
  delta=(b-a)/M
  data(1:M+1)=func(a+arth(0,1,M+1)*delta)
  Load the function values into the data array.
  data(M+2:NDFT)=0.0
  Zeropad the rest of the data array.
  endpts(1:4)=data(1:4)
  Load the endpoints.
  endpts(5:8)=data(M-2:M+1)
  call realft(data(1:NDFT),1)
  realft returns the unused value corresponding to ω N/2 in
data(2). We actually want
this element to contain the imaginary part corresponding to ω N/2, which is zero.
data(2)=0.0
end if
Now interpolate on the DFT result for the desired frequency. If the frequency is an ω n, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.
en=en+delta*NDFT/TWOPI+1.0_sp
nn=min(max(int(en-0.5_sp*MPOL+1.0_sp),1),NDFT/2-MPOL+1) Leftmost point for the in-
nmpol=arth(nn,1,MPOL)
cpol(1:MPOL)=data(2*nnmpol(:)-1)
spol(1:MPOL)=data(2*nnmpol(:))
xpol(1:MPOL)=nnmpol(:)
call polint(xpol,cpol,en,cdft,cerr)
call polint(xpol,spol,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac,corf)
cdf=cdft*corfac+corre
sdft=sdft*corfac+corim
Finally multiply by Δ and exp(iωa).
c=delta*cos(wa)
s=delta*sin(wa)
cosint=c*cdft+s*sdft
SUBROUTINE dftint
  REAL, DIMENSION(:) :: s, cdft, c, sdft
END SUBROUTINE dftint

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE
  SUBROUTINE wtstep(a,isign)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
    INTEGER(I4B), INTENT(IN) :: isign
  END SUBROUTINE wtstep
END INTERFACE

INTEGER(I4B) :: n,nn
n=size(a)
call assert(iand(n,n-1)==0, 'n must be a power of 2 in wt1')
if (n < 4) RETURN
if (isign <= 0) then
  Wavelet transform.
  nn=n
  Start at largest hierarchy,
  do
    if (nn < 4) exit
    call wtstep(a(1:nn),isign)
    nn=nn/2
    and work towards smallest.
  end do
else
  Inverse wavelet transform.
  nn=4
  Start at smallest hierarchy,
  do
    if (nn > n) exit
    call wtstep(a(1:nn),isign)
    nn=nn*2
    and work towards largest.
  end do
end if
END SUBROUTINE wt1

SUBROUTINE daub4(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), PARAMETER :: C0=0.4829629131445341_sp,
C1=0.8365163037378079_sp,
C2=0.2241438680420134_sp,
C3=-0.1294095225512604_sp
INTEGER(I4B) :: n,nh,nhp,nhm
n=size(a)
if (n < 4) RETURN
nh=n/2
nhp=nh+1
nhm=nh-1
Applies the Daubechies 4-coefficient wavelet filter to data vector a (for isign=1) or applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.
if (isign >= 0) then
  Apply filter.
  wksp(1:nhm) = C0*a(1:n-3:2)+C1*a(2:n-2:2) &
               +C2*a(3:n-1:2)+C3*a(4:n:2)
  wksp(nhm+1) = C0*a(n)+C1*a(n+1)+C2*a(1)+C3*a(2)
  wksp(nhm+2:n-1) = C3*a(1:n-3:2)+C2*a(2:n-2:2) &
                    +C1*a(3:n-1:2)+C0*a(4:n:2)
else
  Apply transpose filter.
  wksp(1) = C2*a(n)+C1*a(n)+C0*a(1)+C3*a(nhp)
  wksp(2) = C3*a(n)-C0*a(n)+C1*a(1)-C2*a(nhp)
  wksp(3:n-1:2) = C2*a(1:nhm)+C1*a(nhp:n-1) &
                 +C0*a(2:nh)+C3*a(nh+2:n)
  wksp(4:n:2) = C3*a(1:nhm)-C0*a(nhp:n-1) &
                +C1*a(2:nh)-C2*a(nh+2:n)
end if
a(1:n)=wksp(1:n)
END SUBROUTINE daub4

MODULE pwtcom
USE nrtype
INTEGER(I4B), SAVE :: ncof=0,ioff,joff
  These module variables communicate the
  filter to pwt.
END MODULE pwtcom

SUBROUTINE pwtset(n)
USE nrtype; USE nrutil, ONLY : nrerror
USE pwtcom
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n

Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)
REAL(SP) :: sig
REAL(SP), PARAMETER ::
c4(4)=(/&
  0.4829629131445341_sp, 0.8365163037378079_sp, k
  0.221438680420134_sp, -0.1294095225512604_sp /), &
c12(12)=(/&
  0.111540743350_sp, 0.494623890398_sp, 0.751133908021_sp, &
  0.315250351709_sp,-0.226264693965_sp,-0.129766867567_sp, &
  0.097501605587_sp, 0.027522865530_sp,-0.031582039318_sp, &
  0.000553842201_sp, -0.01077301085_sp, &
c20(20)=(/&
  0.026670057901_sp, 0.188176800078_sp, 0.527201188932_sp, &
  0.689459039484_sp, 0.281172343661_sp,-0.249946424327_sp, &
  -0.195946274377_sp, 0.127369340336_sp, 0.093057366404_sp, &
  -0.071394147166_sp,-0.029457536822_sp, 0.033212674059_sp, &
  0.003606553567_sp,-0.010733175483_sp, 0.001395351747_sp, &
  0.0099240295_sp,-0.00008886695_sp, -0.000116466855_sp, &
  0.000093588670_sp,-0.000013264203_sp /)
if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)
allocate(cc(n),cr(n))
ncof=n
ioff=-n/2
joff=-n+2
select case(n)
case(4)
  These values center the “support” of the wavelets at each
  level. Alternatively, the “peaks” of the wavelets can
  be approximately centered by the choices ioff=-2
  and joff=n+2. Note that daub4 and pwtset with
  n=4 use different default centerings.
Here we need to have as global variables arrays whose dimensions are known only at run time. At first sight the situation is the same as with the module fminln in newt on p. 1197. If you review the discussion there and in §21.5, you will recall that there are two good ways to implement this: with allocatable arrays (“Method 1”) or with pointers (“Method 2”). There is a difference here that makes allocatable arrays simpler. We do not wish to deallocate the arrays on exiting pwtset. On the contrary, the values in cc and cr need to be preserved for use in pwt. Since allocatable arrays are born in the well-defined state of “not currently allocated,” we can declare the arrays here as

```fortran
REAL(SP), DIMENSION(:,), ALLOCATABLE, SAVE :: cc,cr
```
and test whether they were used on a previous call with

```fortran
if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)
```
We are then ready to allocate the new storage:

```fortran
allocate(cc(n),cr(n))
```
With pointers, we would need the additional machinery of nullifying the pointers on the initial call, since pointers are born in an undefined state (see §21.5).

There is an additional important point in this example. The module variables need to be used by a “sibling” routine, pwt. We need to be sure that they do not become undefined when we exit pwtset. We could ensure this by putting a USE pwtcom in the main program that calls both pwtset and pwt, but it’s easy to forget to do this. It is preferable to put explicit SAVEs on all the module variables.

```fortran
SUBROUTINE pwt(a,isign)
USE nrtype; USE nrutil, ONLY : arth,nrerror
USE pwtcom
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: a
INTEGER(4B), INTENT(IN) :: isign

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a (for isign=1) or applies its transpose (for isign=1). Used hierarchically by routines wt1 and wtn. The actual filter is determined by a preceding (and required) call to pwtset, which initializes the module pwtcom.

REAL(SP), DIMENSION(size(a)) :: wksp
INTEGER(4B), DIMENSION(size(a)/2) :: jf,jr
INTEGER(4B) :: k,n,nh,nmod
n=size(a)
if (n < 4) RETURN
if (ncof == 0) call nrerror('pwt: must call pwtset before pwt')
nmod=ncof*n
A positive constant equal to zero mod n.
nh=n/2
wksp(:)=0.0
jf=land(n-1,arth(2+nmod+ioff,2,nh)) Use bitwise AND to wrap-around the point-
jr=land(n-1,arth(2+nmod+joff,2,nh)) ers. n-1 is a mask of all bits, since n is
do k=1,ncof
 if (isign >= 0) then Apply filter.
 wksp(1:nh)=wksp(1:nh)+cc(k)*a(jf+1)
 wksp(nh+1:n)=wksp(nh+1:n)+cr(k)*a(jr+1)
 else Apply transpose filter.
 wksp(jf+1)=wksp(jf+1)+cc(k)*a(1:nh)
 wksp(jr+1)=wksp(jr+1)+cr(k)*a(nh+1:n)
 end if
 if (k == ncof) exit
 if (isign >= 0) then Do one-dimensional wavelet transform.
 nt=n
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 i3=i1+i2
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 do i1=1,nprev
 i3=i1+i2
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 if (isign >= 0) then
 nt=n
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end do
 else
 nt=n
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end do
 end if
 end do
end do
a(:)=wksp(:) Copy the results back from workspace.
END SUBROUTINE pwt

* * *

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype; USE nrutil, ONLY : arth, assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE
 SUBROUTINE wtstep(a,isign)
 USE nrtype
 IMPLICIT NONE
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
 INTEGER(I4B), INTENT(IN) :: isign
 END SUBROUTINE wtstep
END INTERFACE

Replaces a by its N-dimensional discrete wavelet transform, if isign is input as 1.
n is an integer array of length N, containing the lengths of each dimension (number of real values), which must all be powers of 2. a is a real array of length equal to the product of these lengths, in which the data are stored as in a multidimensional real FORTRAN array. If isign is input as −1, a is replaced by its inverse wavelet transform. The subroutine wtstep, whose actual name must be supplied in calling this routine, is the underlying wavelet filter.

Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER(I4B) :: i1,i2,i3,idim,n,ndim,nnew,nprev,nt,ntot
REAL(SP), DIMENSION(:), ALLOCATABLE :: wksp
call assert(iand(nn,nn-1)==0, 'each dimension must be a power of 2 in wtn')
allocate(wksp(maxval(nn)))
nidm=size(nn)
ntot=product(nn(:))
nprev=1
do idim=1,ndim
 n=nn(idim)
nnew=n*nprev
 if (a > 4) then
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 i3=i1+i2
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end do
 do i1=1,nprev
 i3=i1+i2
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end if
 if (isign >= 0) then Do one-dimensional wavelet transform.
 nt=n
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end do
 else Copy the relevant row or column or etc. into workspace.
 nt=n
 do i2=0,ntot-1,nnew
 do i1=1,nprev
 wksp(1:n)=a(arth(i3,nprev,n))
 end do
 end do
 end if
end do

if (nt < 4) exit
 call wtstep(wksp(1:nt),isign)
 nt=nt/2
end do
else
 nt=4
 do
 if (nt > n) exit
 call wtstep(wksp(1:nt),isign)
 nt=nt*2
 end do
 end if
 i3=i1+i2
 a(arth(i3,nprev,n))=wksp(1:n)
 i3=i3+n*nprev
end do
end if
nprev=nnew
end do
deallocate(wksp)
END SUBROUTINE wtn
Chapter B14. Statistical Description of Data

SUBROUTINE moment(data, ave, adev, sdev, var, skew, curt)
USE ntype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: ave, adev, sdev, var, skew, curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data

Given an array of data, this routine returns its mean ave, average deviation adev, standard deviation sdev, variance var, skewness skew, and kurtosis curt.
INTEGER(I4B) :: n
REAL(SP) :: ep
REAL(SP), DIMENSION(size(data)) :: p, s
n=size(data)
if (n <= 1) call nrerror('moment: n must be at least 2')
ave=sum(data(:))/n
First pass to get the mean.
s(:)=data(:)-ave
Second pass to get the first (absolute), second, third, and fourth moments of the deviation from the mean.
ep=sum(abs(s(:)))/n
adev=sum(abs(s(:)))/n
var=sum(p(:))
p(:)=s(:)*s(:)
var=sum(p(:))
p(:)=p(:)*s(:)
var=(var-ep**2/n)/(n-1)
Corrected two-pass formula.
sdev=sqrt(var)
if (var /= 0.0) then
 skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.0_sp
else
call nrerror('moment: no skew or kurtosis when zero variance')
end if
END SUBROUTINE moment

* * *

SUBROUTINE ttest(data1, data2, t, prob)
USE ntype
USE nr, ONLY : avevar, betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1, data2
REAL(SP), INTENT(OUT) :: t, prob

Given the arrays data1 and data2, which need not have the same length, this routine returns Student's t as t, and its significance as prob, small values of prob indicating that
the arrays have significantly different means. The data arrays are assumed to be drawn from populations with the same true variance.

```fortran
INTEGER(I4B) :: n1, n2
REAL(SP) :: ave1, ave2, df, var1, var2
n1 = size(data1)
n2 = size(data2)
call avevar(data1, ave1, var1)
call avevar(data2, ave2, var2)
df = n1 + n2 - 2
var = ((n1 - 1) * var1 + (n2 - 1) * var2) / df
Degrees of freedom.
t = (ave1 - ave2) / sqrt(var * (1.0_sp/n1 + 1.0_sp/n2))
Pooled variance.
prob = betai(0.5_sp * df, 0.5_sp, df/(df + t**2))
See equation (6.4.9).
END SUBROUTINE ttest
```

```fortran
SUBROUTINE avevar(data, ave, var)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave, var
n = size(data)
ave = sum(data(:)) / n
s(:) = data(:) - ave
var = dot_product(s, s)
var = (var - sum(s)**2 / n) / (n - 1)
Corrected two-pass formula (14.1.8).
END SUBROUTINE avevar
```

```fortran
SUBROUTINE tutest(data1, data2, t, prob)
USE nrtype
USE nr, ONLY : avevar, betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1, data2
REAL(SP), INTENT(OUT) :: t, prob
Given the arrays data1 and data2, which need not have the same length, this routine returns Student's t as t, and its significance as prob, small values of prob indicating that the arrays have significantly different means. The data arrays are allowed to be drawn from populations with unequal variances.
INTEGER(I4B) :: n1, n2
REAL(SP) :: ave1, ave2, df, var1, var2
n1 = size(data1)
n2 = size(data2)
call avevar(data1, ave1, var1)
call avevar(data2, ave2, var2)
t = (ave1 - ave2) / sqrt(var1 / n1 + var2 / n2)
Degrees of freedom.
prob = betai(0.5_sp * df, 0.5_sp, df/(df + t**2))
See equation (6.4.9).
END SUBROUTINE tutest
```
SUBROUTINE tptest(data1, data2, t, prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : avevar, betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1, data2
REAL(SP), INTENT(OUT) :: t, prob

Given the paired arrays data1 and data2 of the same length, this routine returns Student’s t for paired data as t, and its significance as prob, small values of prob indicating a significant difference of means.

INTEGER(I4B) :: n
REAL(SP) :: ave1, ave2, cov, df, sd, var1, var2
n = assert_eq(size(data1), size(data2), 'tptest')
call avevar(data1, ave1, var1)
call avevar(data2, ave2, var2)
cov = dot_product(data1(:) - ave1, data2(:) - ave2)
df = n - 1
sd = sqrt((var1 + var2 - 2.0_sp * cov) / n)
t = (ave1 - ave2) / sd
prob = betai(0.5_sp, df, 0.5_sp, df/(df + t**2))
END SUBROUTINE tptest

SUBROUTINE ftest(data1, data2, f, prob)
USE nrtype
USE nr, ONLY : avevar, betai
IMPLICIT NONE
REAL(SP), INTENT(IN), DIMENSION(:) :: data1, data2
REAL(SP), INTENT(OUT) :: f, prob

Given the arrays data1 and data2, which need not have the same length, this routine returns the value of f, and its significance as prob. Small values of prob indicate that the two arrays have significantly different variances.

INTEGER(I4B) :: n1, n2
REAL(SP) :: ave1, ave2, df1, df2, var1, var2
n1 = size(data1)
n2 = size(data2)
call avevar(data1, ave1, var1)
call avevar(data2, ave2, var2)
if (var1 > var2) then
 f = var1/var2
 df1 = n1 - 1
 df2 = n2 - 1
else
 f = var2/var1
 df1 = n2 - 1
 df2 = n1 - 1
end if
prob = 2.0_sp * betai(0.5_sp, df2, 0.5_sp, df1, df2/(df2 + df1 * f))
if (prob > 1.0) prob = 2.0_sp - prob
END SUBROUTINE ftest
SUBROUTINE chsone(bins, ebins, knstrn, df, chsq, prob)
USE nrtype; USE nrutil, ONLY : assert_eq, nrerror
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df, chsq, prob
REAL(SP), DIMENSION(:,), INTENT(IN) :: bins, ebins

Given the same-size arrays bins containing the observed numbers of events, and
ebins containing the expected numbers of events, and given the number of constraints knstrn
(normally one), this routine returns (trivially) the number of degrees of freedom df, and
(nontrivially) the chi-square chsq and the significance prob. A small value of prob
indicates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both real arrays, although bins will normally contain integer values.

INTEGER(I4B) :: ndum
ndum=assert_eq(size(bins), size(ebins), 'chsone')
if (any(ebins(:) <= 0.0)) call nrerror('bad expected number in chsone')
df=size(bins)-knstrn
chsq=sum((bins(:)-ebins(:))**2/ebins(:))
prob=gammq(0.5_sp*df, 0.5_sp*chsq) \quad \text{Chi-square probability function. See §6.2.}
END SUBROUTINE chsone

SUBROUTINE chstwo(bins1, bins2, knstrn, df, chsq, prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df, chsq, prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1, bins2

Given the same-size arrays bins1 and bins2, containing two sets of binned data, and given
the number of constraints knstrn (normally 1 or 0), this routine returns the number of
degrees of freedom df, the chi-square chsq, and the significance prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note
that bins1 and bins2 are both real arrays, although they will normally contain integer values.

INTEGER(I4B) :: ndum
LOGICAL(LGT), DIMENSION(size(bins1)) :: nzeromask
ndum=assert_eq(size(bins1), size(bins2), 'chstwo')
nzeromask = bins1(:) /= 0.0 .or. bins2(:) /= 0.0
chsq=sum((bins1(:)-bins2(:))**2/(bins1(:)+bins2(:)), mask=nzeromask)
df=count(nzeromask)-knstrn \quad \text{No data means one less degree of freedom.}
prob=gammq(0.5_sp*df, 0.5_sp*chsq) \quad \text{Chi-square probability function. See §6.2.}
END SUBROUTINE chstwo

\textbf{nzeromask=...chisq=sum(...mask=nzeromask)} \quad \text{We use the optional argu-
ment mask in sum to select out the elements to be summed over. In this
case, at least one of the elements of bins1 or bins2 is not zero
for each term in the sum.}

* * *
SUBROUTINE ksone(data, func, d, prob)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : probks, sort
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d, prob
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: data

INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE

Given an array data, and given a user-supplied function of a single variable func which is a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1 (for largest values of its argument), this routine returns the K–S statistic d, and the significance level prob. Small values of prob show that the cumulative distribution function of data is significantly different from func. The array data is modified by being sorted into ascending order.

INTEGER(I4B) :: n
REAL(SP) :: en
REAL(SP), DIMENSION(size(data)) :: fvals
REAL(SP), DIMENSION(size(data)+1) :: temp

n = size(data)
en = n
fvals(:) = func(data(:))
temp = arth(0, 1, n+1)/en
d = maxval(max(abs(temp(1:n) - fvals(:)), &
 abs(temp(2:n+1) - fvals(:))))
en = sqrt(en)
prob = probks((en*0.12_sp+0.11_sp/en)*d)

END SUBROUTINE ksone

Note the difference between max and maxval: max takes two or more arguments and returns the maximum. If the arguments are two arrays, it returns an array each of whose elements is the maximum of the corresponding elements in the two arrays. maxval takes a single array argument and returns its maximum value.

SUBROUTINE kstwo(data1, data2, d, prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : probks, sort2
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d, prob
REAL(SP), DIMENSION(:,), INTENT(IN) :: data1, data2

Given arrays data1 and data2, which can be of different length, this routine returns the K–S statistic d, and the significance level prob for the null hypothesis that the data sets are drawn from the same distribution. Small values of prob show that the cumulative distribution function of data1 is significantly different from that of data2. The arrays data1 and data2 are not modified.

INTEGER(I4B) :: n1, n2
REAL(SP) :: en1, en2, en
REAL(SP), DIMENSION(size(data1)+size(data2)) :: dat, org
n1 = size(data1)
n2 = size(data2)
en1 = n1
en2 = n2
dat(1:n1) = data1
Copy the two data sets into a single array.
dat(n1+1:) = data2
org(1:n1)=0.0
org(n1+1:)=1.0

Define an array that contains 0 when the corresponding element comes from data1, 1 from data2.
call sort2(dat,org)
Sort the array of 1's and 0's into the order of the merged data sets.
d=maxval(abs(cumsum(org)*en2-cumsum(1.0_sp-1.0_sp)/en1))
Now use cumsum to get the c.d.f. corresponding to each set of data.
en=sqrt(en1*en2/(en1+en2))
prob=probks((en*0.12_sp+0.11_sp/en)*d)
Compute significance.
END SUBROUTINE kstwo

The problem here is how to compute the cumulative distribution function (c.d.f.) corresponding to each set of data, and then find the corresponding KS statistic, without a serial loop over the data. The trick is to define an array that contains 0 when the corresponding element comes from the first data set and 1 when it's from the second data set. Sort the array of 1's and 0's into the same order as the merged data sets. Now tabulate the partial sums of the array. Every time you encounter a 1, the partial sum increases by 1. So if you normalize the partial sums by dividing by the number of elements in the second data set, you have the c.d.f. of the second data set.

If you subtract the array of 1’s and 0’s from an array of all 1’s, you get an array where 1 corresponds to an element in the first data set, 0 the second data set. So tabulating its partial sums and normalizing gives the c.d.f. of the first data set. As we’ve seen before, tabulating partial sums can be done with a parallel algorithm (cumsum in nrutil). The KS statistic is just the maximum absolute difference of the c.d.f.'s, computed in parallel with Fortran 90’s maxval function.

FUNCTION probks(alam)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alam
REAL(SP) :: probks
REAL(SP), PARAMETER :: EPS1=0.001_sp,EPS2=1.0e-8_sp
INTEGER(I4B), PARAMETER :: NITER=100
Kolmogorov-Smirnov probability function.
INTEGER(I4B) :: j
REAL(SP) :: a2,fac,term,termbf
a2=-2.0_sp*alam**2
fac=2.0
probks=0.0
termbf=0.0
Previous term in sum.
do j=1,NITER
 term=fac*exp(a2*j**2)
 probks=probks+term
 if (abs(term) <= EPS1*termbf .or. abs(term) <= EPS2*probks) RETURN
 fac=-fac
 termbf=abs(term)
end do
probks=1.0
Get here only by failing to converge, which implies the function is very close to 1.
END FUNCTION probks

* * *
SUBROUTINE cntab1(nn, chisq, df, prob, cramrv, ccc)
USE nrtype; USE nrutil, ONLY : outerprod
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(14B), DIMENSION(:,,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq, df, prob, cramrv, ccc
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn, this routine returns the chi-square chisq, the number of degrees of freedom df, the significance level prob (small values indicating a significant association), and two measures of association, Cramer's V (cramrv), and the contingency coefficient C (ccc).

INTEGER(14B) :: nni, nnj
REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
REAL(SP), DIMENSION(size(nn,1),size(nn,2)) :: expctd
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sum=sum(sumi(:)) Get the grand total.
ni=size(sumi)-count(sumi(:) == 0.0) Eliminate any zero rows by reducing the number of rows.
nj=size(sumj)-count(sumj(:) == 0.0) Eliminate any zero columns.
df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
chisq=sum((nn(:,:)-expctd(:,:))**2/(expctd(:,:)+TINY)) Do the chi-square sum. Here TINY guarantees that any eliminated row or column will not contribute to the sum.
prob=gammq(0.5_sp*df,0.5_sp*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sumn*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sumn))
END SUBROUTINE cntab1

f90
sumi(:)=sum(...dim=2)...sumj(:)=sum(...dim=1) We use the optional argument dim of sum to sum first over the columns (dim=2) to get the row totals, and then to sum over the rows (dim=1) to get the column totals.

expectd(:,)=... This is a direct implementation of equation (14.4.2) using outerprod from nrutil.

chisq=... And this is a direct implementation of equation (14.4.3).

SUBROUTINE cntab2(nn, h, hx, hy, hygx, hxgy, uygx, uxgy, uxy)
USE nrtype
IMPLICIT NONE
INTEGER(14B), DIMENSION(:,,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h, hx, hy, hygx, hxgy, uygx, uxgy, uxy
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn, where the first index labels the x-variable and the second index labels the y variable, this routine returns the entropy h of the whole table, the entropy hx of the x-distribution, the entropy hy of the y-distribution, the entropy hygx of y given x, the entropy hxgy of x given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y (eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).

REAL(SP) :: sum
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
sumi(:)=sum(nn(:,),dim=2) Get the row totals.
sumj(:)=sum(nn(:,),dim=1) Get the column totals.
sum=sum(sumi(:))

Entropies distribution.

h = sum(sumi(:)) / (log(sumi(:)) / sumi(:), mask=(sumi(:) /= 0.0) / sum)
h = sum(sumj(:)) / (log(sumj(:)) / sumj(:), mask=(sumj(:) /= 0.0) / sum)
and of the y distribution.

$$h = \frac{\text{sum}(\text{nn}(:, :) \times \log(\text{nn}(:, :) / \text{sumn})), \text{mask}=(\text{nn}(:, :) /= 0))}{\text{sumn}}$$

Total entropy: loop over both x and y.

$$\text{hygx} = \frac{h - x}{h}$$

Uses equation (14.4.18).

$$\text{uygx} = \frac{(\text{hy} - \text{hygx})}{(h + \text{TINY})}$$

Equation (14.4.15).

$$\text{uxy} = \frac{2.0 \cdot \text{sp} \cdot (h - \text{hy})}{(h + \text{hy} \times \text{TINY})}$$

Equation (14.4.17).

$$\text{ END SUBROUTINE cntab2 }$$

This code exploits both the dim feature of sum (see discussion after cntab1) and the mask feature to restrict the elements to be summed over.

* * *

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given two arrays x and y of the same size, this routine computes their correlation coefficient r (returned as r), the significance level at which the null hypothesis of zero correlation is disproved (prob whose small value indicates a significant correlation), and Fisher’s z (returned as z), whose value can be used in further statistical tests as described above the routine in Volume 1.

Parameter: TINY will regularize the unusual case of complete correlation.

REAL(SP), DIMENSION(size(x)) :: xt,yt
REAL(SP) :: ax,ay,df,sxx,sxy,syy,t
INTEGER(I4B) :: n
n=assert_eq(size(x),size(y),'pearsn')

ax=sum(x)/n
ay=sum(y)/n
xt(:)=x(:)-ax
yt(:)=y(:)-ay
sxx=dot_product(xt,xt)
syy=dot_product(yt,yt)
sxy=dot_product(xt,yt)
r=sxy/sqrt(sxx*syy+TINY)

$z=0.5 \cdot \text{sp} \cdot \log(((1.0 \cdot \text{sp} \cdot r+TINY))/((1.0 \cdot \text{sp} \cdot r+TINY)))$

Fisher’s z transformation.

$df=n-2$

t=r*sqrt(df/((1.0 \cdot \text{sp} \cdot r+TINY)*((1.0 \cdot \text{sp} \cdot r+TINY))$

Equation (14.5.5).

prob=betai(0.5_sp*df,0.5_sp,df/(df+df+2))

Student’s t probability.

end subroutine pearsn

* * *
SUBROUTINE spear(data1, data2, d, zd, probd, rs, probrs)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai, erfcc, sort2
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1, data2
REAL(SP), INTENT(OUT) :: d, zd, probd, rs, probrs

Given two data arrays of the same size, data1 and data2, this routine returns their sum-
squared difference of ranks as \(D \), the number of standard deviations by which \(D \) deviates
from its null-hypothesis expected value as zd, the two-sided significance level of this deviation
as probd, Spearman's rank correlation \(r_s \) as rs, and the two-sided significance level of
its deviation from zero as probrs. data1 and data2 are not modified. A small value of either
probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).

INTEGER(14B) :: n
REAL(SP) :: aved, df, en, en3n, fac, sf, sg, t, vard
REAL(SP), DIMENSION(size(data1)) :: wksp1, wksp2
n=assert_eq(size(data1), size(data2), 'spear')
wksp1(:)=data1(:)
wksp2(:)=data2(:)
call sort2(wksp1, wksp2)
call crank(wksp1, sf)
call sort2(wksp2, wksp1)
call crank(wksp2, sg)
wksp1(:)=wksp1(:)-wksp2(:)
d=dot_product(wksp1, wksp1)
Sum the squared difference of ranks.
en=n
en3n=en**3-en
aved=en3n/6.0_sp-(sf+sg)/12.0_sp
Expectation value of \(D \),
fac=(1.0_sp-sf/en3n)*(1.0_sp-sg/en3n)
and variance of \(D \) give
vard=((en-1.0_sp)*en**2*(en+1.0_sp)**2/36.0_sp)*fac
number of standard deviations,
zd=(d-aved)/sqrt(vard)
and significance.
probd=erfcc(abs(zd)/SQRT2)
rs=(1.0_sp-(6.0_sp/en3n)*(d+(sf+sg)/12.0_sp))/sqrt(fac)
Rank correlation coefficient,
fac=(1.0_sp+rs)*(1.0_sp-rs)
if (fac > 0.0) then
\(t=rs*sqrt((en-2.0_sp)/fac) \)
and its \(t \) value,
df=en-2.0_sp
probrs=betai(0.5_sp*df, 0.5_sp, df/(df+t**2))
give its significance.
else
probrs=0.0
end if
CONTAINS

SUBROUTINE crank(w, s)
USE nrtype; USE nrutil, ONLY : arth, array_copy
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: s
REAL(SP), DIMENSION(:), INTENT(INOUT) :: w

Given a sorted array w, replaces the elements by their rank, including midranking of ties,
and returns as \(s \) the sum of \(f^3 - f \), where \(f \) is the number of elements in each tie.

INTEGER(14B) :: i, n, ndum, nties
INTEGER(14B), DIMENSION(:) :: tstart, tend, tie, idx
n=size(w)
idx(:)=arth(1,1,n)
Index vector.
tie(:)=merge(1,0,w == eoshift(w,-1))
Look for ties: Compare each element to the one before. If it's equal, it's part of a tie, and
we put 1 into tie. Otherwise we put 0.
tie(1)=0
Boundary: the first element must be zero.
w(:)=idx(:)
Assign ranks ignoring possible ties.
if (all(tie == 0)) then
No ties—we're done.
s=0.0
RETURN
end if
call array_copy(pack(idx(:), tie(:)<eoshift(tie(:),1)), tstart, nties, ndum)
Look for \(0 \rightarrow 1\) transitions in \(tie\), which mean that the 0 element is the start of a tie run.

Store index of each transition in \(tstart\). \(nties\) is the number of ties found.

\[
tend(1:nties)=\text{pack}(idx(:),tie(:)>\text{eoshift}(tie(:),1))
\]

Look for \(1 \rightarrow 0\) transitions in \(tie\), which mean that the 1 element is the end of a tie run.

\[
do i=1,nties
 \begin{align*}
 w(tstart(i):tend(i)) &= (tstart(i)+tend(i))/2.0_sp \\
 \text{end do}
 \end{align*}
\]

\[tend(1:nties)=tend(1:nties)-tstart(1:nties)+1\]

Now calculate \(s\).

\[s=\text{sum}(tend(1:nties)**3-tend(1:nties))\]

END SUBROUTINE crank

END SUBROUTINE spear

To understand how the parallel version of \texttt{crank} works, let's consider an example of 9 elements in the array \(w\), which is input in sorted order to \texttt{crank}. The elements in our example are given in the second line of the following table:

<table>
<thead>
<tr>
<th>index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>data in (w)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>shift right</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>compare</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>tie array</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>shift left</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(0 \rightarrow 1)</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>\text{start index}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 \rightarrow 0)</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>\text{stop index}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We look for ties by comparing this array with itself, right shifted by one element (“shift right” in table). We record a 1 for each element that is the same, a 0 for each element that is different (“compare”). A 1 indicates the element is part of a tie with the \textit{preceding} element, so we always set the first element to 0, even if it was a 1 as in our example. This gives the “tie array.” Now wherever the tie array makes a transition \(0 \rightarrow 1\) indicates the start of a tie run, while a \(1 \rightarrow 0\) transition indicates the end of a tie run. We find these transitions by comparing the tie array to itself left shifted by one (“shift left”). If the tie array element is smaller than the shifted array element, we have a \(0 \rightarrow 1\) transition and we record the corresponding index as the start of a tie. Similarly if the tie array element is larger we record the index as the end of a tie. Note that the shifts must be end-off shifts with zeros inserted in the gaps for the boundary conditions to work.

\[
call \text{array_copy}((\text{pack}(idx(:),tie(:)<\text{eoshift}(tie(:),1)),}
\]

\[
\text{tstart,nties,ndum})
\]

The start indices (1, 3, and 8 in our example above) are here packed into the first few elements of \(tstart\). \texttt{array_copy} is a useful routine in \texttt{nrutil} for copying elements from one array to another, when the number of elements to be copied is not known in advance. This line of code is equivalent to

\[
\begin{align*}
 \text{tstart}(:) &= 0 \\
 \text{nties} &= \text{count}(\text{tstart}(:) > 0) \\
 \text{tstart}(:) &= \text{pack}(idx(:),tie(:) < \text{eoshift}(tie(:),1),\text{tstart}(:))
\end{align*}
\]

The point is that we don't know how many elements \texttt{pack} is going to select. We have to make sure the dimensions of both sides of the \texttt{pack} statement are the same,
so we set the optional third argument of pack to tstart. We then make a separate
pass through tstart to count how many elements we copied. Alternatively, we
could have used an additional logical array mask and coded this as

\[
\text{mask}(i) = \text{tie}(i) < \text{eoshift(tie(i),1)} \\
nties = \text{count(mask)} \\
tstart(1:nties) = \text{pack(idx(i),mask)}
\]

But we still need two passes through the mask array. The beauty of the arrayCopy
routine is that nties is determined from the size of the first argument, without the
necessity for a second pass through the array.

⋆⋆⋆

SUBROUTINE kendl1(data1, data2, tau, z, prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: tau, z, prob
REAL(SP), DIMENSION(:, :) :: data1, data2
Given same-size data arrays data1 and data2, this program returns Kendall's \(\tau \) as
tau, its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative).
INTEGER(I4B) :: is, j, n, n1, n2
REAL(SP) :: var
REAL(SP), DIMENSION(size(data1)) :: a1, a2
n = assert_eq(size(data1), size(data2), 'kendl1')
n1 = 0
This will be the argument of one square root in (14.6.8),
n2 = 0
and this the other.
is = 0
This will be the numerator in (14.6.8).
do j = 1, n - 1
 a1(j+1:n) = data1(j) - data1(j+1:n)
 a2(j+1:n) = data2(j) - data2(j+1:n)
 n1 = n1 + count(a1(j+1:n) /= 0.0)
 n2 = n2 + count(a2(j+1:n) /= 0.0)
 Now accumulate the numerator in (14.6.8):
 is = is + count((a1(j+1:n) > 0.0).and. a2(j+1:n) > 0.0) &
 .or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) < 0.0) - &
 count((a1(j+1:n) > 0.0 .and. a2(j+1:n) < 0.0) &
 .or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) > 0.0))
end do
tau = real(is, sp)/sqrt(real(n1, sp)*real(n2, sp)) \text{ Equation (14.6.8).}
var = (4.0*sp*n+10.0*sp)/9.0*sp*n*(n-1.0*sp)) \text{ Equation (14.6.9).}
z = tau/sqrt(var)
prob = erfcc(abs(z)/SQR2T) \text{ Significance.}
END SUBROUTINE kendl1

SUBROUTINE kendl2(tab, tau, z, prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau, z, prob
Given a two-dimensional table tab such that tab(k, l) contains the number of events falling
in bin k of one variable and bin l of another, this program returns Kendall's \(\tau \) as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative) between the two variables. Although tab is a real array, it will normally contain integral values.

```fortran
REAL(SP), DIMENSION(size(tab,1),size(tab,2)) :: cum, cumt
INTEGER(4B) :: i, j, ii, jj
ii = size(tab,1)
jj = size(tab,2)
do i=1,ii
   cumt(i,jj:1:-1) = cumsum(tab(i,jj:1:-1))
end do
en2 = sum(tab(1:ii,1:jj-1)*cumt(1:ii,2:jj))
do j=1,jj
   cum(ii:1:-1,j) = cumsum(cumt(ii:1:-1,j))
end do
points = cum(1,1)
sc = sum(tab(1:ii-1,1:jj-1)*cum(2:ii,2:jj))
do j=1,jj
   cum(ii:1:-1,j) = cumsum(cumt(ii:1:-1,j))
end do
sd = sum(tab(2:ii,1:jj-1)*cum(1:ii-1,2:jj))
do j=1,jj
   cum(ii:1:-1,j) = cumsum(cumt(ii:1:-1,j))
end do
en1 = sum(tab(1:ii-1,1:jj)*cumt(2:ii,1:jj))
tau = (sc-sd)/sqrt((en1+sc+sd)*(en2+sc+sd))
var = (4.0_sp*points+10.0_sp)/(9.0_sp*points*(points-1.0_sp))
z = tau/sqrt(var)
prob = erfcc(abs(z)/SQRT2)
END SUBROUTINE kendl2
```

The underlying algorithm in kendl2 might seem to require looping over all pairs of cells in the two-dimensional table `tab`. Actually, however, clever use of the `cumsum` utility function reduces this to a simple loop over all the cells; moreover this “loop” parallelizes into a simple parallel product and call to the `sum` intrinsic. The basic idea is shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>x</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>x</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Relative to the cell marked `t` (which we use to denote the numerical value it contains), the cells marked `d` contribute to the “discordant” tally in Volume 1’s equation (14.6.8),
while the cells marked c contribute to the “concordant” tally. Likewise, the cells marked x and y contribute, respectively, to the “extra-x” and “extra-y” tallies. What about the cells left blank? Since we want to count pairs of cells only once, without duplication, these cells will be counted, relative to the location shown as t, when t itself moves into the blank-cell area.

Symbolically we have

$$
\text{concordant} = \sum_n t_n \left(\sum_{\text{lower right}} c_m \right)
$$

$$
\text{discordant} = \sum_n t_n \left(\sum_{\text{upper right}} d_m \right)
$$

$$
\text{extra-}x = \sum_n t_n \left(\sum_{\text{below}} x_m \right)
$$

$$
\text{extra-}y = \sum_n t_n \left(\sum_{\text{to the right}} y_m \right)
$$

Here n varies over all the positions in the table, while the limits of the inner sums are relative to the position of n. (The letters t_n, c_m, d_m, x_m, y_m all represent the value in a cell; we use different letters only to make the relation with the above table clear.) Now the final trick is to recognize that the inner sums, over cells to the lower—upper-right, below, and to the right can be done in parallel by cumulative sums (cumsum) sweeping to the right and up. The routine does these in a nonintuitive order merely to be able to reuse maximally the scratch spaces cum and cumt.

* * *

SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE
SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl
END INTERFACE

Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x- and y-coordinates of a set of data points in arrays $x1$ and $y1$ of the same length, and given a user-supplied function quadvl that exemplifies the model, this routine returns the two-dimensional K-S statistic as $d1$, and its significance level as $prob$. Small values of $prob$ show that the sample is significantly different from the model. Note that the test is slightly distribution-dependent, so $prob$ is only an estimate.

INTEGER(14B) :: j,n1
REAL(SP) :: dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen
n1=assert_eq(size(x1),size(y1),'ks2d1s')
d1=0.0
do j=1,n1
 Loop over the data points.
 call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
 call quadvl(x1(j),y1(j),ga,gb,gc,gd)
 d1=max(abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))
 For both the sample and the model, the distribution is integrated in each of four quadrants, and the maximum difference is saved.
end do

call pearson(x1,y1,r1,dum,dumm)
 Get the linear correlation coefficient r1.
sqen=sqrt(real(n1,sp))
 sqen=sqrt(real(n1,sp))
 estimator the probability using the K-S probability function probks.
 prob=probks(dt*sqen/(1.0_sp*r1**2))

END SUBROUTINE ks2d1s

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

Given an origin (x, y), and an array of points with coordinates xx and yy, count how many of them are in each quadrant around the origin, and return the normalized fractions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used by ks2d1s and ks2d2s.

INTEGER(I4B) :: na,nb,nc,nd,nn
REAL(SP) :: ff

nn=assert_eq(size(xx),size(yy),'quadct')
na=count(yy(:) > y .and. xx(:) > x)
 nb=count(yy(:) > y .and. xx(:) <= x)
 nc=count(yy(:) <= y .and. xx(:) <= x)
 nd=nn-na-nb-nc

ff=1.0_sp/nn
fa=ff*na
fb=ff*nb
fc=ff*nc
fd=ff*nd

END SUBROUTINE quadct

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model distribution is uniform inside the square \(-1 < x < 1, -1 < y < 1\). In general this routine should return, for any point (x, y), the fraction of the total distribution in each of the four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.

Quadrants are alphabetical, counterclockwise from the upper right.

REAL(SP) :: qa,qb,qc,qd
qa=min(2.0_sp,max(0.0_sp,1.0_sp-x))
qb=min(2.0_sp,max(0.0_sp,1.0_sp-y))
qc=min(2.0_sp,max(0.0_sp,x+1.0_sp))
qd=min(2.0_sp,max(0.0_sp,y+1.0_sp))
fa=0.25_sp*qa*qb
fb=0.25_sp*qb*qc
fc=0.25_sp*qc*qd
fd=0.25_sp*qd*qa

END SUBROUTINE quadvl
SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn, probks, quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d, prob

Compute two-dimensional Kolmogorov-Smirnov test on two samples. Input are the x- and y-coordinates of the first sample in arrays x1 and y1 of the same length, and of the second sample in arrays x2 and y2 of the same length (possibly different from the length of the first sample). The routine returns the two-dimensional, two-sample K-S statistic as d, and its significance level as prob. Small values of prob show that the two samples are significantly different. Note that the test is slightly distribution-dependent, so prob is only an estimate.

INTEGER(4B) :: j,n1,n2
REAL(SP) :: d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen
n1=assert_eq(size(x1),size(y1),'ks2d2s: n1')
n2=assert_eq(size(x2),size(y2),'ks2d2s: n2')
d1=0.0
DO j=1,n1
 First, use points in the first sample as origins.
call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))
END DO
d2=0.0
DO j=1,n2
 Then, use points in the second sample as origins.
call quadct(x2(j),y2(j),x1,y1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))
END DO
d=0.5_sp*(d1+d2)

Average the K-S statistics.
sqen=sqrt(real(n1,sp)*real(n2,sp)/real(n1+n2,sp))
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient for each sample.
call pearsn(x2,y2,r2,dum,dumm) ple

rr=sqrt(1.0_sp-0.5_sp*(r1**2+r2**2))
Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d2s

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype; USE nrutil, ONLY : arth, assert, poly
USE nr, ONLY : lubksb, ludcmp
IMPLICIT NONE
INTEGER(4B), INTENT(IN) :: nl,nrr,ld,m

Returns in array c, in wrap-around order (N.B.!) consistent with the argument respns in routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward (past) data points used, while nrr is the number of rightward (future) data points, making the total number of data points used nl+nrr+1. ld is the order of the derivative desired (e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also equal to the highest conserved moment; usual value is m = 2 or m = 4.

REAL(SP), DIMENSION(nl+nrr+1) :: savgol
INTEGER(4B) :: imj,ipj,mm,np
INTEGER(4B), INTENT(IN) :: index
REAL(SP) :: d, sm
REAL(SP), DIMENSION(m+1) :: b
REAL(SP), DIMENSION(m+1,m+1) :: a
INTEGER(4B) :: irng(nl+nrr+1)
call assert(nl >= 0, nrr >= 0, ld <= m, nl+nrr >= m, 'savgol args')
do ipj=0,2*m
 Set up the normal equations of the desired least
 squares fit.
 sm=SUM(arth(1.0_sp,1.0_sp,nrr)**ipj))
 SUM(arth(-1.0_sp,-1.0_sp,nl)**ipj)
Chapter B14. Statistical Description of Data

```fortran
if (ipj == 0) sm=sm+1.0_sp
mm=min(ipj,2*m-ipj)
do imj=-mm,mm,2
   a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sm
end do
call ludcmp(a(:,,:),indx(:),d)  ! Solve them: LU decomposition.
b(:)=0.0
b(ld+1)=1.0  ! Right-hand-side vector is unit vector, depending
call lubksb(a(:,,:),indx(:),b(:))  ! on which derivative we want.
   ！Backsubstitute, giving one row of the inverse matrix.
savgol(:)=0.0  ! Zero the output array (it may be bigger than
irng(:)=arith(-nl,1,nrr+nl+1)  ! number of coefficients).
np=nl+nrr+1
savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))
   ！Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
   ！integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
   ！care of the wrap-around order.
END FUNCTION savgol
```

Here is an example of a loop that cannot be parallelized in the framework of Fortran 90: We need to access “skew” sections of the matrix `a`.

```fortran
savgol...=poly(real(irng(:),sp),b(:)))  ! The poly function in nrutil returns the value of a polynomial, here the one in equation (14.8.6). We need the explicit kind type parameter `sp` in the `real` function, otherwise it would return type default real for the integer argument and would not automatically convert to double precision if desired.
```

```fortran
  do imj=-mm,mm,2
     call ludcmp(a(:,,:),indx(:,d))  ! Solve them: LU decomposition.
     b(:)=0.0
     b(ld+1)=1.0
     call lubksb(a(:,,:),indx(:,b(:))  ! on which derivative we want.
     !Backsubstitute, giving one row of the inverse matrix.
     savgol(:)=0.0
     irng(:)=arith(-nl,1,nrr+nl+1)
     np=nl+nrr+1
     savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))
     !Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
     !integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
     !care of the wrap-around order.
     END FUNCTION savgol
```

```fortran
  do imj=-mm,mm,2
     call ludcmp(a(:,,:),indx(:,d))  ! Solve them: LU decomposition.
     b(:)=0.0
     b(ld+1)=1.0
     call lubksb(a(:,,:),indx(:,b(:))  ! on which derivative we want.
     !Backsubstitute, giving one row of the inverse matrix.
     savgol(:)=0.0
     irng(:)=arith(-nl,1,nrr+nl+1)
     np=nl+nrr+1
     savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))
     !Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
     !integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
     !care of the wrap-around order.
     END FUNCTION savgol
```
Chapter B15. Modeling of Data

SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:,), OPTIONAL, INTENT(IN) :: sig

Given a set of data points in same-size arrays x and y, fit them to a straight line \(y = a + bx \) by minimizing \(\chi^2 \). sig is an optional array of the same length containing the individual standard deviations. If it is present, then a, b are returned with their respective probable uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability q (that the fit would have \(\chi^2 \) this large or larger). If sig is not present, then q is returned as 1.0 and the normalization of chi2 is to unit standard deviation on all points.

INTEGER(I4B) :: ndata
REAL(SP) :: sigdat,ss,sx,sxoss,sy,st2
REAL(SP), DIMENSION(size(x)), TARGET :: t
REAL(SP), DIMENSION(:,), POINTER :: wt
if (present(sig)) then
 ndata=assert_eq(size(x),size(y),size(sig),'fit')
 wt=>t
 Use temporary t to store weights.
 wt(:)=1.0_sp/(sig(:)**2)
 Accumulate sums with weights.
 ss=sum(wt(:))
 sx=dot_product(wt,x)
 sy=dot_product(wt,y)
else
 ndata=assert_eq(size(x),size(y),'fit')
 ss=real(size(x),sp)
 Accumulate sums without weights.
 sx=sum(x)
 sy=sum(y)
end if
sxoss=sx/ss
if (present(sig)) then
 t(:)=x(:)-sxoss
 if (present(sig)) then
 t(:)=t(:)/sig(:)
 b=dot_product(t/sig,y)
 else
 b=dot_product(t,y)
 end if
else
 st2=dot_product(t,t)
 Solve for \(a, b, \sigma_a, \) and \(\sigma_b \).
 b=b/st2
 a=(sy-sx*b)/ss
 siga=sqrt((1.0_sp+sx*sx/(ss*st2))/ss)
 sigb=sqrt(1.0_sp/st2)
 t(:)=y(:)-a-b*x(:)
 q=1.0
if (present(sig)) then
 t(:)=t(:)/sig(:)
 chi2=dot_product(t,t)
 Calculate \(\chi^2 \).
 if (ndata > 2) q=gammq(0.5_sp*size(x)-2,0.5_sp*chi2) Equation (15.2.12).
else
 chi2=dot_product(t,t)

1285
REAL(SP), DIMENSION(:,), POINTER :: wt...wt=>t When standard deviations are supplied in sig, we need to compute the weights for the least squares fit in a temporary array wt. Later in the routine, we need another temporary array, which we call t to correspond to the variable in equation (15.2.15). It would be confusing to use the same name for both arrays. In Fortran 77 the arrays could share storage with an EQUIVALENCE declaration, but that is a deprecated feature in Fortran 90. We accomplish the same thing by making wt a pointer alias to t.

** **

SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
USE nr, ONLY : avevar,brent,fit,gammq,mnbrak,zbrent
USE chixyfit
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), PARAMETER :: POTN=1.571000_sp,BIG=1.0e30_sp,ACC=1.0e-3_sp
Straight-line fit to input data x and y with errors in both x and y, the respective standard deviations being the input quantities sigx and sigy. x, y, sigx, and sigy are all arrays of the same length. Output quantities are a and b such that y = a + bx minimizes \(\chi^2 \), whose value is returned as chi2. The \(\chi^2 \) probability is returned as q, a small value indicating a poor fit (sometimes indicating underestimated errors). Standard errors on a and b are returned as siga and sigb. These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the data are consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG, then the data are consistent with all values of b.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(x)), TARGET :: xx,yy,sx,sy,ww
REAL(SP), DIMENSION(6) :: ang,ch
REAL(SP) :: amx,amn,varx,vary,scale,bmn,bmx,d1,d2,r2,&
dum1,dum2,dum3,dum4,dum5
n=assert_eq(size(x),size(y),size(sigx),size(sigy),'fitexy')
xxp=>xx
yy=>yy
sx=>sx
sy=>sy
wwp=>ww
call avevar(x,dum1,varx) Find the x and y variances, and scale the data.
call avevar(y,dum1,vary)
scale=sqrt(varx/vary)
xx(:)=x(:)
yy(:)=y(:)*scale
sx(:)=sigx(:)
sy(:)=sigy(:)*scale
ww(:)=sqrt(sx(:)**2+sy(:)**2)
offs=0.0
ang(1)=0.0
ang(2)=atan(b)
ang(4)=0.0
ang(5)=ang(2)
ang(6)=POTN
do j=4,6
 ch(j)=chixy(ang(j))
end do

end

call mnbrak(ang(1),ang(2),ang(3),ch(1),ch(2),ch(3),chixy)

Bracket the χ^2 minimum and then locate it with brent.

chi2=brent(ang(1),ang(2),ang(3),chixy,ACC,b)

chi2=chixy(b)
a=aa

q=gamma(0.5_sp*(n-2),0.5_sp*chi2)
r2=1.0_sp/sum(ww(:))

bm=1.0_sp
bmn=BIG
offs=chi2+1.0_sp

do j=1,6

if (ch(j) > offs) then

d1=mod(abs(ang(j)-b),PI)

d2=PI-d1

if (ang(j) < b) call swap(d1,d2)

if (d1 < bm) bm=d1

if (d2 < bmn) bmn=d2

end if
end do

end if

if (bmx < BIG) then

Call zbrent to find the roots.

bmx=zbrent(chixy,b,b+bmx,ACC)-b

bmn=zbrent(chixy,b,b-bmn,ACC)-b

else

sigb=BIG

siga=BIG

end if

a=a/scale

Unscale the answers.

b=tan(b)/scale

END SUBROUTINE fitexy

use chixyfit! We need to pass arrays and other variables to chixy, but not as arguments. See §21.5 and the discussion of fminln on p. 1197 for two good ways to do this. The pointer construction here is analogous to the one used in fminln.

MODULE chixyfit

USE nrtype; USE nrutil, ONLY : nrerror

REAL(SP), DIMENSION(:,:), POINTER :: xxp,yyp,sxp,syp,wwp

REAL(SP) :: aa,offs

CONTAINS

FUNCTION chixy(bang)

IMPLICIT NONE

REAL(SP), INTENT(IN) :: bang

REAL(SP) :: chixy

REAL(SP), PARAMETER :: BIG=1.0e30_sp

Captive function of fitexy, returns the value of $(\chi^2 - \text{offs})$ for the slope $b=tan(bang)$.

Scaled data and offs are communicated via the module chixyfit.

REAL(SP) :: avex,avey,sumw,b

if (.not. associated(wwp)) call nrerror("chixy: bad pointers")

b=tan(bang)

wwp(:)=(b*sxp(:))**2+syp(:)**2

where (wwp(:) < 1.0/BIG)

wwp(:)=BIG

elsewhere

wwp(:)=1.0_sp/wwp(:)

end where
SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagmult,nrerror
USE nr, ONLY :covsrt,gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE
 SUBROUTINE funcs(x,arr)
 USE nrtype
 IMPLICIT NONE
 REAL(SP),INTENT(IN) :: x
 REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
 END SUBROUTINE funcs
END INTERFACE

Given a set of \(N \) data points \(x, y \) with individual standard deviations \(\text{sig} \), all arrays of length \(N \), use \(\chi^2 \) minimization to fit for some or all of the \(M \) coefficients \(a \) of a function that depends linearly on \(a \),
\[
y = \sum_{i=1}^{M} a_i \times \text{afunc}_i(x).
\]
The input logical array \(\text{maska} \) indicates by true entries those components of \(a \) that should be fitted for, and by false entries those components that should be held fixed at their input values. The program returns values for \(a, \chi^2 = \text{chisq} \), and the \(M \times M \) covariance matrix \(\text{covar} \). (Parameters held fixed will return zero covariances.) The user supplies a subroutine \(\text{funcs}(x, \text{afunc}) \) that returns the \(M \) basis functions evaluated at \(x \) in the array \(\text{afunc} \).

INTEGER(I4B) :: i,j,k,l,ma,mfit,n
REAL(SP) :: sig2i,wt,ym
REAL(SP), DIMENSION(size(maska)) :: afunc
REAL(SP), DIMENSION(size(maska),1) :: beta
n=assert_eq(size(x),size(y),size(sig),'lfit: n')
ma=assert_eq(size(maska),size(a),size(covar,1),size(covar,2),'lfit: ma')
mfit=count(maska)
if (mfit == 0) call nrerror('lfit: no parameters to be fitted')
covar(1:mfit,1:mfit)=0.0
beta(1:mfit,1)=0.0
do i=1,n
 call funcs(x(i),afunc)
 ym=y(i)
 if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(1:ma), mask=.not. maska)
 Subtract off dependences on known pieces of the fitting function.
 sig2i=1.0_sp/sig(i)**2
 j=0
 do l=1,ma
 if (maska(l)) then
 j=j+1
 wt=afunc(l)*sig2i
 k=count(maska(1:l))
 covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:l),maska(1:l))
 beta(j,1)=beta(j,1)+ym*wt
 end if
 end do
 call diagmult(x(i),beta(1:mfit,1),n)
end do

call diagmult(covar(1:mfit,1:mfit),0.5_sp)
covar(1:mfit,1:mfit)= & Fill in above the diagonal from symmetry.
covar(1:mfit,1:mfit)+ transpose(covar(1:mfit,1:mfit))
call gaussj(covar(1:mfit,1:mfit),beta(1:mfit,1:1)) Matrix solution.
a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma))

Partition solution to appropriate coefficients a.

chisq=0.0 Evaluate \(\chi^2 \) of the fit.
do i=1,n
call funcx(x(i),afunc)
chisq=chisq+((y(i)-dot_product(a(1:ma),afunc(1:ma)))/sig(i))**2 end do
call covsrt(covar,maska) Sort covariance matrix to true order of fitting coefficients.

END SUBROUTINE lfit

if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(i:ma), mask= .not. maska)

This is the first of several uses of maska in this routine to control which elements of an array are to be used. Here we include in the sum only elements for which maska is false, i.e., elements corresponding to parameters that are not being fitted for.

covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:1),maska(1:1)) Here maska controls which elements of afunc get packed into the covariance matrix.

call diagmult(covar(1:mfit,1:mfit),0.5_sp) See discussion of diagadd after qr on p. 1234.

a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma)) And here maska controls which elements of beta get unpacked into the appropriate slots in a. Where maska is false, corresponding elements are selected from the third argument of unpack, here itself. The net effect is that those elements remain unchanged.

* * * *

SUBROUTINE covsrt(covar,maska)
USE nrtype; USE nrutil, ONLY : assert_eq, swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: maska

Expand instorage the covariancematrix covar, so as to take into account parameters that are being held fixed. (For the latter, return zero covariances.)

INTEGER(I4B) :: ma,mfit,j,k
ma=assert_eq(size(covar,1),size(covar,2),size(maska), 'covsrt')

covar(mfit+1:ma,1:ma)=0.0
covar(1:ma,mfit+1:ma)=0.0
k=mfit
do j=ma,1,-1
if (maska(j)) then
call swap(covar(1:ma,k),covar(1:ma,j))
call swap(covar(k,1:ma),covar(j,1:ma))
k=k-1 end if
end do
END SUBROUTINE covsrt

* * * *
SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,vabs
USE nr, ONLY : svbksb,svdcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:,), INTENT(OUT) :: a,w
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: v
REAL(SP), INTENT(OUT) :: chisq
INTERFACE
FUNCTION funcs(x,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs
END INTERFACE
REAL(SP), PARAMETER :: TOL=1.0e-5_sp

Given a set of \(N \) data points \(x, y \) with individual standard deviations \(\text{sig} \), all arrays of length \(N \), use \(\chi^2 \) minimization to determine the \(M \) coefficients \(a_i \) of a function that depends linearly on \(a, y = \sum_{i=1}^{M} a_i \times \text{afunc}(x) \). Here we solve the fitting equations using singular value decomposition of the \(N \times M \) matrix, as in §2.6. On output, the \(M \times M \) array \(v \) and the vector \(w \) of length \(M \) define part of the singular value decomposition, and can be used to obtain the covariance matrix. The program returns values for the \(M \) fit parameters \(a \), and \(\chi^2 \), \(\text{chisq} \). The user supplies a subroutine \(\text{funcs}(x,\text{afunc}) \) that returns the \(M \) basis functions evaluated at \(x = X \) in the array \(\text{afunc} \).

INTEGER(I4B) :: i,ma,n
REAL(SP), DIMENSION(size(x)) :: b,sigi
REAL(SP), DIMENSION(size(x),size(a)) :: u,usav

n=assert_eq(size(x),size(y),size(sig),'svdfit: n')
ma=assert_eq(size(a),size(v,1),size(v,2),size(w),'svdfit: ma')
sigi=1.0_sp/sig

Accumulate coefficients of the fitting matrix in \(u \).
b=y*sigi

do i=1,n
 usav(i,:)=funcs(x(i),ma)
end do
u=usav*spread(sigi,dim=2,ncopies=ma)

usav=u
call svdcmp(u,v,w)

where \((w < \text{TOL}=\text{maxval}(w)) \) \(w=0.0 \)
call svbksb(u,w,v,b,a)
chisq=vabs(matmul(usav,a)-b)**2

END SUBROUTINE svdfit

SUBROUTINE svdvar(v,w,cvm)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: v
REAL(SP), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: cvm

END SUBROUTINE svdvar
To evaluate the covariance matrix cvm of the fit for M parameters obtained by svdfit, call this routine with matrices v, w as returned from svdfit. The dimensions are M for w and $M \times M$ for v and cvm.

```fortran
INTEGER(I4B) :: ma
REAL(SP), DIMENSION(size(w)) :: wti
ma=assert_eq((/size(v,1),size(v,2),size(w),size(cvm,1),size(cvm,2)/), 'svdvar')
where (w /= 0.0)
wti=1.0_sp/(w*w)
elsewhere
wti=0.0
end where
cvm=v*spread(wti,dim=1,ncopies=ma)
cvm=matmul(cvm,transpose(v))
```

Covariance matrix is given by (15.4.20).

END SUBROUTINE svdvar

This is the standard Fortran 90 construction for doing different things to a matrix depending on some condition. Here we want to avoid inverting elements of w that are zero.

```fortran
cvm=v*spread(wti,dim=1,ncopies=ma)  Each column of $v$ gets multiplied by the corresponding element of $wti$. Contrast the construction spread(...dim=2...) in svdfit.
```

```fortran
FUNCTION fpoly(x,n)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fpoly

Fitting routine for a polynomial of degree $n - 1$, returning $n$ coefficients in fpoly.
fpoly=geop(1.0_sp,x,n)
END FUNCTION fpoly
```

```fortran
FUNCTION fleg(x,nl)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: nl
REAL(SP), DIMENSION(nl) :: fleg

Fitting routine for an expansion with $nl$ Legendre polynomials evaluated at $x$ and returned in the array fleg of length $nl$. The evaluation uses the recurrence relation as in §5.5.

INTEGER(I4B) :: j
REAL(SP) :: d,f1,f2,twox
fleg(1)=1.0
fleg(2)=x
if (nl > 2) then
twox=2.0_sp*x
f2=x
d=1.0
do j=3,nl
  f1=d
  f2=f2+twox
  d=d+1.0_sp
end do
```

This is the standard Fortran 90 construction for doing different things to a matrix depending on some condition. Here we want to avoid inverting elements of w that are zero.
fled(g)=(f2*fled(g-1)-f1*fled(g-2))/d
end do
end if
END FUNCTION fled

SUBROUTINE mrqmin(x,y,sig,a,maska,covar,alpha,chisq,funcs,alamda)
USE nrtype; USE nrutil, ONLY : assert_eq, diagmult
USE nr, ONLY : covsrt, gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: covar,alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: maska
INTERFACE
SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:,), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs
END INTERFACE
Levenberg-Marquardt method, attempting to reduce the value χ^2 of a fit between a set of N data points x, y with individual standard deviations sig, and a nonlinear function dependent on M coefficients a. The input logical array maska of length M indicates by true entries those components of a that should be fitted for, and by false entries those components that should be held fixed at their input values. The program returns current best-fit values for the parameters a, and $\chi^2 = \text{chisq}$. The $M \times M$ arrays covar and alpha are used as working space during most iterations. Supply a subroutine $\text{funcs}(x,a,yfit,dyda)$ that evaluates the fitting function $yfit$, and its derivatives $dyda$ with respect to the fitting parameters a at x. On the first call provide an initial guess for the parameters a, and set $\text{alamda}<0$ for initialization (which then sets $\text{alamda}=0.001$). If a step succeeds chisq becomes smaller and alamda decreases by a factor of 10. If a step fails alamda grows by a factor of 10. You must call this routine repeatedly until convergence is achieved. Then, make one final call with $\text{alamda}=0.0$, so that covar returns the covariance matrix, and alpha the curvature matrix. (Parameters held fixed will return zero covariances.)

INTEGER(I4B) :: ma,ndata
INTEGER(I4B), SAVE :: mfit
call mrqmin_private
CONTAINS
SUBROUTINE mrqmin_private
REAL(SP), SAVE :: ochisq
REAL(SP), DIMENSION(:,), ALLOCATABLE, SAVE :: atr,y, beta
REAL(SP), DIMENSION(:,,:), ALLOCATABLE, SAVE :: da
ndata=assert_eq(size(x),size(y),size(sig),'mrqmin: ndata')
ma=assert_eq((/size(a),size(maska),size(covar,1),size(covar,2),&
size(alpha,1),size(alpha,2)/),'mrqmin: ma')
mfit=count(maska)
if (alamda < 0.0) then
allocate(atry(ma),beta(ma),da(ma,1))
alamda=0.001_sp
end if
叫 mrqcof(a,alphabeta)
ochisq=chisq
atry=a
end if
covar(1:mfit,1:mfit)=alpha(1:mfit,1:mfit)
call diagmult(covar(1:mfit,1:mfit),1.0_sp+alamda)
Alter linearized fitting matrix, by augmenting diagonal elements.
d{1:mfit,1}=beta{1:mfit}
call gaussj covar{1:mfit,1:mfit},da{1:mfit,1:1}) Matrix solution.
if (alamda <= 0.0) then Once converged, evaluate covariance matrix.
call covsrt(alpha,maska) Spread out alpha to its full size too.
dallocate(atry,beta,da) RETURN end if
atry=a+unpack(da{1:mfit,1},maska,0.0_sp) Did the trial succeed?
call mrqcof(atry,covar,da{1:mfit,1}) if (chisq < ochisq) then Success, accept the new solution.
alamda=0.1_sp*alamda ochisq=chisq alpha{1:mfit,1:mfit}=covar{1:mfit,1:mfit}
beta{1:mfit}=da{1:mfit,1} a=atry else Failure, increase alamda and return.
alamda=10.0_sp*alamda ochisq=chisq end if
END SUBROUTINE mrqmin_private

SUBROUTINE mrqcof(a,alpha,beta)
REAL(SP), DIMENSION(:,), INTENT(IN) :: a
REAL(SP), DIMENSION(:,), INTENT(OUT) :: beta
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: alpha
Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate χ^2.
INTEGER(I4B) :: j,k,l,m
REAL(SP), DIMENSION(size(x),size(a)) :: dyda
REAL(SP), DIMENSION(size(x)) :: dy,sig2i,wt,ymod
call funcs(x,a,ymod,dyda) Loop over all the data.
sig2i=1.0_sp/(sig**2)
dy=y-ymod j=0
do l=1,ma
if (maska(l)) then
j=j+1
wt=dyda(:,l)*sig2i
k=0
do m=1,l
if (maska(m)) then
k=k+1
alpha(j,k)=dot_product(wt,dyda(:,m))
alpha(k,j)=alpha(j,k) Fill in the symmetric side.
end if
end do
beta(j)=dot_product(dy,wt) end if
end do
chisq=dot_product(dy**2,sig2i) Find χ^2. END SUBROUTINE mrqcof
END SUBROUTINE mrqmin

The organization of this routine is similar to that of amoeba, discussed on p. 1209. We want to keep the argument list of mrqcof to a minimum, but we want to make clear what global variables it accesses, and protect mrqmin_private's name space.

REAL(SP), DIMENSION(:,), ALLOCATABLE, SAVE :: atry,beta These arrays, as well as da, are allocated with the correct dimensions on the first call to mrqmin.
They need to retain their values between calls, so they are declared with the SAVE attribute. They get deallocated only on the final call when alambda=0.

call diagmult(...) See discussion of diagadd after hqr on p. 1234.

atry=a+unpack(da(1:mfit,1),maska,0.0_sp) maska controls which elements of a get incremented by da and which by 0.

SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:,), INTENT(OUT) :: y
REAL(SP), DIMENSION(size(x,:)) :: dyda

y(x,:) is the sum of N/3 Gaussians (15.5.16). Here N is the length of the vectors x, y and a, while dyda is an N × N matrix. The amplitude, center, and width of the Gaussians are stored in consecutive locations of a: a(i) = B_k, a(i+1) = E_k, a(i+2) = G_k, k = 1,...,N/3.

INTEGER(I4B) :: i,na,nx
REAL(SP), DIMENSION(size(x)) :: arg,ex,fac

nx=assert_eq(size(x),size(y),size(dyda,1),'fgauss: nx')
na=assert_eq(size(a),size(dyda,2),'fgauss: na')

y(:,0)=0.0

do i=1,na-1,3
 arg(:,i)=(x(:,i)-a(i+1))/a(i+2)
 ex(:,i)=exp(-arg(:,i)**2)
 fac(:,i)=a(i)*ex(:,i)*2.0_sp*arg(:,i)
 y(:,i)=y(:,i)+a(i)*ex(:,i)
 dyda(:,i)=ex(:,i)
 dyda(:,i+1)=fac(:,i)/a(i+2)
 dyda(:,i+2)=fac(:,i)*arg(:,i)/a(i+2)
end do

END SUBROUTINE fgauss

SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : select
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,abdev

Fits y = a + bx by the criterion of least absolute deviations. The same-size arrays x and y are the input experimental points. The fitted parameters a and b are output, along with abdev, which is the mean absolute deviation in y of the experimental points from the fitted line.

INTEGER(I4B) :: ndata
REAL(SP) :: aa

call medfit_private

SUBROUTINE medfit_private
IMPLICIT NONE
REAL(SP) :: b1,b2,bb,chiq,del,f1,f2,sigb,sx,sxx,sxy,sy
REAL(SP), DIMENSION(size(x)) :: tmp
ndata=assert_eq(size(x),size(y),'medfit')
sx=sum(x)
sy=sum(y)
sxy=dot_product(x,y)

As a first guess for a and b, we will find the least squares fitting line.

SUBROUTINE diagmult(a,da,maska)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,da
REAL(SP), DIMENSION(size(a),size(a)) :: maska

See discussion of diagadd after hqr on p. 1234.
sxx=dot_product(x,x)

del=ndata*sxx-sx**2

aa=(sxx*sy-sx*sxy)/del

tmp(:)=y(:)-(aa*bb+x(:))

chisq=dot_product(tmp,tmp)

sigb=sqrt(chisq/del)

b1=bb

f1=rofunc(bb)

b2=bb+sign(3.0_sp*sigb,f1)

f2=rofunc(b2)

if (b2 == b1) then
 a=aa
 b=bb
 RETURN
endif

end do

Bracketing.

if (f1*f2 <= 0.0) exit

bb=b2+1.6_sp*(b2-b1)

b1=b2

f1=f2

b2=bb

f2=rofunc(b2)

do

Refine until error a negligible number of standard deviations.

if (abs(b2-b1) <= sigb) exit

bb=b1+0.5_sp*(b2-b1)

Bisection.

if (bb == b1 .or. bb == b2) exit

f=rofunc(bb)

if (f*f1 >= 0.0) then
 f1=f
 b1=bb
else
 f2=f
 b2=bb
end if

end do

a=aa

b=bb

abdev=abdev/ndata

END SUBROUTINE medfit_private

FUNCTION rofunc(b)

IMPLICIT NONE

REAL(SP), INTENT(IN) :: b

REAL(SP) :: rofunc

REAL(SP), PARAMETER :: EPS=epsilon(b)

Evaluates the right-hand side of equation (15.7.16) for a given value of b.

INTEGER(I4B) :: i

REAL(SP), DIMENSION(size(x)) :: arr,d

arr(:)=y(:)-b*x(:)

if (mod(ndata,2) == 0) then
 j=ndata/2
 aa=0.5_sp*select(j,arr)+select(j+1,arr)
else
 aa=select((ndata+1)/2,arr)
end if

d(:)=y(:)-(b*x(:)+aa)

abdev=sum(abs(d))

where (y(:) /= 0.0) d(:)=d(:)/abs(y(:))

rofunc=sum(x(:)*sign(1.0_sp,d(:)), mask=(abs(d(:)) > EPS))

END FUNCTION rofunc

END SUBROUTINE medfit
The organization of this routine is similar to that of amoeba discussed on p. 1209. We want to keep the argument list of rofunc to a minimum, but we want to make clear what global variables it accesses and protect medfit_private's name space. In the Fortran 77 version, we kept the only argument as b by passing the global variables in a common block. This required us to make copies of the arrays x and y. An alternative Fortran 90 implementation would be to use a module with pointers to the arguments of medfit like x and y that need to be passed to rofunc. We think the medfit_private construction is simpler.
Chapter B16. Integration of Ordinary Differential Equations

SUBROUTINE rk4(y, dydx, x, h, yout, derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: y, dydx
REAL(SP), INTENT(IN) :: x, h
REAL(SP), DIMENSION(:,), INTENT(OUT) :: yout
INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE

Given values for the \(N\) variables \(y\) and their derivatives \(dydx\) known at \(x\), use the fourth-order Runge-Kutta method to advance the solution over an interval \(h\) and return the incremented variables as \(yout\), which need not be a distinct array from \(y\). \(y\), \(dydx\) and \(yout\) are all of length \(N\). The user supplies the subroutine \(derivs(x, y, dydx)\), which returns derivatives \(dydx\) at \(x\).

INTEGER(I4B) :: ndum
REAL(SP) :: h6, hh, xh
REAL(SP), DIMENSION(size(y)) :: dym, dymt, yt
ndum=assert_eq(size(y), size(dydx), size(yout), 'rk4')

hh=h*0.5_sp
h6=h/6.0_sp
xh=x+hh
yt=y+hh*dydx
CALL derivs(xh, yt, dymt) ! First step.
yt=y+hh*dyt
CALL derivs(xh, yt, dym) ! Second step.
yt=y+h*dym
dym=dyt+dym
CALL derivs(x+h, yt, dym) ! Third step.
yout=y+h6*(dydx+dyt+2.0_sp*dym)
END SUBROUTINE rk4

* * *

MODULE rkdumb_path
Storage of results.
USE nrtype
REAL(SP), DIMENSION(:,), ALLOCATABLE:: xx
REAL(SP), DIMENSION(:,), ALLOCATABLE :: y
END MODULE rkdumb_path
SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : rk4
USE rkdumb_path
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE

Starting from \(N \) initial values \(v_{start} \) known at \(x_1 \), use fourth-order Runge-Kutta to advance \(nstep \) equal increments to \(x_2 \). The user-supplied subroutine \(\text{derivs}(x,y,dydx) \) evaluates derivatives. Results are stored in the module variables \(xx \) and \(y \).

INTEGER(I4B) :: k
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(vstart)) :: dv,v
v(:)=vstart(:)
Load starting values.
if (allocated(xx)) deallocate(xx)
Clear out old stored variables if necessary.
if (allocated(y)) deallocate(y)
allocate(xx(nstep+1))
Allocate storage for saved values.
allocate(y(size(vstart),nstep+1))
y(:,1)=v(:)
\(xx(1)=x_1 \)
x=x1
h=(x2-x1)/nstep
Take \(nstep \) steps.
call derivs(x,v,dydx)
call rk4(v,dv,x,h,v,derivs)
if (x+h == x) call nrerror('stepsize not significant in rkdumb')
x=x+h
\(xx(k+1)=x \)
Store intermediate steps.
y(:,k+1)=v(:)
end do
END SUBROUTINE rkdumb

** MODULE rkdumb_path **
This routine needs straightforward communication of arrays with the calling program. The dimension of the arrays is not known in advance, and if the routine is called a second time we need to throw away the old array information. The Fortran 90 construction for this is to declare allocatable arrays in a module, and then test them at the beginning of the routine with if (allocated...).

* * *

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : rkck
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE

Fifth order Runge-Kutta step with monitoring of local truncation error to ensure accuracy and adjust stepsize. Input are the dependent variable vector \(y \) and its derivative \(\text{dydx} \) at the starting value of the independent variable \(x \). Also input are the stepsize to be attempted \(h \), the required accuracy \(\text{eps} \), and the vector \(\text{yscal} \) against which the error is scaled. \(y \), \(\text{dydx} \), and \(\text{yscal} \) are all of the same length. On output, \(y \) and \(x \) are replaced by their new values, \(h \text{did} \) is the stepsize that was actually accomplished, and \(h \text{next} \) is the estimated next stepsize. \(\text{derivs} \) is the user-supplied subroutine that computes the right-hand-side derivatives.

INTEGER(I4B) :: ndum
REAL(SP) :: errmax,h,htemp,xnew
REAL(SP), DIMENSION(size(y)) :: yerr,ytemp
REAL(SP), PARAMETER :: SAFETY=0.9_sp,PGROW=-0.2_sp,PSHRNK=-0.25_sp,&
ERRCON=1.89e-4

The value \(\text{ERRCON} \) equals \((5/\text{SAFETY})^{(1/\text{PGROW})} \), see use below.

\(\text{ndum} = \text{assert_eq(size(y),size(dydx),size(yscal),'rkqs')} \)
\(h = h \text{try} \)
\(\text{Set stepsize to the initial trial value.} \)

do
 call rkck(y,dydx,x,h,yout,yerr,derivs) \(\text{Take a step.} \)
 errmax=maxval(abs(yerr(:)/yscal(:)))/eps \(\text{Evaluate accuracy.} \)
 if (errmax <= 1.0) exit \(\text{Step succeeded.} \)
 htemp=SAFETY*h*(errmax**PSHRNK) \(\text{Truncation error too large, reduce stepsize.} \)
 h=sign(max(abs(htemp),0.1_sp*abs(h)),h) \(\text{No more than a factor of 10.} \)
 xnew=x+h
 if (xnew == x) call nrerror('stepsize underflow in rkqs') \(\text{Go back for another try.} \)
 if (errmax > ERRCON) then \(\text{Compute size of next step.} \)
 hnext=SAFETY*h*(errmax**PGROW)
 else
 hnext=5.0_sp*h
 end if
 hdid=h
 x=x+h
 y(:)=ytemp(:)
end do

SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:,), INTENT(OUT) :: yout,yerr
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE

Given values for \(N \) variables \(y \) and their derivatives \(\text{dydx} \) known at \(x \), use the fifth order Cash-Karp Runge-Kutta method to advance the solution over an interval \(h \) and return
the incremented variables as yout. Also return an estimate of the local truncation error in yout using the embedded fourth order method. The user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

```
INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(y)) :: ak2,ak3,ak4,ak5,ak6,ytemp
REAL(SP), PARAMETER :: A2=0.2_sp,A3=0.3_sp,A4=0.6_sp,A5=1.0_sp,&
& A6=0.875_sp,B21=0.2_sp,B31=3.0_sp/B40_sp,B32=9.0_sp/40.0_sp,&
& B41=0.3_sp,B42=-0.9_sp,B43=1.2_sp,B51=-11.0_sp/54.0_sp,&
& B52=27.0_sp,B53=-27.0_sp,B64=35.0_sp/27.0_sp,&
& B55=1.0_sp/B62_sp,B66=594.0_sp/55296.0_sp,&
& B67=25.0_sp/621.0_sp,B68=125.0_sp/621.0_sp,&
& C1=37.0_sp/378.0_sp,C3=250.0_sp/621.0_sp,C4=18575.0_sp/48384.0_sp,&
& C6=13525.0_sp/55296.0_sp,C5=253.0_sp/14336.0_sp,

ndum=assert_eq(size(y),size(dydx),size(yout),size(yerr),'rkck')

ytemp=y+B21*h*dydx
First step.
call derivs(x+A2*h,ytemp,ak2)
Second step.
ytemp=y+h*(B31*dydx+B32*ak2)
call derivs(x+A3*h,ytemp,ak3)
Third step.
ytemp=y+h*(B41*dydx+B42*ak2+B43*ak3)
call derivs(x+A4*h,ytemp,ak4)
Fourth step.
ytemp=y+h*(B51*dydx+B52*ak2+B53*ak3+B54*ak4)
call derivs(x+A5*h,ytemp,ak5)
Fifth step.
ytemp=y+h*(B61*dydx+B62*ak2+B63*ak3+B64*ak4+B65*ak5)
call derivs(x+A6*h,ytemp,ak6)
Sixth step.
yout=y+h*(C1*dydx+C3*ak3+C4*ak4+C6*ak6)
Accumulate increments with proper weights.
yerr=h*(DC1*dydx+DC3*ak3+DC4*ak4+DC6*ak5)
Estimate error as difference between fourth and fifth order methods.
```

```
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext

INTERFACE
    SUBROUTINE derivs(x,y,dydx)
        USE nrtype
        IMPLICIT NONE
        REAL(SP), INTENT(IN) :: x
        REAL(SP), DIMENSION(:,), INTENT(IN) :: y
        REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
    END SUBROUTINE derivs
END INTERFACE

IMPLICIT NONE
REAL(SP), PARAMETER :: TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MAXSTP=10000

Runge-Kutta driver with adaptive stepsize control. Integrate the array of starting values
ystart from x1 to x2 with accuracy eps, storing intermediate results in the module
variables in ode_path. h1 should be set as a guessed first stepsize, hmin as the minimum
allowed stepsize (can be zero). On output ystart is replaced by values at the end of the
integration interval. derivs is the user-supplied subroutine for calculating the right-hand-
side derivative, while rkqs is the name of the stepper routine to be used.

INTEGER(I4B) :: nstp
REAL(SP) :: h,hdid,hnext,x,xsav
REAL(SP), DIMENSION(size(ystart)) :: dydx,y,yscal
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
y(:)=ystart(:)
if (save_steps) then
    xsav=x-2.0_sp*dxsav
    nullify(xp,yp)
dealocate(xp(256))
dealocate(yp(size(ystart),size(xp)))
end if
do nstp=1,MAXSTP
Take at most MAXSTP steps.
call derive(x,y,dydx)
yscal(:)=abs(y(:))+abs(h*dydx(:))+TINY
Scaling used to monitor accuracy. This general purpose choice can be modified if need
be.
if (save_steps .and. (abs(x-xsav) > abs(dxsav))) &
    call save_a_step
    Assures storage of first step.
    Pointers nullified here, but memory not
deallocated. If odeint is called mul-
tiple times, calling program should
deallocate xp and yp between calls.
end if
do nstp=1,MAXSTP
Take at most MAXSTP steps.
call derive(x,y,dydx)
yscal(:)=abs(y(:))+abs(h*dydx(:))+TINY
Scaling used to monitor accuracy. This general purpose choice can be modified if need
be.
if (save_steps .and. (abs(x-xsav) > abs(dxsav))) &
    call save_a_step
    Assures storage of first step.
    Pointers nullified here, but memory not
deallocated. If odeint is called mul-
tiple times, calling program should
deallocate xp and yp between calls.
end if
if ((x+h-x2)*h > 0.0) h=x2-x
If stepsize can overshoot, decrease.
call rkqs(y,dydx,x,h,eps,yscal,hdid,hnext,derivs)
call save_a_step
    Store intermediate results.
CONTAINS

SUBROUTINE save_a_step
  kount=kount+1
  if (kount > size(xp)) then
    xp=>reallocate(xp,2*size(xp))
    yp=>reallocate(yp,size(yp,1),size(xp))
  end if
  xp(kount)=x
  yp(:,kount)=y(:)
  xsav=x
END SUBROUTINE save_a_step
END SUBROUTINE odeint

MODULE ode_path
The situation here is similar to rkdumb_path, except we don’t know at run time how much storage to allocate. We may need to use reallocate from nrutil to increase the storage. The solution is pointers to arrays, with a nullify to be sure the pointer status is well-defined at the beginning of the routine.

SUBROUTINE save_a_step  An internal subprogram with no arguments is like a macro in C: you could imagine just copying its code wherever it is called in the parent routine.

⋆⋆⋆

SUBROUTINE mmid(y,dydx,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq, swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE
  SUBROUTINE derivs(x,y,dydx)
  USE nrtype
  IMPLICIT NONE
  REAL(SP), INTENT(IN) :: x
  REAL(SP), DIMENSION(:), INTENT(IN) :: y
  REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
  END SUBROUTINE derivs
END INTERFACE

Modified midpoint step. Dependent variable vector y and its derivative vector dydx are input at xs. Also input is htot, the total step to be taken, and nstep, the number of substeps to be used. The output is returned as yout, which need not be a distinct array from y; if it is distinct, however, then y and dydx are returned undamaged. y, dydx, and yout must all have the same length.

INTEGER(I4B) :: n,ndum
REAL(SP) :: h,h2,x
REAL(SP), DIMENSION(size(y)) :: ym,yn
ndum=assert_eq(size(y),size(dydx),size(yout),'mmid')
  h=htot/nstep          Stepsize this trip.
ym=y
yn=y+h*dydx             First step.
x=xs+h
  call derivs(x,yn,yout)  Will use yout for temporary storage of derivatives.
h2=2.0_sp*h
  do n=2,nstep          General step.
    call swap(ym,yn)
    yn=yn+h2*yout
  end do
END SUBROUTINE mmid
x=x+h
    call derivs(x,yn,yout)
end do

yout=0.5_sp*(ym+yn+h*yout) Last step.
END SUBROUTINE mmid

⋆⋆⋆

SUBROUTINE bsstep(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY: arth,assert_eq,cumsum,iminloc,nrerror,&
outerdiff,outerprod,upper_triangle
USE nr, ONLY: mmid,pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE
    SUBROUTINE derivs(x,y,dydx)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP), DIMENSION(:), INTENT(IN) :: y
    REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
    END SUBROUTINE derivs
    END INTERFACE

INTEGER(I4B), PARAMETER :: IMAX=9, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp,SAFE2=0.7_sp,REDMAX=1.0e-5_sp,&
REDMIN=0.7_sp,TINY=1.0e-30_sp,SCALMX=0.1_sp

Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector $y$ and its derivative $dydx$ at the starting
value of the independent variable $x$. Also input are the stepsizeto be attempted $htry$, the
required accuracy $\varepsilon$, and the vector $yscal$ against which the error is scaled. On output, $y$ and $x$ are replaced by their new values, $hdid$ is the stepsize that was actually accomplished, and $hnext$ is the estimated next stepsize. $derivs$ is the user-supplied subroutine that
computes the right-hand-side derivatives $y$, $dydx$, and $yscal$ all must have the same
length. Be sure to set $htry$ on successive steps to the value of $hnext$ returned from the
previous step, as is the case if the routine is called by odeint.

Parameters: $KMAXX$ is the maximum row number used in the extrapolation; $IMAX$ is the
next row number; $SAFE1$ and $SAFE2$ are safety factors; $REDMAX$ is the maximum factor used when a stepsize is reduced, $REDMIN$ the minimum; $TINY$ prevents division by zero;
$1/SCALMX$ is the maximum factor by which a stepsize can be increased.

INTEGER(14B) :: k,kn,ndum
INTEGER(14B), DIMENSION(IMAX) :: nseq = (/ 2,4,6,8,10,12,14,16,18 /)
INTEGER(14B), DIMENSION(KMAXX,IMAX) :: alf
REAL(SP) :: eps1,errmax,fact,h,red,scale,wrkmin,xest

LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.

ndum=assert_eq(size(y),size(dydx),size(yscal),'bsstep')
if (eps /= epsold) then
    A new tolerance, so reinitialize.
    hnext=-1.0e29_sp
    "Impossible" values.
xnew=-1.0e29_sp
    eps1=SAFE1*eps
    a(:)=cumsum(nseq,1)
    Compute $\alpha(k,q)$:
    where (upper_triangle(KMAXX,KMAXX)) alf=eps1** &
    (outerdiff(a(2:),a(2:))/outerprod(arth( &
```fortran
3.0_sp,2.0_sp,KMAXX), (a(2:)-a(1)+1.0_sp))
epsold=eps
do kopt=2,KMAXX-1
 Determine optimal row number for convergence.
 if (a(kopt+1) > a(kopt)*alf(kopt-1,kopt)) exit
 end do
end if
kmax=kopt
end do
h=htry
ysav(:)=y(:)
Save the starting values.
if (h /= hnext .or. x /= xnew) then
 A new stepsize or a new integration: Re-establish the order window.
 if (h /= hnext .or. x /= xnew) then
 kopt=kmax
 end if
end if
reduct=.false.

main_loop: do
 do k=1,kmax
 Evaluate the sequence of modified midpoint integrations.
 xnew=x+h
 if (xnew == x) call nrerror('step size underflow in bsstep')
 call maid(ysav,dydx,x,h,nsq(k),yseq,derivs)
xest=(h/nsq(k))**2
 call pzextr(k,xest,yseq,y,yerr)
 if (k /= 1) then
 Compute normalized error estimate \(\epsilon(k) \).
 errmax=maxval(abs(yerr(:)/yscal(:)))
 errmax=max(TINY,errmax)/eps
 Scale error relative to tolerance.
 km=k-1
 err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))
 end if
 if (k /= 1 .and. (k >= kopt-1 .or. first)) then
 In order window.
 if (errmax < 1.0) exit main_loop
 Converged.
 if (k == kmax .or. k == kopt+1) then
 Check for possible stepsize reduction.
 red=SAFE2/err(km)
 exit
 end if
 if (k == kopt) then
 if (alf(kopt-1,kopt) < err(km)) then
 red=1.0_sp/err(km)
 exit
 end if
 else if (kopt == kmax) then
 if (alf(km,kmax-1) < err(km)) then
 red=alf(km,kmax-1)*SAFE2/err(km)
 exit
 end if
 else if (alf(km,kopt) < err(km)) then
 red=alf(km,kopt-1)/err(km)
 exit
 end if
 end if
 end do
 end do
 red=max(min(red,REDMIN),REDMAX)
 Reduce stepsize by at least REDMIN and at most REDMAX.
 h=h*red
 reduct=.true.
end do main_loop
Try again.
x=xnew
Successful step taken.
hdid=h
```

The function `cumsum` in `nrutil` with the optional argument `seed=1` gives a direct implementation of equation (16.4.6).

where `upper_triangle(KMAXX,KMAXX)`... The `upper_triangle` function in `nrutil` returns an upper triangular logical mask. As used here, the mask is true everywhere in the upper triangle of a $k\times k$ matrix, excluding the diagonal. An optional integer argument `extra` allows additional diagonals to be set to true. With `extra=1` the upper triangle including the diagonal would be true.

Using a named do-loop provides clear structured code that required `goto`'s in the Fortran 77 version.

See the discussion of `imaxloc` on p. 1017.

SUBROUTINE `pzextr`(iest,xest,yest,yz,dy)
USE nrtype; USE nrutil, ONLY : `assert_eq`, `nrerror`
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: `iest`
REAL(SP), INTENT(IN) :: `xest`
REAL(SP), DIMENSION(:), INTENT(IN) :: `yest`
REAL(SP), DIMENSION(:), INTENT(OUT) :: `yz`, `dy`

Use polynomial extrapolation to evaluate $N$ functions at $x = x_{est}$ by fitting a polynomial to a sequence of estimates with progressively smaller values $x = x_{est}$, and corresponding function vectors $yest$. This call is number `iest` in the sequence of calls. Extrapolated function values are output as $yz$, and their estimated error is output as $dy$. $yest$, $yz$, and $dy$ are arrays of length $N$.

INTEGER(I4B), PARAMETER :: `IEST_MAX`=16
INTEGER(I4B) :: `j`, `nv`
INTEGER(I4B), SAVE :: `nvold`=-1
REAL(SP) :: `delta`, `f1`, `f2`
REAL(SP), DIMENSION(size(`yz`)) :: `d`, `tmp`, `q`
REAL(SP), DIMENSION(`IEST_MAX`), SAVE :: `x`
REAL(SP), DIMENSION(:,), ALLOCATABLE, SAVE :: `qcol`

`nv`=`assert_eq`(size(`yz`),size(`yest`),size(`dy`),'pzextr')

if (`iest` > `IEST_MAX`) call &
`nrerror`('pzextr: probable misuse, too much extrapolation')

if (nv /= `nvold`) then 
Set up internal storage.
if (allocated(`qcol`)) deallocate(`qcol`)
allocate(`qcol`(nv,`IEST_MAX`))
`nvold`=nv
end if

x(`iest`)=`xest` Save current independent variable.
d(1)=`yest`(:)
yz(1)=`yest`(:)
if (`iest` == 1) then  Store first estimate in first column.
`qcol`(1,:)=`yest`(:)
else

`d`(1)=`yest`(:)
do `j`=1,`iest`-1 
`delta`=1.0_sp/(x(`iest`-`j`)-`xest`)
`f1`=`xest`*`delta`
`f2`=`xest`*`delta`
`q(:,j)=`qcol(:,`j`)
Propagate tableau 1 diagonal more.
\begin{verbatim}

REAL(SP), DIMENSION(:,,:), ALLOCATABLE, SAVE :: qcol

The second dimension of qcol is known at compile time to be IEST_MAX, but the first
dimension is known only at run time, from size(yz). The language
requires us to have all dimensions allocatable if any one of them is.

if (nv /= nvold) then... This routine generally gets called many times with
iest cycling repeatedly through the values 1, 2, ..., up to some value less than
IEST_MAX. The number of variables, nv, is fixed during the solution of the problem.
The routine might be called again in solving a different problem with a new value
of nv. This if block ensures that qcol is dimensioned correctly both for the first
and subsequent problems, if any.

SUBROUTINE rzextr(iest,xest,yest,yz,dy)
USE nttype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER(I4B), PARAMETER :: IEST_MAX=16
INTEGER(I4B) :: k,nv
INTEGER(I4B), SAVE :: nvold=-1
REAL(SP), DIMENSION(size(yz)) :: yy,v,c,b,b1,ddy
REAL(SP), DIMENSION(:,,:), ALLOCATABLE, SAVE :: d
REAL(SP), DIMENSION(IEST_MAX), SAVE :: fx,x

nv=assert_eq(size(yz),size(dy),size(yest),'rzextr')

if (iest > IEST_MAX) call &
nrerror('rzextr: probable misuse, too much extrapolation')

if (nv /= nvold) then
    if (allocated(d)) deallocate(d)
    allocate(d(nv, IEST_MAX))
    nvold=nv
end if

x(iest)=xest          Save current independent variable.
if (iest == 1) then
    yz=yest
    dy=yest
else
    fx(2:iest)=x(iest-1:1:-1)/xest
    yy=yest          Evaluate next diagonal in tableau.
    v=d(1:nv,1)
    c=yy
    d(1:nv,1)=yy
do k=2,iest
    b1=fx(k)*v
    b=b1-c
    where (b /= 0.0)
end do

qcol(:,iest)=dy(:)
end if
END SUBROUTINE rzextr
\end{verbatim}
\begin{verbatim}

b=(c-v)/b
ddy=c*b
elsewhere
    ddy=v
end where
if (k /= iest) v=d(1:nv,k)
d(1:nv,k)=ddy
yy=yy+ddy
end do
dy=ddy
yz=yy
end if
END SUBROUTINE rzextr

⋆⋆⋆

SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE
    SUBROUTINE derivs(x,y,dydx)
USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP), DIMENSION(:), INTENT(IN) :: y
    REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
    END SUBROUTINE derivs
END INTERFACE

Stoermer's rule for integrating \( y'' = f(x,y) \) for a system of \( n \) equations. On input \( y \) contains \( y \) in its first \( n \) elements and \( y' \) in its second \( n \) elements, all evaluated at \( xs \). \( d2y \) contains the right-hand-side function \( f \) (also evaluated at \( xs \)) in its first \( n \) elements. Its second \( n \) elements are not referenced. Also input is \( htot \), the total step to be taken, and \( nstep \), the number of substeps to be used. The output is returned as \( yout \), with the same storage arrangement as \( y \). \( derivs \) is the user-supplied subroutine that calculates \( f \).

INTEGER(I4B) :: neqn,neqn1,nn,nv
REAL(SP) :: h,h2,halfh,x
REAL(SP), DIMENSION(size(y)) :: ytemp

nv=assert_eq(size(y),size(d2y),size(yout),'stoerm')
neqn=nv/2
Number of equations.
neqn1=neqn+1
h=htot/nstep
First step.
halfh=0.5_sp*h
yttemp(neqn1:nv)=h*(y(neqn1:nv)+halfh+d2y(1:neqn))
yttemp(1:neqn)=y(1:neqn)+yttemp(neqn1:nv)
x=xs+h
call derivs(x,ytemp,yout)
end do

h2=h*h

do nn=2,nstep
    ytemp(neqn1:nv)=ytemp(neqn1:nv)+h2*yout(1:neqn)
ytemp(1:neqn)=ytemp(1:neqn)+yttemp(neqn1:nv)
x=x+h
call derivs(x,ytemp,yout)
end do

yout(neqn1:nv)=ytemp(neqn1:nv)/h+halfh*yout(1:neqn)
yout(1:neqn)=yttemp(1:neqn)

END SUBROUTINE stoerm

⋆⋆⋆
\end{verbatim}
SUBROUTINE stiff(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY: assert_eq,diagadd,nrerror
USE nr, ONLY: lubksb,ludcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn
END INTERFACE
INTEGER(I4B), PARAMETER :: MAXTRY=40
REAL(SP), PARAMETER :: SAFETY=0.9_sp,GROW=1.5_sp,PGROW=-0.25_sp,&
SHRNK=0.5_sp,PSHRNK=-1.0_sp/3.0_sp,ERRCON=0.1296_sp,&
GAM=1.0_sp/2.0_sp,&
A21=-2.0_sp,A31=48.0_sp/25.0_sp,A32=6.0_sp/25.0_sp,C21=-8.0_sp,&
C31=372.0_sp/25.0_sp,C32=12.0_sp/5.0_sp,&
C41=-112.0_sp/125.0_sp,C42=-54.0_sp/125.0_sp,&
C43=-2.0_sp/5.0_sp,B1=19.0_sp/9.0_sp,B2=1.0_sp/2.0_sp,&
E1=17.0_sp/54.0_sp,E2=7.0_sp/36.0_sp,E3=0.0_sp,E4=125.0_sp/108.0_sp,&
C1X=1.0_sp/2.0_sp,C2X=-3.0_sp/2.0_sp,C3X=121.0_sp/50.0_sp,&
C4X=29.0_sp/250.0_sp,A2X=1.0_sp,A3X=3.0_sp/5.0_sp
Fourth order Rosenbrock step for integrating stiff ODEs, with monitoring of local truncation error to adjust stepsize. Input are the dependent variable vector \( y \) and its derivative \( dydx \) at the starting value of the independent variable \( x \). Also input are the stepsize to be attempted \( h_{try} \), the required accuracy \( \epsilon \), and the vector \( y_{scal} \) against which the error is scaled. On output, \( y \) and \( x \) are replaced by their new values, \( h_{did} \) is the stepsize that was actually accomplished, and \( h_{next} \) is the estimated next stepsize. \( derivs \) is a user-supplied subroutine that computes the derivatives of the right-hand side with respect to \( x \), while \( jacobn \) (a fixed name) is a user-supplied subroutine that computes the Jacobi matrix of derivatives of the right-hand side with respect to the components of \( y, y, dydx \), and \( y_{scal} \) must have the same length.

Parameters: \( GROW \) and \( SHRNK \) are the largest and smallest factors by which stepsize can change in one step; \( ERRCON=(GROW/SAFETY)^{(1/PGROW)} \) handles the case when \( errmax \lesssim 0 \).

INTEGER(14B), PARAMETER :: MAXTRY=40
INTEGER(14B), DIMENSION(size(y)) :: index
REAL(SP), DIMENSION(size(y)) :: dfdx,dytmp,err,g1,g2,g3,g4,ysav
REAL(SP), DIMENSION(size(y),size(y)) :: a,dfdy
REAL(SP) :: d,ermax,h,xsav
ndum=assert_eq(size(y),size(dydx),size(yscal),*',stiff')
xsav=x
ysav(:,:,)=y(:,:,)
call jacobn(xsav,ysav,dfdx,dfdy)

The user must supply this subroutine to return the \( n \times n \) matrix \( dfdy \) and the vector \( dfdx \).

\( h=htry \)

Set stepsize to the initial trial value.
a(:, :)=-dfdy(:, :)
set up the matrix \( 1 - \gamma h' \).
call diagadd(a, 1.0_sp/(GAM*h))
call ludcmp(a, indx, d)
g1=dydx+h*C1X*dfdx
set up right-hand side for \( g_1 \).
call lubksb(a, indx, g1)
solve for \( g_1 \).
y=y.sav+A21*g1
compute intermediate values of \( y \) and \( x \).
x=x.sav+A2X*h
call deriv(x, y, dytmp)
compute \( dydx \) at the intermediate values.
g2=dytmp+h*C2X*dfdx+C21*g1/h
set up right-hand side for \( g_2 \).
call lubksb(a, indx, g2)
solve for \( g_2 \).
y=y.sav+A31*g1+A32*g2
compute intermediate values of \( y \) and \( x \).
x=x.sav+A3X*h
call deriv(x, y, dytmp)
g3=dytmp+h*C3X*dfdx+(C31*g1+C32*g2)/h
set up right-hand side for \( g_3 \).
call lubksb(a, indx, g3)
solve for \( g_3 \).
y=y.sav+B1*g1+B2*g2+B3*g3+B4*g4
get fourth order estimate of \( y \) and error es-
timate.
x=x.sav+h
if (x == xsav) call &
nerror('stepsize not significant in stiff')

errmax=maxval(abs(err/yscal))/eps
evaluate accuracy.
if (errmax <= 1.0) then
step succeeded. Compute size of next step
and return.
hdid=h
hnext=merge(SAFETY*h*errmax**PGROW, GROW*h, &
errmax > ERRCON)
return
else
truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)
end if
end do
call nerror('exceeded MAXTRY in stiff')
end subroutine stiff

SUBROUTINE jacobn(x, y, dfdx, dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(IN) :: y
REAL(SP), DIMENSION(:, :, INTENT(IN)) :: dfdx
REAL(SP), DIMENSION(:, :, INTENT(IN)) :: dfdy
routine for Jacobi matrix corresponding to example in equations (16.6.27).
dfdx(:,:,)=0.0
dfdx(1,1)=-0.013_sp-1000.0_sp*y(3)
dfdx(1,2)=0.0
end subroutine jacobn
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
Routine for right-hand side of example in equations (16.6.27).

  dydx(1)= -0.013_sp*y(1)-1000.0_sp*y(1)*y(3)
  dydx(2)= -2500.0_sp*y(2)*y(3)
  dydx(3)= -0.013_sp*y(1)-1000.0_sp*y(1)*y(3)-2500.0_sp*y(2)*y(3)
END SUBROUTINE derivs

SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY: assert_eq,diagadd
USE nr, ONLY: lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE
  SUBROUTINE derivs(x,y,dydx)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x
    REAL(SP), DIMENSION(:), INTENT(IN) :: y
    REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
  END SUBROUTINE derivs
END INTERFACE
Performs one step of semi-implicit midpoint rule. Input are the dependent variable 
y, its derivative dydx, the derivative of the right-hand side with respect to x dfdx, 
which are all vectors of length N, and the N \times N Jacobian dfdy at xs. Also input are htot, the total step to be taken, and nstep, the number of substeps to be used. The output is returned as yout, a vector of length N. derivs is the user-supplied subroutine that calculates dydx.

INTEGER(I4B) :: ndum,nn
INTEGER(I4B), DIMENSION(size(y)) :: indx
REAL(SP) :: d,h,x
REAL(SP), DIMENSION(size(y)) :: del,ytemp
REAL(SP), DIMENSION(size(y),size(y)) :: a
ndum=assert_eq((/size(y),size(dydx),size(dfdx),size(dfdy,1),
                size(dfdy,2),size(yout)/),'simpr')

h=htot/nstep
a(:,:,)=d*dfdy(:,:,)
call diagadd(a,1.0_sp)
call ludcmp(a,indx,d)
yout=h*(dydx+h*dfdx)
call lubksb(a,indx,yout)
del=yout
ytemp=y+del
x=x+h
call derivs(x,ytemp,yout)
do nn=2,nstep
  yout=h*yout-del
call lubksb(a,indx,yout)
del=del+2.0_sp*yout
ytemp=ytemp+del
x=x+h
call derivs(x,ytemp,yout)
SUBROUTINE stifb(y, dydx, x, htry, eps, yscal, hdid, hnext, derivs)
USE nrtype; USE nrutil, ONLY : arth, assert_eq, cumsum, iminloc, nrerror, & outerdiff, outerprod, upper_triangle
USE nr, ONLY: simpr, pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,), INTENT(IN) :: dydx, yscal
REAL(SP), INTENT(IN) :: htry, eps
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: hdid, hnext
INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
SUBROUTINE jacob(x, y, dfdx, dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn
END INTERFACE
INTEGER(I4B), PARAMETER :: IMAX=8, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp, SAFE2=0.7_sp, REDMAX=1.0e-5_sp,& REDMIN=0.7_sp, TINY=1.0e-30_sp, SCALMX=0.1_sp
Semi-implicit extrapolation step for integrating stiff ODEs, with monitoring of local truncation error to adjust stepsize. Input are the dependent variable vector y and its derivative dydx at the starting value of the independent variable x. Also input are the stepsize to be attempted htry, the required accuracy eps, and the vector yscal against which the error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs is a user-supplied subroutine that computes the derivatives of the right-hand side with respect to x, while jacob (a fixed name) is a user-supplied subroutine that computes the Jacobi matrix of derivatives of the right-hand side with respect to the components of y. y, dydx, and yscal must all have the same length. Be sure to set htry on successive steps to the value of hnext returned from the previous step, as is the case if the routine is called by odeint.
INTEGER(I4B) :: k, km, ndum
INTEGER(I4B), DIMENSION(IMAX) :: nseq = (/ 2, 6, 10, 14, 22, 34, 50, 70 /)
Sequence is different from bsstep.
INTEGER(I4B), SAVE :: kopt, km, nvold=-1
REAL(SP), DIMENSION(KMAXX, KMAXX), SAVE :: alf
REAL(SP), DIMENSION(KMAXX) :: err
REAL(SP), DIMENSION(IMAX) :: SAVE :: a
REAL(SP), SAVE :: epsold = -1.0
REAL(SP) :: eps1, errmax, fact, h, red, scale, wrkmin, xest
REAL(SP), SAVE :: xnew
REAL(SP), DIMENSION(size(y)) :: dfdx, yerr, ysav, yseq
REAL(SP), DIMENSION(size(y), size(y)) :: dfdy
LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.
ndum=assert_eq(size(y), size(dydx), size(yscal), 'stifbs')
if (eps /= epsold .or. nvold /= size(y)) then
  Reinitialize also if number of variables has changed.
  hnext=-1.0e29_sp
  xnew=-1.0e29_sp
  eps1=SAFE1*eps
  a(:)=cumsum(nseq,1) where (upper_triangle(KMAXX, KMAXX))
  alf=eps1**(outerdiff(a(2,:), a(2,:))/outerprod(arth &
    3.0_sp, 2.0_sp, KMAXX), (a(2,:)-a(1,:)+1.0_sp)))
  epsold=eps
  nvold=size(y)
  a(:)=cumsum(nseq, 1+nvold) Add cost of Jacobian evaluations to work co-
  do kopt=2, KMAXX-1
  end do
  kmax=kopt
end if
h=htry
ysav(:)=y(:)
call jacobn(x, y, dfdx, dfdy) Evaluate Jacobian.
if (h /= hnext .or. x /= xnew) then
  first=.true.
  kopt=kmax
end if
reduct=.false.
main_loop: do
  do k=1, kmax
    xnew=x+h
    if (xnew == x) call nrerror('step size underflow in stifbs')
call simpr(ysav, dydx, dfdx, dfdy, x, h, nseq(k), yseq, derivs) Here is the call to the semi-implicit midpoint rule.
    xest=(h/nseq(k))**2
    The rest of the routine is identical to bsstep.
call pzextr(k, xest, yseq, y, yerr)
if (k /= 1) then
  errmax=maxval(abs(yerr(:)/yscal(:)))
  errmax=max(TINY, errmax)/eps
  km=k-1
  err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))
end if
if (k /= 1 .and. (k >= kopt-1 .or. first)) then
  if (errmax < 1.0) exit main_loop
if (k == kmax .or. k == kopt+1) then
  red=SAFE2/err(km)
  exit
else if (k == kopt) then
  if (alf(kopt-1,kopt) < err(km)) then
    red=1.0_sp/err(km)
    exit
  end if
else if (kopt == kmax) then
  if (alf(km, kmax-1) < err(km)) then
    red=alf(km, kmax-1)*SAFE2/err(km)
    exit
  end if
else if (alf(km, kopt) < err(km)) then
    red=alf(km, kopt-1)/err(km)
    exit
  end if
end if
end if
end do
red=max(min(red,REDMIN),REDMAX)
h=h*red
reduct=.true.
end do main_loop
x=xnew
hdid=h
first=.false.
kopt=1+iminloc(a(2:km+1)*max(err(1:km),SCALMX))
scale=max(err(kopt-1),SCALMX)
wrkmin=scale*a(kopt)
hnext=h/scale
if (kopt >= k .and. kopt /= kmax .and. .not. reduct) then
  fact=max(scale/alf(kopt-1,kopt),SCALMX)
  if (a(kopt+1)*fact <= wrkmin) then
    hnext=h/fact
    kopt=kopt+1
  end if
end if
END SUBROUTINE stifbs

This routine is very similar to bsstep, and the same remarks about Fortran 90 constructions on p. 1305 apply here.
Chapter B17. Two Point Boundary Value Problems

FUNCTION shoot(v) is named "funcv" for use with "newt"

FUNCTION funcv(v)
USE nrtype
USE nr, ONLY : odeint, rkqs
USE sshoot_caller, ONLY : nvar,x1,x2; USE ode_path, ONLY : xp,yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for \( N \) coupled ODEs by shooting from \( x_1 \) to \( x_2 \). Initial values for the ODEs at \( x_1 \) are generated from the \( n_2 \) input coefficients \( v \), using the user-supplied routine load. The routine integrates the ODEs to \( x_2 \) using the Runge-Kutta method with tolerance \( EPS \), initial stepsize \( h_1 \), and minimum stepsize \( h_{\text{min}} \). At \( x_2 \) it calls the user-supplied subroutine score to evaluate the \( n_2 \) functions \( \text{funcv} \) that ought to be zero to satisfy the boundary conditions at \( x_2 \). The functions \( \text{funcv} \) are returned on output. \textit{newt} uses a globally convergent Newton's method to adjust the values of \( v \) until the functions \( \text{funcv} \) are zero. The user-supplied subroutine \textit{derivs} supplies derivative information to the ODE integrator (see Chapter 16). The module \textit{sshoot} receives its values from the main program so that \( \text{funcv} \) can have the syntax required by \textit{newt}. Set \( \text{nvar} = N \) in the main program.

REAL(SP) :: h1,hmin
REAL(SP), DIMENSION(nvar) :: y

INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE load(x1,v,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load

SUBROUTINE score(x2,y,f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE

h1=(x2-x1)/100.0_sp
FUNCTION funcv(v)

USE nr, ONLY : odeint, rkqs
USE sphfpt_caller, ONLY : x1, x2, xf, nn2; USE ode_path, ONLY : xp, yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for N coupled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the ODEs at x1 (x2) are generated from the n2 (n1) coefficients V1 (V2), using the user-supplied routine load1 (load2). The coefficients V1 and V2 should be stored in a single array v of length N in the main program, and referenced by pointers as v1=>v(1:n2), v2=>v(n2+1:N). Here N = n1 + n2. The routine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score to evaluate the N functions f1 and f2 that ought to match at xf. The differences funcv are returned on output. newt uses a globally convergent Newton’s method to adjust the values of v until the functions funcv are zero. The user-supplied subroutine derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter 16). The module sphfpt_caller receives its values from the main program so that funcv can have the syntax required by newt.

Set nn2 = n2 in the main program.

REAL(SP) :: h1, hmin
REAL(SP), DIMENSION(size(v)) :: f1, f2, y

INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
SUBROUTINE load1(x1, v1, y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v1
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load1
SUBROUTINE load2(x2, v2, y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load2
SUBROUTINE score(x2, y, f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y

END FUNCTION funcv
REAL(SP), DIMENSION(:,), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE

h1=(x2-x1)/100.0_sp
hmin=0.0
call load1(x1,v,y)  Path from x1 to xf with best trial values V1.
if (associated(xp)) deallocate(xp,yp)  Prevent memory leak if save steps set
call odeint(y,x1,xf,EPS,h1,hmin,derivs,rkqs) to .true.
call score(xf,y,f1)
call load2(x2,v(nn2+1:),y)  Path from x2 to xf with best trial values V2.
call odeint(y,x2,xf,EPS,h1,hmin,derivs,rkqs)
call score(xf,y,f2)
funcv(:)=f1(:)-f2(:)
END FUNCTION funcv

⋆⋆⋆
SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror
USE nr,ONLY : difeq
IMPLICIT NONE
INTEGER(I4B),INTENT(IN) :: itmax, nb
REAL(SP), INTENT(IN) :: conv, slowc
REAL(SP),DIMENSION(:,), INTENT(IN) :: scalv
INTEGER(I4B),DIMENSION(:,), INTENT(IN) :: indexv
REAL(SP),DIMENSION(:,:), INTENT(INOUT) :: y

Driver routine for solution of two point boundary value problems with N equations by relaxation. itmax is the maximum number of iterations. conv is the convergence criterion (see text). slowc controls the fraction of corrections actually used after each iteration. scalv, a vector of length N, contains typical sizes for each dependent variable, used to weight errors. indexv, also of length N, lists the column ordering of variables used to construct the matrix s of derivatives. (The nb boundary conditions at the first mesh point must contain some dependence on the first nb variables listed in indexv.) There are a total of M mesh points. y is the N x M array that contains the initial guess for all the dependent variables at each mesh point. On each iteration, it is updated by the calculated correction.

INTEGER(I1B) :: it, j, j1, j2, j3, j4, j5, j6, j7, j8, &
j9, jc1, jcf, jv, k, k1, k2, km, k, ne, nvars
INTEGER(I1B),DIMENSION(size(scalv)) :: kmax
REAL(SP) :: err, fac
REAL(SP),DIMENSION(size(scalv)) :: ermax
REAL(SP),DIMENSION(size(scalv),2*size(scalv)+1) :: s
REAL(SP),DIMENSION(size(scalv),size(scalv)-nb+1) :: c
ne=assert_eq(size(scalv),size(indexv),size(y,1),'solvde: ne')
m=size(y,2)
k1=1
k2=m
nvars=ne=m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcfc=ic3
do it=1,itmax
  k=k1
  Set up row and column markers.
  Primary iteration loop.
  Boundary conditions at first point.
call difeq(k,k1,k2,j9,ic3,ic4,indexv,s,y)
call pinsv(ic3,ic4,j5,j9,ic1,kl,k,c,s)
do k=k1+1,k2
  Finite difference equations at all point pairs.
  kp=k-1
  call difeq(k,k1,k2,j9,ic1,ic4,indexv,s,y)
call red(ic1,ic4,j5,j6,j7,j8,j9,ic3,ic1,icf,kl,k,c,s)
call pinsv(ic1,ic4,j3,j9,ic1,kl,k,c,s)
end do
k=k2+1
Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,s,y)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic1,icf,kl,k,c,s)
call pinsv(ic1,ic2,j7,j9,icf,k2+1,c,s)
call bksub(ne,nb,icf,k1,k2,c)
Backsubstitution.
do j=1,ne
  Convergence check, accumulate average error.
  jv=indexv(j)
  km=maxloc(abs(c(jv,1,kl:kc)))+kl-1
  Find point with largest error, for each dependent variable.
  ermax(j)=c(jv,1,km)
  kmax(j)=km
end do
ermax(:)=ermax(:)/scalv(:)
Weighting for each dependent variable.
err=sum(sum(abs(c(indexv,:),1,kl:kc))/scalv(:))/nvars
fac=slocv/max(slocv,err)
Reduce correction applied when error is large.
y(:,k1:kc)=y(:,k1:kc)-fac*c(indexv,:,1:kc)
Apply corrections.
write(*,'(1x,i4,2f12.6)') it,err,fac
Summary of corrections for this step. Point with largest error for each variable can be
monitored by writing out kmax and ermax.
if (err < conv) RETURN
end do
call nrerror('itmax exceeded in solvde') Convergence failed.
CONTAINS
SUBROUTINE bksub(ne,nb,jf,k1,k2,c)
  IMPLICIT NONE
  INTEGER(I4B), INTENT(IN) :: ne,nb,jf,k1,k2
  REAL(SP), DIMENSION(:, :, :),INTENT(INOUT) :: c
  Backsubstitution, used internally by solvde.
  INTEGER(I4B) :: im,k,nbf
  nbf=ne-nb
  im=1
do k=k2,k1,-1
  Use recurrence relations to eliminate remaining dependencies.
  if (k == k1) im=nbf+1
  Special handling of first point.
  c(im:ne,jf,k)=c(im:ne,jf,k)-matmul(c(im:ne,1:nbf,k),c(1:nbf,jf,k+1))
  end do
c(1:nb,1,k1:k2)=c(1+nbf:nb+nbf,jf,k1:k2)
  Reorder corrections to be in column 1.
c(1:nb+nbf:nb+1,k1:k2)=c(1:nb,1,k1+1:k2+1)
END SUBROUTINE bksub

SUBROUTINE pinsv(iel,i2,je1,jf,ic1,kl,k,c,s)
  IMPLICIT NONE
  INTEGER(4B), INTENT(IN) :: iel,i2,je1,jf,ic1,kl,k
  REAL(SP), DIMENSION(:, :, :), INTENT(INOUT) :: c
  Diagonalize the square subsection of the \( s \) matrix, and store the recursion coefficients in
  c; used internally by solvde.
  INTEGER(4B) :: i,icoff,ipiv,jcoff,jf,je2,jp,jpiv,js1
  INTEGER(4B), DIMENSION(iel) :: idxr
  REAL(SP) :: big,piv,pivinv
  REAL(SP), DIMENSION(iel) :: js1
  Diagonalize the square subsection of the \( s \) matrix, and store the recursion coefficients in
  c; used internally by solvde.
  INTEGER(4B) :: i,icoff,ipiv,jcoff,je2,jp,jpiv,js1
  INTEGER(4B), DIMENSION(iel) :: idxr
  REAL(SP) :: big,piv,pivinv
  REAL(SP), DIMENSION(iel) :: js1
  Diagonalize the square subsection of the \( s \) matrix, and store the recursion coefficients in
  c; used internally by solvde.
if (any(pscl(ie1:ie2) == 0.0)) &
call nrerror('singular matrix, row all 0 in pinvs')
pscl(ie1:ie2)=1.0_sp.pscl(ie1:ie2)
indxr(ie1:ie2)=0
do i=ie1,ie2
  piv=0.0
  do i=ie1,ie2
    Find pivot element.
    if (indxr(i) == 0) then
      jp=imaxloc(abs(s(i,je1:je2)))+je1-1
      big=abs(s(i,jp))
      if (big*pscl(i) > piv) then
        ipiv=i
        jpiv=jp
        piv=big*pscl(i)
      end if
    end if
  end do
  if (s(ipiv,jpiv) == 0.0) call nrerror('singular matrix in pinvs')
  indxr(ipiv)=jpiv
  In place reduction. Save column ordering.
  pivinv=1.0_sp/s(ipiv,jpiv)
  s(ipiv,je1:jsf)=s(ipiv,je1:jsf)*pivinv
  Normalize pivot row.
  s(ipiv,jpiv)=1.0
  do i=ie1,ie2
    Reduce nonpivot elements in column.
    if (indxr(i) /= jpiv .and. s(i,jpiv) /= 0.0) then
      s(i,je1:jsf)=s(i,je1:jsf)-s(i,jpiv)*s(ipiv,je1:jsf)
      s(i,jpiv)=0.0
    end if
  end do
end do
jcoff=jc1-js1
icoff=ie1-je1
km=imaxloc...
See discussion of imaxloc on p. 1017.
c(indexr(ie1:ie2)+icoff,js1+jcoff:jsf+jcoff,k)=s(ie1:ie2,js1:jsf)
END SUBROUTINE pinvs
SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,c,s)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc
REAL(SP),DIMENSION(:, :),INTENT(INOUT) :: s
REAL(SP),DIMENSION(:, :, :),INTENT(IN) :: c
Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by solvde.
INTEGER(I4B) :: ic,l,loff
loff=jc1-jm1
ic=ic1
do j=jz1,jz2 Loop over columns to be zeroed.
do l=jm1,jm2 Loop over columns altered.
s(iz1:iz2,l) = s(iz1:iz2,l) - s(iz1:iz2,j)*c(ic,l+loff,kc)
  Loop over rows.
end do
s(iz1:iz2,jmf) = s(iz1:iz2,jmf) - s(iz1:iz2,j)*c(ic,jcf,kc) Plus final element.
ic=ic+1
end do
END SUBROUTINE red
END SUBROUTINE solvde
MODULE sfroid_data

Communicates with difeq.

USE nrtype
USE nrutil, ONLY : arth
USE nr, ONLY : plgndr, solvde
USE sfroid_data
IMPLICIT NONE

INTEGER(4B), PARAMETER :: M=41
INTEGER(4B) :: mm,n
REAL(SP) :: anorm,c2,h
REAL(SP), DIMENSION(M) :: x

END MODULE sfroid_data

PROGRAM sfroid
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : plgndr, solvde
USE sfroid_data
IMPLICIT NONE

INTEGER(I4B), PARAMETER :: NE=3, NB=1

Sample program using solvde. Computes eigenvalues of spheroidal harmonics \( S_{mn}(x;c) \) for \( m \geq 0 \) and \( n \geq m \). In the program, \( m \) is \( mm \), \( c^2 \) is \( c2 \), and \( \gamma \) of equation (17.4.20) is \( anorm \).

INTEGER(4B) :: itmax
INTEGER(4B), DIMENSION(NE) :: indexv
REAL(SP) :: conv,slowc
REAL(SP), DIMENSION(M) :: deriv,fac1,fac2
REAL(SP), DIMENSION(NE) :: scalv
REAL(SP), DIMENSION(NE,M) :: y

itmax=100
conv=5.0e-6_sp
slowc=1.0
h=1.0_sp/(M-1)
c2=0.0

write(*,*) 'ENTER M,N'
read(*,*) mm,n

indexv(1:3)=merge( (/ 1, 2, 3 /),(/ 2, 1, 3 /),(mod(n+mm, 2) == 1) )
No interchanges necessary if \( n+mm \) is odd; otherwise interchange \( y_1 \) and \( y_2 \).
anorm=1.0
Compute \( \gamma \).
if (mm /= 0) then
  anorm=(-0.5_sp)**mm*product(&
        arth(n+1,1,mm)*arth(real(n,sp),-1.0_sp,mm)/arth(1,1,mm))
end if
x(1:M-1)=arth(0,1,M-1)*h
facl(1:M-1)=1.0_sp-x(1:M-1)**2
Compute initial guess.
fac2(1:M-1)=fac1(1:M-1)**(-mm/2.0_sp)
y(1,1:M-1)=plgndr(n,mm,x(1:M-1))*fac2(1:M-1) P_{mn}^{(0)} \text{ from §6.8.}
deriv(1:M-1)=((n-mm+1)*plgndr(n+1,mm,x(1:M-1))-(n+1)*&
        x(1:M-1)*plgndr(n,mm,x(1:M-1)))/fac1(1:M-1)
Derivative of \( P_{mn}^{(0)} \) from a recurrence relation.
y(2,1:M-1)=mm*x(1:M-1)*facl(1:M-1)+deriv(1:M-1)*fac2(1:M-1)
y(3,1:M-1)=n*(n+1)-mm*(mm+1)
x(M)=1.0
Initial guess at \( x=1 \) done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp))
scalv(1:3)=(/ abs(anorm), max(abs(anorm),y(2,M)), max(1.0_sp,y(3,M)) )/
do
write (*,*) 'ENTER C**2 OR 999 TO END'
read (*,*) c2
if (c2 == 999.0) exit
call solvde(itmax,conv,slowc,scalv,indexv,NB,y)
write (*,*) ' M = ',mm,' N = ',n,&
    ' C**2 = ',c2,' LAMBDA = ',y(3,1)+mm*(mm+1)
do
write (*,*) ' Enter C**2 or 999 to end.'
read (*,*) c2
if (c2 == 999.0) exit
call solvde(itmax,conv,slowc,scalv,indexv,NB,y)
write (*,*) ' M = ',mm,' N = ',n,&
    ' C**2 = ',c2,' LAMBDA = ',y(3,1)+mm*(mm+1)
end do
Go back for another value of \( c^2 \).

END PROGRAM sfroid
MODULE sfroid_data

This module functions just like a common block to communicate variables with difeq. The advantage of a module is that it allows complete specification of the variables.

\[ \text{anorm} = (-0.5 \cdot sp)^{mm} \cdot \text{product}(\ldots) \]

This statement computes equation (17.4.20) by direct multiplication.

⋆⋆⋆

SUBROUTINE difeq(k, k1, k2, jsf, is1, isf, indexv, s, y)
USE nrtype
USE sfroid_data
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: is1, isf, jsf, k, k1, k2
INTEGER(I4B), DIMENSION(:, :), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:, :), INTENT(OUT) :: s
REAL(SP), DIMENSION(:, :), INTENT(IN) :: y

Returns matrix \( s(i,j) \) for solvde.

REAL(SP) :: temp, temp2
INTEGER(I4B), DIMENSION(3) :: indexv3
indexv3(1:3)=3+indexv(1:3)
if (k == k1) then  \quad \text{Boundary condition at first point.}
    if (mod(n+mm,2) == 1) then
        s(3, indexv3(1:3))= (/ 1.0_sp, 0.0_sp, 0.0_sp /)  \quad \text{Equation (17.4.32).}
        s(3,jsf)=y(1,1)  \quad \text{Equation (17.4.31).}
    else
        s(3, indexv3(1:3))= (/ 0.0_sp, 1.0_sp, 0.0_sp /)  \quad \text{Equation (17.4.32).}
        s(3,jsf)=y(2,1)  \quad \text{Equation (17.4.31).}
    end if
else if (k > k2) then  \quad \text{Boundary conditions at last point.}
    s(1, indexv3(1:3))= (/ -(y(3,M)-c2)/(2.0_sp*(mm+1.0_sp)), 1.0_sp, -y(1,M)/(2.0_sp*(mm+1.0_sp)) /)  \quad \text{Equation (17.4.35).}
    s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp))  \quad \text{Equation (17.4.33).}
    s(2, indexv3(1:3))=(/ 1.0_sp, 0.0_sp, 0.0_sp /)  \quad \text{Equation (17.4.36).}
    s(2,jsf)=y(1,M)-anorm  \quad \text{Equation (17.4.34).}
else
    \quad \text{Interior point.}
    s(1,indexv(1:3))=(/ -1.0_sp, -0.5_sp*h, 0.0_sp /)  \quad \text{Equation (17.4.28).}
    s(1,indexv3(1:3))=(/ 1.0_sp, -0.5_sp*h, 0.0_sp /)  \quad \text{Equation (17.4.37).}
    temp=h/(1.0_sp-(x(k)+x(k-1))**2*0.25_sp)
    temp2=0.5_sp*(y(3,k)+y(3,k-1))-c2*0.25_sp*(x(k)+x(k-1))**2
    s(2,indexv3(1:3))= temp*temp2*0.5_sp*temp*(mm+1.0_sp)*x(k)+x(k-1))  \quad \text{Equation (17.4.29).}
    s(2,indexv3(2:3))=s(2,indexv3(2:3))+2.0_sp
    s(3,indexv3(1:3))=(/ 0.0_sp, 0.0_sp, 1.0_sp /)  \quad \text{Equation (17.4.28).}
    s(3,indexv3(1:3))=(/ 0.0_sp, 0.0_sp, -1.0_sp /)
    s(1,jsf)=y(1,k)-y(1,k-1)-0.5_sp*h*(y(2,k)+y(2,k-1))  \quad \text{Equation (17.4.24).}
    s(2,jsf)=y(2,k)-y(2,k-1)-temp*(x(k)+x(k-1))+
    0.5_sp*(mm+1.0_sp)*x(k)+x(k-1))  \quad \text{Equation (17.4.25).}
    s(3,jsf)=y(3,k)-y(3,k-1)  \quad \text{Equation (17.4.27).}
end if
END SUBROUTINE difeq

⋆⋆⋆
MODULE sphoot_data
Communicates with load, score, and deriv.
USE nrtype
INTEGER(14B) :: m, n
REAL(SP) :: c2, dx, gamma
END MODULE sphoot_data

MODULE sphoot_caller
Communicates with shoot.
USE nrtype
INTEGER(14B) :: nvar
REAL(SP) :: x1, x2
END MODULE sphoot_caller

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics \(S_{mn}(x;c)\) for \(m \geq 0\) and \(n \geq m\). Be sure that routine funcv for newt is provided by shoot (§17.1).
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : newt
USE sphoot_data
USE sphoot_caller
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NV=3, N2=1
REAL(SP), DIMENSION(N2) :: v
LOGICAL(LGT) :: check
nvar=NV
Number of equations.
dx=1.0e-4_sp
Avoid evaluating derivatives exactly at \(x = -1\).
do
    write(*,*) 'input m,n,c-squared (999 to end)'
    read(*,*) m, n, c2
    if (c2 == 999.0) exit
    if ((n < m) .or. (m < 0)) cycle
    gamma=(-0.5_sp)**m*product(arth(n+1,1,m)*arth(real(n,sp),-1.0_sp,m)/arth(1,1,m))
    v(1)=n*(n+1)-m*(m+1)+c2/2.0_sp
    Initial guess for eigenvalue.
    x1=-1.0_sp+dx
    Set range of integration.
    x2=0.0
    call newt(v,check)
    Find \(v\) that zeros function \(f\) in score.
    if (check) then
        write(*,*)'shoot failed; bad initial guess'
        exit
    else
        write(*,'(1x,t6,a)') 'mu(m,n)'
        write(*,'(1x,f12.6)') v(1)
    end if
end do
END PROGRAM sphoot

SUBROUTINE load(x1, v, y)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
Supplies starting values for integration at \(x = -1 + dx\).
REAL(SP) :: y1
y(3)=v(1)
y1=merge(gamma,-gamma, mod(n-m,2) == 0 )
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
END SUBROUTINE load
SUBROUTINE score(x2,y,f)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f
Tests whether boundary condition at $x=0$ is satisfied.
f(1)=merge(y(2),y(1), mod(n-m,2) == 0 )
END SUBROUTINE score

These modules function just like common blocks to communicate variables from sphoot to the various subsidiary routines. The advantage of a module is that it allows complete specification of the variables.

SUBROUTINE derivs(x,y,dydx)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
Evaluates derivatives for odeint.
    dydx(1)=y(2)
    dydx(2)=(2.0_sp*x*(m+1.0_sp)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0_sp-x*x)
    dydx(3)=0.0
END SUBROUTINE derivs

* * *

MODULE sphfpt_data
Communicates with load1, load2, score, derivs, and derivs.
USE nrtype
INTEGER(I4B) :: m,n
REAL(SP) :: c2,dx,gamma
END MODULE sphfpt_data

MODULE sphfpt_caller
Communicates with shootf.
USE nrtype
INTEGER(I4B) :: nn2
REAL(SP) :: x1,x2,xf
END MODULE sphfpt_caller
PROGRAM sphfpt
    Sample program using shootf. Computes eigenvalues of spheroidal harmonics $S_{mn}(x;c)$ for $m \geq 0$ and $n \geq m$. Be sure that routine funcv for newt is provided by shootf (§17.2).
    The routine derivs is the same as for sphoot.
    USE nrtype; USE nrutil, ONLY : arth
    USE nr, ONLY : newt
    USE sphfpt_data
    USE sphfpt_caller
    IMPLICIT NONE
    INTEGER(I4B), PARAMETER :: N1=2,N2=1,NTOT=N1+N2
    REAL(SP), PARAMETER :: DXX=1.0e-4_sp
    REAL(SP), DIMENSION(:,), POINTER :: v1, v2
    REAL(SP), DIMENSION(NTOT), TARGET :: v
    LOGICAL(LGT) :: check
    v1=v(1:N2)
    v2=v(N2+1:NTOT)
    nn2=N2
    dx=DXX

    Avoid evaluating derivatives exactly at $x = \pm 1$.
    do
        write(*,*) 'input m,n,c-squared (999 to end)'
        read(*,*) m,n,c2
        if (c2 == 999.0) exit
        if ((n < m) .or. (m < 0)) cycle
        gamma=(-0.5_sp)**m*product(&
            Compute $\gamma$ of equation (17.4.20).
            arth(n+1,1,m)*(arth(real(n,sp),-1.0_sp,m)/arth(1,1,m)))
        v1(1)=n*(n+1)-m*(m+1)+c2/2.0_sp  
            Initial guess for eigenvalue and function value.
        v2(2)=v1(1)
        v2(1)=gamma*(1.0_sp-(v2(2)-c2)*dx/(2*(m+1)))
            Set range of integration.
        x1=-1.0_sp+dx
        x2=1.0_sp-dx
        xf=0.0
        call newt(v,check)
            Find $v$ that zeros function $f$ in score.
        if (check) then
            write(*,*) 'shootf failed; bad initial guess'
            exit
        else
            write(*,'(1x,t6,a)') 'mu(m,n)'
            write(*,'(1x,f12.6)') v1(1)
        end if
    end do
END PROGRAM sphfpt

SUBROUTINE load1(x1,v1,y)
    USE nrtype
    USE sphfpt_data
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: x1
    REAL(SP), DIMENSION(:,), INTENT(IN) :: v1
    REAL(SP), DIMENSION(:,), INTENT(OUT) :: y
    Supplies starting values for integration at $x = -1 + dx$.
    REAL(SP) :: y1
    y1=merge(gamma,-gamma,mod(n-m,2) == 0)
    y(3)=v1(1)
    y(2)=-(y(3)-c2)*y1/(2*(m+1))
    y(1)=y(1)+y(2)*dx
END SUBROUTINE load1
SUBROUTINE load2(x2,v2,y)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
    Supplies starting values for integration at \( x = 1 - dx \).
    y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
END SUBROUTINE load2

SUBROUTINE score(xf,y,f)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xf
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f
    Tests whether solutions match at fitting point \( x = 0 \).
    f(1:3)=y(1:3)
END SUBROUTINE score

MODULE sphfpt_data...MODULE sphfpt_caller
    These modules function just like common blocks to communicate variables from sphfpt to the various subsidiary routines. The advantage of a module is that it allows complete specification of the variables.
Chapter B18. Integral Equations and Inverse Theory

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY: gauleg,lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE
FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g
FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak
END INTERFACE
Solves a linear Fredholm equation of the second kind by N-point Gaussian quadrature. On input, a and b are the limits of integration. g and ak are user-supplied external functions. g returns g(t) as a vector of length N for a vector of N arguments, while ak returns λK(t,s) as an N × N matrix. The routine returns arrays t and f of length N containing the abscissas ti of the Gaussian quadrature and the solution f at these abscissas. Also returned is the array w of length N of Gaussian weights for use with the Nyström interpolation routine fredin.

INTEGER(I4B) :: n
INTEGER(I4B), DIMENSION(size(t)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f),size(f)) :: omk
n=assert_eq(size(f),size(t),size(w),'fred2')
call gauleg(a,b,t,w)
call unit_matrix(omk)
onk=omk-ak(t,t)*spread(w,dim=1,ncopies=n)
f=g(t)
call ludcmp(omk,indx,d)
call lubksb(omk,indx,f)
END SUBROUTINE fred2

call unit_matrix(omk) The unit_matrix routine in nrutil does exactly what its name suggests.
omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) By now this idiom should be second nature: the first column of ak gets multiplied by the first element of w, and so on.

⋆⋆⋆

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE
  FUNCTION g(t)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), DIMENSION(:,), INTENT(IN) :: t
    REAL(SP), DIMENSION(size(t)) :: g
  END FUNCTION g
  FUNCTION ak(t,s)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), DIMENSION(:,), INTENT(IN) :: t,s
    REAL(SP), DIMENSION(size(t),size(s)) :: ak
  END FUNCTION ak
END INTERFACE

Input are arrays t and w of length N containing the abscissas and weights of the N-point Gaussian quadrature, and the solution array f of length N from fred2. The function fredin returns the array of values of f at an array of points x using the Nyström interpolation formula. On input, a and b are the limits of integration, g and ak are user-supplied external functions. g returns g(t) as a vector of length N for a vector of N arguments, while ak returns λK(t,s) as an N × N matrix.

INTEGER(I4B) :: n
n=assert_eq(size(f),size(t),size(w),'fredin')
fredin=g(x)+matmul(ak(x,t),w*f)
END FUNCTION fredin

f90 fredin=g(x)+matmul... Fortran 90 allows very concise coding here, which also happens to be much closer to the mathematical formulation than the loops required in Fortran 77.

⋆⋆⋆

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype; USE nrutil, ONLY: array_copy,assert_eq,unit_matrix
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:,), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,), INTENT(OUT) :: f
INTERFACE
  FUNCTION g(t)
    USE nrtype
    IMPLICIT NONE
    REAL(SP), INTENT(IN) :: t
    REAL(SP), DIMENSION(:,), Pointer :: g
  END FUNCTION g
  FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,,:), POINTER :: ak
END FUNCTION ak

END INTERFACE

Solves a set of $M$ linear Volterra equations of the second kind using the extended trapezoidal rule. On input, $t_0$ is the starting point of the integration. The routine takes $N - 1$ steps of size $h$ and returns the abscissas in $t$, a vector of length $N$. The solution at these points is returned in the $M \times N$ matrix $f$. $g$ is a user-supplied external function that returns a pointer to the $M$-dimensional vector of functions $g_k(t)$, while $ak$ is another user-supplied external function that returns a pointer to the $M \times M$ matrix $K(t,s)$.

INTEGER(I4B) :: i,j,n,ncop,nerr,m
INTEGER(I4B), DIMENSION(size(f,1)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f,1)) :: b
REAL(SP), DIMENSION(size(f,1),size(f,1)) :: a
n=assert_eq(size(f,2),size(t),'voltra: n')
t(1)=t0

end do
END SUBROUTINE voltra

FUNCTION g(t)...REAL(SP), DIMENSION(:,), POINTER :: g
The routine $voltra$ requires an argument that is a function returning a vector, but we don't know the dimension of the vector at compile time. The solution is to make the function return a pointer to the vector. This is not the same thing as a pointer to a function, which is not allowed in Fortran 90. When you use the pointer in the routine, Fortran 90 figures out from the context that you want the vector of values, so the code remains highly readable. Similarly, the argument $ak$ is a function returning a pointer to a matrix.

The coding of the user-supplied functions $g$ and $ak$ deserves some comment: functions returning pointers to arrays are potential memory leaks if the arrays are allocated dynamically in the functions. Here the user knows in advance the dimension of the problem, and so there is no need to use dynamical allocation in the functions. For example, in a two-dimensional problem, you can code $g$ as follows:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:,), POINTER :: g
REAL(SP), DIMENSION(2), TARGET, SAVE :: gg

END FUNCTION g
and similarly for ak.

Suppose, however, we coded g with dynamical allocation:

```fortran
FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
allocate(g(2))
g(1)=...
g(2)=... END FUNCTION g
```

Now g never gets deallocated; each time we call the function fresh memory gets consumed. If you have a problem that really does require dynamical allocation in a pointer function, you have to be sure to deallocate the pointer in the calling routine. In voltra, for example, we would declare pointers gtemp and aktemp.

Then instead of writing simply

```fortran
b=g(t(i))+...
```

we would write

```fortran
gtemp=>g(t(i))
b=gtemp+...
deallocate(gtemp)
```

and similarly for each pointer function invocation.

```fortran
call array_copy(g(t(1)),f(:,1),ncop,nerr)
```

The routine would work if we replaced this statement with simply `f(:,1)=g(t(1))`. The purpose of using `array_copy` from nrutil is that we can check that f and g have consistent dimensions with a call to `assert_eq`.

```fortran
RETURN
```

```fortran
FUNCTION wwghts(n,h,kermom)
USE nrtype; USE nrutil, ONLY: geop
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE
FUNCTION kermom(y,m)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom
END INTERFACE
RETURN in wwghts(1:n) weights for the n-point equal-interval quadrature from 0 to (n−1)h of a function \(f(x) \) times an arbitrary (possibly singular) weight function \(w(x) \) whose indefinite-integral moments \(F_n(y) \) are provided by the user-supplied function kermom.

```fortran
INTEGER(I4B) :: j
REAL(DP) :: hh,hi,c,a,b
REAL(DP), DIMENSION(4) :: wold,unew,w
hh=h
hi=1.0_dp/hh
wwghts(1:n)=0.0
wold(1:4)=kermom(0.0_dp,4)
```

Double precision on internal calculations even though the interface is in single precision.

Zero all the weights so we can sum into them.

Evaluate indefinite integrals at lower end.
if (n >= 4) then
 Use highest available order.
b = 0.0
 For another problem, you might change this lower limit.
do j = 1, n - 3
 c = j - 1
 a = b
 Set upper and lower limits for this step.
b = a + hh
 Last interval: go all the way to end.
 if (j == n - 3) b = (n - 1) * hh
 wnew(1:4) = kermom(b, 4)
 w(1:4) = (wnew(1:4) - wold(1:4)) * geop(1.0_dp, hi, 4)
 Equation (18.3.4).
 wghts(j:j+3) = wghts(j:j+3) + (/&
 Equation (18.3.5).
 ((c+1.0_dp)*(c+2.0_dp)*(c+3.0_dp)*w(1)&
 -(11.0_dp*c+(12.0_dp*c+3.0_dp))*w(2)&
 +3.0_dp*c*c+2.0_dp)*w(3)-w(4))/6.0_dp,&
 (-c*c+2.0_dp)*c+3.0_dp)*w(1)&
 +(6.0_dp*c+c+3.0_dp)*w(2)&
 -(3.0_dp*c+5.0_dp)*w(3)+w(4))/0.50_dp,&
 (c*c+1.0_dp)*c+3.0_dp)*w(1)&
 -(3.0_dp*c+c+3.0_dp)*w(2)&
 +(3.0_dp*c+4.0_dp)*w(3)-w(4))/0.50_dp,&
 (-c*c+1.0_dp)*c+3.0_dp)*w(1)&
 +(2.0_dp*c+c+3.0_dp)*w(2)&
 +3.0_dp*c+(c+1.0_dp)*w(3)+w(4))/6.0_dp /)
 wold(1:4) = wnew(1:4)
 Reset lower limits for moments.
end do
else if (n == 3) then
 Lower-order cases; not recommended.
wnew(1:3) = kermom(hh+hh, 3)
 w(1:3) = (/ wnew(1)-wold(1), hi*(wnew(2)-wold(2)),&
 hi**2*(wnew(3)-wold(3)) /)
 wghts(1:3) = (/ w(1)-1.50_dp*w(2)+0.50_dp*w(3),&
 2.0_dp*w(2)-w(3), 0.50_dp*(w(3)-w(2)) /)
else if (n == 2) then
 wnew(1:2) = kermom(hh, 2)
 wghts(2) = hi*(wnew(2)-wold(2))
 wghts(1) = wnew(1)-wold(1)-wghts(2)
end if
END FUNCTION wghts

* * *

MODULE kermom_info
USE nrtype
REAL(DP) :: kermom_x
END MODULE kermom_info

FUNCTION kermom(x,m)
USE nrtype
USE kermom_info
IMPLICIT NONE
REAL(DP) :: x, df, clog, x2, x3, x4
x = kermom_x
We can take x as the lower limit of integration. Thus, we
if (y >= x) then
 return the moment integrals either purely to the left or
 d = y - x
 df = 2.0_dp * sqrt(d) * d
 kermom(1:4) = (/ df/3.0_dp, df*(x/3.0_dp+d/5.0_dp),&
df*((x/3.0_dp + 0.4_dp*d)*x + d**2/7.0_dp),
 df*((x/3.0_dp + 0.6_dp*d)*x + 3.0_dp*d**2/7.0_dp)*x &
 + d**3/9.0_dp) />

else
 x2=x**2
 x3=x2*x
 x4=x2*x2
d=x-y
clog=log(d)
kermom(1:4) = (/ d*(clog-1.0_dp),
 -0.25_dp*(3.0_dp*x+y-2.0_dp*clog*(x+y))*d,&
 (-11.0_dp*x3+y*(6.0_dp*x2+y*(3.0_dp*x+2.0_dp*y))&
 +6.0_dp*clog*(x3-y**3))/18.0_dp,&
 (-25.0_dp*x4+y*(12.0_dp*x3+y*(6.0_dp*x2+y*&
 (4.0_dp*x3-3.0_dp*y)))+12.0_dp*clog*(x4-y**4))/48.0_dp /)
end if
END FUNCTION kermom

MODULE kermom_info
 This module functions just like a common block to share the variable kermom_x with the routine quadmx.
END MODULE kermom_info

SUBROUTINE quadmx(a)
 USE nrtype; USE nrutil, ONLY: arth, assert_eq, diagadd, outerprod
 USE nr, ONLY: wwghts, kermom
 USE kermom_info
 IMPLICIT NONE
 REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a

 Construct in the N x N array a the quadrature matrix for an example Fredholm equation of the second kind. The nonsingular part of the kernel is computed within this routine, while the quadrature weights that integrate the singular part of the kernel are obtained via calls to wwghts. An external routine kermom, which supplies indefinite-integral moments of the singular part of the kernel, is passed to wwghts.

 INTEGER(I4B) :: j,n
 REAL(SP) :: h,x
 REAL(SP), DIMENSION(size(a,1)) :: wt
 n=assert_eq(size(a,1),size(a,2),'quadmx')
 h=PI/(n-1)
 do j=1,n
 x=(j-1)*h
 kermom_x=x
 wt(:)=wwghts(n,h,kermom) Put x in the module kermom_info for use by kermom.
 a(:,j)=wt(:) Part of nonsingular kernel.
 a(j,:)=wt(:) Put together all the pieces of the kernel.
 end do
 wt(:)=cos(arth(0.1_dp)*h)
 a(:,:)=a(:,:)*outerprod(wt(:,),wt(:)) Since equation of the second kind, there is diagonal
 call diagadd(a,1.0_sp) piece independent of h.
END SUBROUTINE quadmx

call diagadd... See discussion of diagadd after hqr on p. 1234.
PROGRAM fredex
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : quadmx, ludcmp, lubksb
IMPLICIT NONE
INTEGER(4) :: N=40
INTEGER(4), DIMENSION(N) :: indx
REAL(8) :: d
REAL(8), DIMENSION(N) :: g, x
REAL(8), DIMENSION(N,N) :: a

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nyström method and a quadrature rule especially constructed for a particular,
singular, kernel.

Parameter: N is the size of the grid.
call quadmx(a) Make the quadrature matrix; all the action is here.
call ludcmp(a,indx,d) Decompose the matrix.
g(:)=sin(x(:)) Construct the right-hand side, here sin x.
call lubksb(a,indx,g) Backsubstitute.
do j=1,N
 write (*,*) j, x(j), g(j)
end do
write (*) 'normal completion'
END PROGRAM fredex
Chapter B19. Partial Differential Equations

SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY: assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(I4B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp

Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a, b, c, d, e, and f are input as the coefficients of the equation, each dimensioned to the grid size $J \times J$. u is input as the initial guess to the solution, usually zero, and returns with the final value. rjac is input as the spectral radius of the Jacobi iteration, or an estimate of it. Double precision is a good idea for J bigger than about 25.

REAL(DP), DIMENSION(size(a,1),size(a,1)) :: resid
INTEGER(I4B) :: jmax,jm1,jm2,jm3,n
REAL(DP) :: anorm,anormf,omega

jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &
size(c,1),size(c,2),size(d,1),size(d,2),size(e,1), &
size(e,2),size(f,1),size(f,2),size(u,1),size(u,2)/),'sor')
jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
anormf=sum(abs(f(2:jm1,2:jm1)))

Compute initial norm of residual and terminate iteration when norm has been reduced by a factor EPS. This computation assumes initial u is zero.

omega=1.0_dp
do n=1,MAXITS
First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checkerboard:
resid(2:jm1:2,2:jm1:2)=a(2:jm1:2,2:jm1:2)*u(3:jmax:2,2:jm1:2)+&
b(2:jm1:2,2:jm1:2)*u(1:jm2:2,2:jm1:2)+&
c(2:jm1:2,2:jm1:2)*u(2:jm1:2,3:jmax:2)+&
d(2:jm1:2,2:jm1:2)*u(2:jm1:2,1:jm2:2)+&
e(2:jm1:2,2:jm1:2)*u(2:jm1:2,2:jm1:2)-f(2:jm1:2,2:jm1:2)
u(2:jm1:2,2:jm1:2)=u(2:jm1:2,2:jm1:2)-omega*&
resid(2:jm1:2,2:jm1:2)/e(2:jm1:2,2:jm1:2)
resid(3:jm2:2,3:jm2:2)=a(3:jm2:2,3:jm2:2)*u(4:jm1:2,3:jm2:2)+&
b(3:jm2:2,3:jm2:2)*u(2:jm3:2,3:jm2:2)+&
c(3:jm2:2,3:jm2:2)*u(2:jm2:2,4:jm1:2)+&
d(3:jm2:2,3:jm2:2)*u(2:jm2:2,2:jm3:2)+&
e(3:jm2:2,3:jm2:2)*u(2:jm2:2,2:jm2:2)-f(3:jm2:2,3:jm2:2)
u(3:jm2:2,3:jm2:2)=u(3:jm2:2,3:jm2:2)-omega*&
resid(3:jm2:2,3:jm2:2)/e(3:jm2:2,3:jm2:2)
resid(2:jm1:2,2:jm1:2)+e(2:jm1:2,2:jm1:2)
resid(3:jm2:2,3:jm2:2)+e(3:jm2:2,3:jm2:2)

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checkerboard:
resid(3:jm2:2,2:jm1:2)=a(3:jm2:2,2:jm1:2)*u(4:jm1:2,2:jm1:2)+&
b(3:jm2:2,2:jm1:2)*u(2:jm3:2,2:jm1:2)+&
Red-black iterative schemes like the one used in sor are easily parallelizable. Updating the red grid points requires information only from the black grid points, so they can all be updated independently. Similarly, the black grid points can all be updated independently. Since nearest neighbors are involved in the updating, communication costs can be kept to a minimum.

There are several possibilities for coding the red-black iteration in a data parallel way using only Fortran 90 and no parallel language extensions.

One way is to define an $N \times N$ logical mask red that is true on the red grid points and false on the black. Then each iteration consists of an update governed by a where(red)...end where block and a where(.not. red)...end where block. We have chosen a more direct coding that avoids the need for storage of the array red.

The red update corresponds to the even-even and odd-odd grid points, the black to the even-odd and odd-even points. We can code each of these four cases directly with array sections, as in the routine above.

The array section notation used in sor is rather dense and hard to read. We could use pointer aliases to try to simplify things, but since each array section is different, we end up merely giving names to each term that was there all along. Pointer aliases do help if we code sor using a logical mask. Since there may be machines on which this version is faster, and since it is of some pedagogic interest, we give the alternative code:

```fortran
SUBROUTINE sor_mask(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY: assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), TARGET, INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(14B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp
REAL(DP), DIMENSION(:,,:), ALLOCATABLE :: resid
REAL(DP), DIMENSION(:,,:), POINTER :: u_int,u_down,u_left,&
     u_right,a_int,b_int,c_int,d_int,e_int,f_int
INTEGER(14B) :: jmax,jm1,jm2,jm3,n
REAL(DP) anorm,anormf,omega
LOGICAL, DIMENSION(:,,:), ALLOCATABLE :: red
jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &
    size(c,1),size(c,2),size(d,1),size(d,2),size(e,1),size(e,2), &
    size(f,1),size(f,2)/))
REAL(DP), DIMENSION(:,:), TARGET, INTENT(IN) :: resid
c(3:jm2:2,2:jm1:2)*u(3:jm2:2,3:jmax:2)+
d(3:jm2:2,2:jm1:2)*u(3:jm2:2,1:jm2:2)+
e(3:jm2:2,2:jm1:2)*u(3:jm2:2,2:jm1:2)-f(3:jm2:2,2:jm1:2)
u(3:jm2:2,2:jm1:2)+u(3:jm2:2,2:jm1:2)=omega*
resid(3:jm2:2,2:jm1:2)/e(3:jm2:2,2:jm1:2)
resid(2:jm1:2,3:jm2:2)=a(2:jm1:2,3:jm2:2)*u(3:jmax:2,3:jm2:2)+
b(2:jm1:2,3:jm2:2)+u(1:jm2:2,3:jm2:2)+
c(2:jm1:2,3:jm2:2)*u(2:jm1:2,4:jm1:2)+
d(2:jm1:2,3:jm2:2)*u(2:jm1:2,2:jm3:2)+
e(2:jm1:2,3:jm2:2)*u(2:jm1:2,2:jm1:2)-f(2:jm1:2,3:jm1:2)
u(2:jm1:2,3:jm2:2)=u(2:jm1:2,3:jm2:2)-omega*
resid(2:jm1:2,3:jm2:2)/e(2:jm1:2,3:jm2:2)
if (anorm < EPS*anormf) exit
END SUBROUTINE sor_mask
```

Red-black iterative schemes like the one used in sor are easily parallelizable. Updating the red grid points requires information only from the black grid points, so they can all be updated independently. Similarly, the black grid points can all be updated independently. Since nearest neighbors are involved in the updating, communication costs can be kept to a minimum.

There are several possibilities for coding the red-black iteration in a data parallel way using only Fortran 90 and no parallel language extensions.

One way is to define an $N \times N$ logical mask red that is true on the red grid points and false on the black. Then each iteration consists of an update governed by a where(red)...end where block and a where(.not. red)...end where block. We have chosen a more direct coding that avoids the need for storage of the array red. The red update corresponds to the even-even and odd-odd grid points, the black to the even-odd and odd-even points. We can code each of these four cases directly with array sections, as in the routine above.

The array section notation used in sor is rather dense and hard to read. We could use pointer aliases to try to simplify things, but since each array section is different, we end up merely giving names to each term that was there all along. Pointer aliases do help if we code sor using a logical mask. Since there may be machines on which this version is faster, and since it is of some pedagogic interest, we give the alternative code:
size(c,1), size(c,2), size(d,1), size(d,2), size(e,1), &
size(e,2), size(f,1), size(f,2), size(u,1), size(u,2) /,'sor'

jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
allocate(resid(jm2,jm2),red(jm2,jm2))

red=.false.
red(1:jm2,2:1:jm2)=.true.
red(2:jm3,2:1:jm2)=.true.

u_int=>u(2:jm1,2:jm1)
u_down=>u(3:jmax,2:jm1)
u_up=>u(1:jm2,2:jm1)
u_left=>u(2:jm1,1:jm2)
u_right=>u(2:jm1,3:jmax)
a_int=>a(2:jm1,2:jm1)
b_int=>b(2:jm1,2:jm1)
c_int=>c(2:jm1,2:jm1)
d_int=>d(2:jm1,2:jm1)
e_int=>e(2:jm1,2:jm1)
f_int=>f(2:jm1,2:jm1)
anormf=sum(abs(f_int))
omega=1.0

do n=1,MAXITS
where(red)
resid=a_int*u_down+b_int*u_up+c_int*u_right+&
d_int*u_left+e_int*u_int-f_int
u_int=u_int-omega*resid/e_int
end where
omega=merge(1.0_dp/(1.0_dp-0.5_dp*rjac**2), &
1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega), n == 1)
where(.not.red)
resid=a_int*u_down+b_int*u_up+c_int*u_right+&
d_int*u_left+e_int*u_int-f_int
u_int=u_int-omega*resid/e_int
end where
omega=1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega)
anorm=sum(abs(resid))
if(anorm < EPS*anormf)exit
end do
dedalocate(resid,red)
if (n > MAXITS) call nrerror('MAXITS exceeded in sor')
END SUBROUTINE sor_mask

SUBROUTINE mglin(u,ncycle)
USE nrtype; USE nrutil, ONLY: assert_eq,nrerror
USE nr, ONLY: interp,rstrct,slvsml
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle

INTEGER(14B), INTENT(INOUT) :: cycle
INTEGER(14B), INTENT(IN) :: ncycle

REAL(DP), ALLOCATABLE :: rho(:)

type(ptr2d)
define a type so we can have an array of pointers
REAL(DP), POINTER :: a(:,+)
END TYPE ptr2d

INTEGER(4B) :: j,jcycle,n,ng,ngrid,nn

Define a type so we can have an array of pointers
to arrays of grid variables.

REAL(DP), POINTER :: a(:,+)
END TYPE ptr2d

END SUBROUTINE mglin(u,ncycle)
REAL(DP), DIMENSION(:,,:), POINTER :: uj, uj_1
n=assert_eq(size(u,1),size(u,2),’mglin’)
ng=nint(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror(’n-1 must be a power of 2 in mglin’)
allocate(rho(ng))
nn=n
ngrid=ng
allocate(rho(ngrid)%a(nn,nn))
do
if (nn <= 3) exit
nn=nn/2+1
ngrid=ngrid-1
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a=rstrct(rho(ngrid+1)%a)
do j=2,ng
nn=2*nn-1
uj_1 => uj
allocate(uj(nn,nn))
uj=interp(uj_1)
do jcycle=1,ncycle
v=0.0
call mg(j-1,v)
do jpost=1,NPOST
end do
dcall slvsml(uj)
dallocate(rho(ng))
dCONTAINS
RECURSIVE SUBROUTINE mg(j,u,rhs)
USE nrtype
USE nr, ONLY : interp, relax, resid, rstrct, slvsml
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: rhs
INTEGER(I4B), PARAMETER :: NPRE=1, NPOST=1

Recursive multigrid iteration. On input, j is the current level, u is the current value of the solution, and rhs is the right-hand side. On output u contains the improved solution at the current level.

Parameters: NPRE and NPOST are the number of relaxation sweeps before and after the coarse-grid correction is computed.

INTEGER(I4B)* : jpre, jpost
REAL(DP), DIMENSION((size(u,1)+1)/2, (size(u,1)+1)/2) :: res, v
if (j == 1) then
Bottom of V: Solve on coarsest grid.
call slvsml(u,rhs)
else
On downward stroke of the V.
do jpre=1,NPRE
call relax(u,rhs)
do res=rstrct(resid(u,rhs))
v=0.0
call mg(j-1,v, res)
u=u+interp(v)
do jpost=1,NPOST
call relax(u,rhs)
dend do
end do
The Fortran 90 version of \texttt{mglin} (and of \texttt{mgfas} below) is quite different from the Fortran 77 version, although the algorithm is identical. First, we use a recursive implementation. This makes the code much more transparent. It also makes the memory management much better: we simply define the new arrays \texttt{res} and \texttt{v} as automatic arrays of the appropriate dimension on each recursive call to a coarser level. And a third benefit is that it is trivial to change the code to increase the number of multigrid iterations done at level $j - 1$ by each iteration at level j, i.e., to set the quantity γ in \S 19.6 to a value greater than one. (Recall that $\gamma = 1$ as chosen in \texttt{mglin} gives V-cycles, $\gamma = 2$ gives W-cycles.) Simply enclose the recursive call in a do-loop:

\begin{verbatim}
 do i=1,merge(gamma,1,j /= 2)
 call mg(j-1,v,res)
 end do
\end{verbatim}

The merge expression ensures that there is no more than one call to the coarsest level, where the problem is solved exactly.

A second improvement in the Fortran 90 version is to make the procedures \texttt{resid}, \texttt{interp}, and \texttt{rstrct} functions instead of subroutines. This allows us to code the algorithm exactly as written mathematically.

\textbf{TYPE ptr2d...} The right-hand-side quantity ρ is supplied initially on the finest grid in the argument \texttt{u}. It has to be defined on the coarser grids by restriction, and then supplied as the right-hand side to \texttt{mg} in the nested iteration loop. This loop starts at the coarsest level and progresses up to the finest level. We thus need a data structure to store ρ on all the grid levels. A convenient way to implement this in Fortran 90 is to define a type \texttt{ptr2d}, a pointer to a two-dimensional array \texttt{a} that represents a grid. (In three dimensions, \texttt{a} would of course be three-dimensional.) We then declare the variable ρ as an allocatable array of type \texttt{ptr2d}:

\begin{verbatim}
 TYPE(ptr2d), ALLOCATABLE :: rho(:)
\end{verbatim}

Next we allocate storage for ρ on each level. The number of levels or grids, \texttt{ng}, is known only at run time:

\begin{verbatim}
 allocate(rho(ng))
\end{verbatim}

Then we allocate storage as needed on particular sized grids. For example,

\begin{verbatim}
 allocate(rho(ngrid)%a(nn,nn))
\end{verbatim}

allocates an $nn \times nn$ grid for ρ on grid number \texttt{ngrid}.

The various subsidiary routines of \texttt{mglin} such as \texttt{rstrct} and \texttt{interp} are written to accept two-dimensional arrays as arguments. With the data structure we've employed, using these routines is simple. For example,

\begin{verbatim}
 rho(ngrid)%a=rstrct(rho(ngrid+1)%a)
\end{verbatim}

will restrict ρ from the grid \texttt{ngrid+1} to the grid \texttt{ngrid}. The statement is even more readable if we mentally ignore the \%\texttt{a} that is tagged onto each variable. (If
we actually did omit ½a in the code, the compiler would think we meant the array of type ptr2d instead of the grid array.)

Note that while Fortran 90 does not allow you to declare an array of pointers directly, you can achieve the same effect by declaring your own type, as we have done with ptr2d in this example.

```fortran
FUNCTION rstrct(uf)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct

Half-weighting restriction. If \( N_c \) is the coarse-grid dimension, the fine-grid solution is input in the \( (2N_c - 1) \times (2N_c - 1) \) array \( uf \), the coarse-grid solution is returned in the \( N_c \times N_c \) array \( rstrct \).

INTERGER(I4B) :: nc,nf
nc=assert_eq(size(uf,1),size(uf,2),'rstrct')
nf=(nf+1)/2
rstrct(2:nc-1,2:nc-1)=0.5_dp*uf(3:nf-2:2,3:nf-2:2)+0.125_dp*(&
uf(4:nf-1:2,3:nf-2:2)+uf(2:nf-3:2,3:nf-2:2)+&
uf(3:nf-2:2,4:nf-1:2)+uf(3:nf-2:2,2:nf-3:2))

rstrct(1:nc,1)=uf(1:nf:2,1)

rstrct(1:nc,nc)=uf(1:nf:2,nf)

rstrct(1,1:nc)=uf(1,1:nf:2)

rstrct(nc,1:nc)=uf(nf,1:nf:2)

END FUNCTION rstrct
```

```fortran
FUNCTION interp(uc)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: uc
REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp

Coarse-to-fine prolongation by bilinear interpolation. If \( N_f \) is the fine-grid dimension and \( N_c \) the coarse-grid dimension, then \( N_f = 2N_c - 1 \). The coarse-grid solution is input as \( uc \), the fine-grid solution is returned in \( interp \).

INTERGER(I4B) :: nc,nf
nc=assert_eq(size(uc,1),size(uc,2),'interp')
nf=2*nc-1
interp(1:nc:2,1:nf:2)=uc(1:nc,1:nc)

Do elements that are copies.

interp(2:nf-1:2,1:nf:2)=0.5_dp*(interp(3:nf:2,1:nf:2)+&
interp(1:nf-2:2,1:nf:2))

Do odd-numbered columns, interpolating vertically.

interp(1:nf,2:nf-1:2)=0.5_dp*(interp(1:nf,3:nf:2)+interp(1:nf,1:nf-2:2))

Do even-numbered columns, interpolating horizontally.

END FUNCTION interp
```

```fortran
SUBROUTINE slvsml(u,rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of the model problem on the coarsest grid, where \( h = \frac{1}{2} \). The right-hand side is input in \( rhs(1:3,1:3) \) and the solution is returned in \( u(1:3,1:3) \).

REAL(DP) :: h
u=0.0
h=0.5_dp
u(2,2)=-h*h*rhs(2,2)/4.0_dp
END SUBROUTINE slvsml
```
SUBROUTINE relax(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution u is
updated, using the right-hand-side function rhs. u and rhs are square arrays of the same
odd dimension.

INTEGER(14B) :: n
REAL(DP) :: h,h2
n=assert_eq(size(u,1),size(u,2),size(rhs,1),size(rhs,2),'relax')
h=1.0_dp/(n-1)
h2=h*h

First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-
board:

\[
\begin{align*}
 u(2:n-1,2:n-1) &= 0.25_dp*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+
 u(2:n-1,3:n)+u(2:n-1,1:n-2)-h2*rhs(2:n-1,2:n-1)) \\
 u(3:n-2,3:n-2) &= 0.25_dp*(u(4:n-1,3:n-2)+u(2:n-3,3:n-2)+
 u(3:n-2,4:n-1)+u(3:n-2,2:n-3)-h2*rhs(3:n-2,3:n-2))
\end{align*}
\]

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

\[
\begin{align*}
 u(3:n-2,2:n-1) &= 0.25_dp*(u(4:n-1,2:n-1)+u(2:n-3,2:n-1)+
 u(3:n-2,3:n)+u(3:n-2,1:n-2)-h2*rhs(3:n-2,2:n-1)) \\
 u(2:n-1,3:n-2) &= 0.25_dp*(u(3:n,3:n-2)+u(1:n-2,3:n-2)+
 u(2:n-1,4:n-1)+u(2:n-1,2:n-3)-h2*rhs(2:n-1,3:n-2))
\end{align*}
\]

END SUBROUTINE relax

FUNCTION resid(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u,rhs
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid

Returns minus the residual for the model problem. Input quantities are u and rhs, while
the residual is returned in resid. All three quantities are square arrays with the same odd
dimension.

INTEGER(14B) :: n
REAL(DP) :: h,h2i
n=assert_eq((/size(u,1),size(u,2),size(rhs,1),size(rhs,2)/),'resid')
n=size(u,1)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
resid(2:n-1,2:n-1)=-h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+
 u(2:n-1,3:n)+u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))+rhs(2:n-1,2:n-1)
resid(1:n,1)=0.0
resid(1:n,n)=0.0
resid(1,1:n)=0.0
resid(n,1:n)=0.0

END FUNCTION resid

See the discussion of red-black relaxation after sor on p. 1333.
SUBROUTINE mgfas(u, maxcyc)
USE nrtype; USE nrutil, ONLY : assert_eq, nrerror
USE nr, ONLY : interp, lop, rstrct, slvsm2
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc
INTEGER(I4B) :: j, jcycle, n, ng, ngrid, nn
REAL(DP) :: res, trerr

IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc

Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u contains the right-hand side \(\rho \) in an \(N \times N \) array, while on output
it returns the solution. The dimension \(N \) is related to the number of grid levels used in
the solution, \(ng \) below, by \(N = 2^{ng+1} \). maxcyc is the maximum number of V-cycles
to be used at each level.

INTEGER(I4B) :: j, jcycle, n, ng, ngrid, nn
REAL(DP) :: res, trerr
TYPE ptr2d
 REAL(DP), POINTER :: a(:,:)
END TYPE ptr2d
TYPE(ptr2d), ALLOCATABLE :: rho(:)
REAL(DP), DIMENSION(:,:), POINTER :: uj, uj_1

n = assert_eq(size(u,1), size(u,2), 'mgfas')
ng = int(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror('n-1 must be a power of 2 in mgfas')
allocate(rho(ng))
n = n
ngrid = ng
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a = u
allocate(rho(ngrid+1)%a)
end do
nn = 3
allocate(uj(nn,nn))
call slvsm2(uj, rho(1)%a)
do j = 2/ng
 nn = 2*nn-1
 uj_1 = uj
 allocate(uj(nn,nn))
 uj = interp(uj_1)
deallocate(uj_1)
do jcycle = j, maxcyc
 do
 call mg(j, uj, rhs, trerr)
 res = sqrt(sum((lop(uj)-rho(j)%a)**2))/nn
 if (res < trerr) exit
 end do
end do
u = uj
deallocate(uj)
do j = 1, ng
 deallocate(rho(j)%a)
end do
deallocate(rho)
CONTAINS
RECURSIVE SUBROUTINE mg(j, u, rhs, trerr)
USE nrtype
USE nr, ONLY : interp, lop, relax2, rstrct, slvsm2
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,,:), INTENT(IN), OPTIONAL :: rhs
REAL(DP), INTENT(INOUT), OPTIONAL :: trerr

Type definition for arrays of grid variables.

REAL(DP), Dimension(:,:), INTENT(INOUT) :: u
REAL(DP), Dimension(:,:), Pointer :: uj, uj_1

Allocate storage for r.h.s. on grid \(ng \),
and fill it with \(\rho \) from the fine grid.
Similarly allocate storage and fill r.h.s. by re-
striction on all coarse grids.

Allocate initial solution on coarsest grid.
Nested iteration loop.
Interpolate from grid \(j-1 \) to next finer grid
V-cycle loop.
Form residual \(\| d_h \| \).
No more V-cycles needed if residual small
enough.
Return solution in u.
Recursive multigrid iteration. On input, \(j \) is the current level and \(u \) is the current value of the solution. For the first call on a given level, the right-hand side is zero, and the optional argument \(\text{rhs} \) is not present. Subsequent recursive calls supply a nonzero \(\text{rhs} \) as in equation (19.6.33). On output \(u \) contains the improved solution at the current level. When the first call on a given level is made, the relative truncation error \(\tau \) is returned in the optional argument \(\text{trerr} \).

Parameters: \(\text{NPRE} \) and \(\text{NPOST} \) are the number of relaxation sweeps before and after the coarse-grid correction is computed; \(\text{ALPHA} \) relates the estimated truncation error to the norm of the residual.

```fortran
INTEGER(I4B), PARAMETER :: NPRE=1, NPOST=1
REAL(DP), PARAMETER :: ALPHA=0.33_dp
```

recursive multigrid iteration

When the first call on a given level is made, the relative truncation error \(\tau \) is returned in the optional argument \(\text{trerr} \).

Parameters:
- \(\text{NPRE} \) and \(\text{NPOST} \) are the number of relaxation sweeps before and after the coarse-grid correction is computed;
- \(\text{ALPHA} \) relates the estimated truncation error to the norm of the residual.

```fortran
INTEGER(I4B) :: jpost, jpre
REAL(DP), DIMENSION((size(u,1)+1)/2,(size(u,1)+1)/2) :: v, ut, tau
if (j == 1) then
    Bottom of V: Solve on coarsest grid.
    call slvsm2(u, rhs=rho(j)%a)
else
    On downward stoke of the V.
    do jpre=1, NPRE
        Pre-smoothing.
        if (present(rhs)) then
            call relax2(u, rhs+rho(j)%a)
        else
            call relax2(u, rho(j)%a)
        end if
    end do
    ut=rstrct(u) \( \tilde{u}_h \).
    Make a copy in v.
    if (present(rhs)) then
        tau=lop(ut)-rstrct(lop(u)-rhs)
        Form \( \tilde{r}_h + f_H = L_H(\mathcal{R}\tilde{u}_h) - \mathcal{R}L_h(\tilde{u}_h) + f_H \).
    else
        tau=lop(ut)-rstrct(lop(u))
        Estimate truncation error \( \tau \).
        trerr=\text{ALPHA}*sqrt(sum(tau**2))/size(tau,1)
    end if
    call mg(j-1, v, tau)
    Recursive call for the coarse-grid correction.
    if (present(rhs)) then
        call relax2(u, rhs+rho(j)%a)
    else
        call relax2(u, rho(j)%a)
    end if
    end do
end if
```

END SUBROUTINE mg

END SUBROUTINE mgfas

See the discussion after mglin on p. 1336 for the changes made in the Fortran 90 versions of the multigrid routines from the Fortran 77 versions.

TYPE ptr2d...

See discussion after mglin on p. 1336.

RECURSIVE SUBROUTINE mg(j, u, rhs, trerr) Recall that mgfas solves the problem \(Lu = 0 \), but that nonzero right-hand sides appear during the solution. We implement this by having \(\text{rhs} \) be an optional argument to \(\text{mg} \). On the first call at a given level \(j \), the right-hand side is zero and so you just omit it from the calling sequence. On the other hand, the truncation error \(\text{trerr} \) is computed only on the first call at a given level, so it is also an optional argument that does get supplied on the first call:

```fortran
call mg(j, u, trerr=trerr)
```

The second and subsequent calls at a given level supply \(\text{rhs}=\text{tau} \) but omit \(\text{trerr} \):
call mg(j-1,v,tau)

Note that we can omit the keyword rhs from this call because the variable tau appears in the correct order of arguments. However, in the other call above, the keyword trerr must be supplied because rhs has been omitted.

The example equation that is solved in mgfas, equation (19.6.44), is almost linear, and the code is set up so that \(\rho \) is supplied as part of the right-hand side instead of pulling it over to the left-hand side. The variable rho is visible to mg by host association. Note also that the function lop does not include rho, but that the statement

\[
\text{tau} = \text{lop}(ut) \cdot \text{rstrct}(\text{lop}(u))
\]

is nevertheless correct, since rho would cancel out if it were included in lop. This feature is also true in the Fortran 77 code.

SUBROUTINE relax2(u,rhs)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution \(u \) is updated, using the right-hand-side function rhs. u and rhs are square arrays of the same odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: foh2,h,h2i
REAL(DP) :: res(size(u,1),size(u,1))
n=assert_eq(size(u,1),size(u,1),size(rhs,1),size(rhs,2),'relax2')

\[
h = \frac{1.0}{(n-1)}
\]
\[
h2i = \frac{1.0}{h^2}
\]
\[
foh2 = -4.0 \cdot h2i
\]

First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-board:

\[
\text{res}(2:n-1:2,2:n-1:2) = h2i \cdot (u(3:n-1,2:n-1:2)+u(1:n-2:2,2:n-1:2)+&
-u(2:n-1,2:n-1:2)+u(2:n-1,2:n-1:2)-4.0 \cdot dp \cdot u(2:n-1,2:n-1:2))&
\]
\[
+u(2:n-1,2:n-1:2)-2.0 \cdot rhs(2:n-1,2:n-1:2)+&
\]
\[
2.0 \cdot dp \cdot u(2:n-1,2:n-1:2)
\]
\[
\]

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-board:

\[
\text{res}(3:n-2:2,2:n-1:2) = h2i \cdot (u(4:n-1,2:n-1:2)+u(2:n-3,2:n-1:2)+&
-u(3:n-2,2:n-1:2)+u(3:n-2,2:n-1:2)-4.0 \cdot dp \cdot u(3:n-2,2:n-1:2))&
\]
\[
+u(3:n-2,2:n-1:2)-2.0 \cdot rhs(3:n-2,2:n-1:2)+&
\]
\[
2.0 \cdot dp \cdot u(3:n-2,2:n-1:2)
\]
\[
\]

END SUBROUTINE relax2

See the discussion of red-black relaxation after sor on p. 1333.
SUBROUTINE slvsm2(u, rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of equation (19.6.44) on the coarsest grid, where \(h = \frac{1}{2} \). The right-hand side is input in \(rhs(1:3,1:3) \) and the solution is returned in \(u(1:3,1:3) \).

REAL(DP) :: disc, fact, h
u=0.0
h=0.5_dp
fact=2.0_dp/h**2
disc=sqrt(fact**2+rhs(2,2))
u(2,2)=rhs(2,2)/(fact+disc)
END SUBROUTINE slvsm2

FUNCTION lop(u)
USE nrtype; USE nrutil, ONLY: assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop

Given \(u \), returns \(L_h(u_h) \) for equation (19.6.44). \(u \) and \(lop \) are square arrays of the same odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: h, h2i
n=assert_eq(size(u,1),size(u,2),'lop')
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
lop(2:n-1,2:n-1)=h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+u(2:n-1,3:n)+
 u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))**2 \(\text{Interior points.} \)
lop((1:n,1))=0.0
lop(1:n,n)=0.0
lop(1,1:n)=0.0
lop(n,1:n)=0.0
END FUNCTION lop
Chapter B20. Less-Numerical Algorithms

Volume 1's Fortran 77 routine machar performed various clever contortions (due to Cody, Malcolm, and others) to discover the underlying properties of a machine's floating-point representation. Fortran 90, by contrast, provides a built-in set of "numeric inquiry functions" that accomplish the same goal. The routine machar included here makes use of these and is included largely for compatibility with the previous version.

SUBROUTINE machar(ibeta, it, irnd, ngrd, machep, negep, iexp, minexp, &
 maxexp, eps, epsneg, xmin, xmax)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ibeta, iexp, irnd, ngrd, machep, negep, minexp, &
 maxexp, eps, epsneg, xmin, xmax
REAL(SP), INTENT(OUT) :: RX=1.0

Determines and returns machine-specific parameters affecting floating-point arithmetic. Returned values include ibeta, the floating-point radix; it, the number of base-ibeta digits in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is not equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not equal to 1.0; xmin, the smallest representable positive number; and xmax, the largest representable positive number. See text for description of other returned parameters. Change all REAL(SP) declarations to REAL(DP) to find double-precision parameters.

REAL(SP) :: a, beta, betah, one, temp, tempa, two, zero

ibeta=radix(RX)
it=digits(RX)
machep=exponent(nearest(RX,RX)-RX)-1
negep=exponent(nearest(RX,-RX)-RX)-1
minexp=minexponent(RX)-1
maxexp=maxexponent(RX)
iexp=nint(log(real(maxexp-minexp+2,sp))/log(2.0_sp))
eps=real(ibeta,sp)**machep
epsneg=real(ibeta,sp)**negep
xmax=huge(RX)
xmin=tiny(RX)
one=RX
two=one+one
zero=one-one
beta=real(ibeta,sp)
a=beta**(-negep)
irnd=0
betah=beta/two
temp=a+betah
if (temp-a /= zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd == 0) and (temp-tempa /= zero)) irnd=2
ngrd=0

1343
temp = one + eps
if ((irnd == 0) .and. (temp * one - one /= zero)) ngrd = 1

if (temp /= zero) irnd = irnd + 3

Adjust irnd to reflect partial underflow.

END SUBROUTINE machar

FUNCTION igray(n,is)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,is

INTEGER(I4B) :: igray

For zero or positive values of is, return the Gray code of n; if is is negative, return the inverse Gray code of n.

INTEGER(I4B) :: idiv,ish
if (is >= 0) then
 This is the easy direction!
 igray = ieor(n, n/2)
else
 This is the more complicated direction: In hierarchical stages, starting with a one-bit right shift, cause each bit to be XORed with all more significant bits.
 ish = -1
 igray = n
 do
 idiv = ishft(igray, ish)
 igray = ieor(igray, idiv)
 if (idiv <= 1 .or. ish == -16) RETURN
 ish = ish + ish
 Double the amount of shift on the next cycle.
 end do
end if

END FUNCTION igray

FUNCTION icrc(crc,buf,jinit,jrev)
USE nrtype
IMPLICIT NONE

CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
INTEGER(I2B), INTENT(IN) :: crc,jinit
INTEGER(I4B), INTENT(IN) :: jrev

INTEGER(I2B) :: icrc

Computes a 16-bit Cyclic Redundancy Check for an array buf of bytes, using any of several conventions as determined by the settings of jinit and jrev (see accompanying table). The result is returned both as an integer icrc and as a 2-byte array crc. If jinit is negative, then crc is used on input to initialize the remainder register, in effect concatenating buf to the previous call.

INTEGER(I4B), SAVE :: init=0
INTEGER(I2B), SAVE :: jword,ich
INTEGER(I2B), DIMENSION(0:255), SAVE :: icrctb,rchr
INTEGER(I2B), DIMENSION(0:15) :: it = (/ 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 /)

if (init == 0) then
 Do we need to initialize tables?
 init = 1
 The two tables are: CRCs of all characters,
 icrctb(j) = icrc1(ishft(j, 8), char(0))
 and bit-reverses of all characters.
 rchr(j) = ishft(it(iand(j, 15_I2B)), 4) + it(ishft(j, -4))
end do

if (jinit >= 0) then
 Initialize the remainder register.
 cword = crc
 cword = ior(jinit, ishft(jinit, 8))
else if (jrev < 0) then
 If not initializing, do we reverse the register?
 cword=ior(rchr(hibyte()),ishft(rchr(lobyte()),8))
end if

do j=1,size(buf)
 Main loop over the characters in the array.
 ich=ichar(buf(j))
 if (jrev < 0) ich=rchr(ich)
 cword=ieor(icrcb(ieor(ich,hibyte())),ishft(lobyte(),8))
end do
icrc=merge(cword, &
 Do we need to reverse the output?
 ior(rchr(hibyte()),ishft(rchr(lobyte()),8)), jrev >= 0)
CONTAINS

FUNCTION hibyte()
INTEGER(1B) :: hibyte
Extracts the high byte of the 2-byte integer cword.
hibyte = ishft(cword,-8)
END FUNCTION hibyte

FUNCTION lobyte()
INTEGER(1B) :: lobyte
Extracts the low byte of the 2-byte integer cword.
lobyte = iand(cword,255_I2B)
END FUNCTION lobyte

FUNCTION icrc1(crc,onech)
INTEGER(I2B), INTENT(IN) :: crc
CHARACTER(1), INTENT(IN) :: onech
INTEGER(I2B) :: icrc1
Given a remainder up to now, return the new CRC after one character is added. This routine is
equivalent to icrc(,,-1,1)
functionally equivalent to icrc(,,-1,1), but slower. It is used by icrc to initialize its table.
 DATA bit16,ccitt /Z'8000', Z'1021'/
 ich=ichar(onech)
Here is where the character is folded into the
 register.
 icrc1=ieor(crc,ishft(ich,8))
 do i=1,8
Here is where 8 one-bit shifts, and some XORs
 with the generator polynomial,
 ishft(icrc1,1), iand(icrc1,bit16) /= 0) are done.
end do
END FUNCTION icrc1
END FUNCTION icrc

The embedded functions hibyte and lobyte always act on the same
variable, cword. Thus they don't need any explicit argument.

* * *

FUNCTION decchk(string,ch)
USE nrtype; USE nrutil, ONLY : ifirstloc
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk
Decimal check digit computation or verification. Returns as ch a check digit for appending
to string. In this mode, ignore the returned logical value. If string already ends with
a check digit, returns the function value .true. if the check digit is valid, otherwise
.false. In this mode, ignore the returned value of ch. Note that string and ch contain
ASCII characters corresponding to the digits 0-9, not byte values in that range. Other ASCII
characters are allowed in string, and are ignored in calculating the check digit.

 INTEGER(1B) :: i,j,k,m
 INTEGER(1B) :: ip(0:9,0:7) = reshape((/ &
Group multiplication and permuta-
0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,&
tion tables.
5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,&
4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8 /),&
INTEGER(I4B) :: ij(0:9,0:9) = reshape((/ 0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,& 7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,6,7,8,9,0,1,2,3,& 4,6,7,8,9,5,4,0,1,2,3,7,8,9,6,3,4,0,1,2,8,9,6,7,2,5,4,0,& 1,9,5,6,7,8,1,2,3,4,0 /),(/ 10,10 /))

k=0
m=0
do j=1,size(string)
 Look at successive characters.
 i=ichar(string(j))
 if (i >= 48 .and. i <= 57) then
 Ignore everything except digits.
 k=ij(k,ip(mod(i+2,10),mod(m,8)))
 m=m+1
 end if
end do

decchk=logical(k == 0,kind=lgt)
i=mod(m,8)
 Find which appended digit will check properly.
 i=ifirstloc(ij(k,ip(0:9,i)) == 0) - 1
 ch=char(i+48)
 Convert to ASCII.

END FUNCTION decchk

Note the use of the utility function ifirstloc to find the first (in this case, the only) correct check digit.

* * *

The Huffman and arithmetic coding routines exemplify the use of modules to encapsulate user-defined data types. In these algorithms, “the code” is a fairly complicated construct containing scalar and array data. We define types huffcode and arithcode, then can pass “the code” from the routine that constructs it to the routine that uses it as a single variable.

MODULE huf_info
USE nrtyp
IMPLICIT NONE
TYPE huffcode
 INTEGER(I4B) :: nch,nodemax
 INTEGER(I4B), DIMENSION(:), POINTER :: icode,left,iright,ncode
END TYPE huffcode
CONTAINS
SUBROUTINE huff_allocate(hcode,mch)
USE nrtyp
IMPLICIT NONE
TYPE(huffcode) :: hcode
INTEGER(I4B) :: mch
mch=2*mch-1
allocate(hcode%icode(mch),hcode%ncode(mch),hcode%left(mch),hcode%iright(mch))
hcode%ncode(:)=0
hcode%icode(:)=0
END SUBROUTINE huff_allocate
SUBROUTINE huff_deallocate(hcode)
USE nrtyp
IMPLICIT NONE
TYPE(huffcode) :: hcode
deallocate(hcode%iright,hcode%left,hcode%ncode,hcode%icode)
nullify(hcode%ncode)
nullify(hcode%icode)
nullify(hcode%left)
nullify(hcode%right)
SUBROUTINE hufmak(nfreq,ilong,nlong,hcode)
USE ntype; USE nrutil, ONLY : array_copy, arth, imaxloc, nrerror
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ilong,nlong
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nfreq
TYPE(huffcode) :: hcode

Given the frequency of occurrence table nfreq of size(nfreq) characters, return the
Huffman code hcode. Returned values ilong and nlong are the character number that
produced the longest code symbol, and the length of that symbol.

INTEGER(I4B) :: ibit,j,k,n,node,nused,nerr
INTEGER(I4B), DIMENSION(2*size(nfreq)-1) :: indx,iup,nprob
hcode%nch=size(nfreq)
call huff_allocate(hcode,size(nfreq))
nused=0
nprob(1:hcode%nch)=nfreq(1:hcode%nch)
call array_copy(pack(arth(1,1,hcode%nch), nfreq(1:hcode%nch) /= 0),&
 indx,nused,nerr)
do j=nused,1,-1
 call hufapp(j)
 end do
k=hcode%nch
do
 if (nused <= 1) exit
 node=indx(1)
 indx(1)=indx(nused)
 nused=nused-1
 call hufapp(1)
 k=k+1
 nprob(k)=nprob(indx(1))+nprob(node)
hcode%left(k)=node
 hcode%right(k)=indx(1)
iup(indx(1))=-k
 iup(node)=k
 indx(1)=k
 call hufapp(1)
end do
hcode%nodemax=k
 iup(hcode%nodemax)=0
 do j=1,hcode%nch
 if (nprob(j) /= 0) then
 n=0
 ibit=0
 node=iup(j)
do
 if (node == 0) exit
 if (node < 0) then
 n=ibset(n,ibit)
 node=-node
 end if
 node=iup(node)
 ibit=ibit+1
 end do
 hcode%icode(j)=n
 hcode%ncode(j)=ibit
 end if
 end do
 ilong=imaxloc(hcode%ncode(1:hcode%nch))
nlong=hcode%ncode(ilong)
if (nlong > bit_size(1_i4b)) call & Check nlong not larger than word length.
 nrerror('hufmak: Number of possible bits for code exceeded')

CONTAINS

SUBROUTINE hufapp(l)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l
Used by hufmak to maintain a heap structure in the array indx(1:l).
INTEGER(I4B) :: i,j,k,n
n=nused
i=1
k=indx(1)
do
 if (i > n/2) exit
 j=i+i
 if (j < n .and. nprob(indx(j)) > nprob(indx(j+1))) &
 j=j+1
 if (nprob(k) <= nprob(indx(j))) exit
 indx(i)=indx(j)
i=j
end do
indx(i)=k
END SUBROUTINE hufapp

SUBROUTINE hufenc(ich,codep,nb,hcode)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:), POINTER :: codep
TYPE(huffcode) :: hcode
Huffman encode the single character ich (in the range 0..nch-1) using the code in hcode,
write the result to the character array pointed to by codep starting at bit nb (whose smallest
valid value is zero), and increment nb appropriately. This routine is called repeatedly to
encode consecutive characters in a message, but must be preceded by a single initializing
call to hufmak.
INTEGER(I4B) :: k,l,n,nc,ntmp
k=ich+1
Convert character range 0..nch-1 to array index range 1..nch.
do n=code%ncode(k),1,-1 Loop over the bits in the stored Huffman
 if (n > size(codep)) codep=>reallocate(codep,2*size(codep))
l=mod(nb,8)
 if (l == 0) codep(nc)=char(0)
 if (btest(hcode%icode(k),n-1)) then
 ntmp=ibset(ichar(codep(nc)),l)
 codep(nc)=char(ntmp)
 end if
 nb=nb+1
end do
END SUBROUTINE hufenc
SUBROUTINE hufdec(ich, code, nb, hcode)
USE nrtype
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: code
TYPE(huffcode) :: hcode

Starting at bit number nb in the character array code, use the Huffman code in hcode to decode a single character (returned as ich in the range 0..nch-1) and increment nb appropriately. Repeated calls, starting with nb = 0, will return successive characters in a compressed message. The returned value ich=nch indicates end-of-message. This routine must be preceded by a single initializing call to hufmak.

INTEGER(I4B) :: l, nc, node
node=hcode%nodemax
nc=nb/8+1
 if (nc > size(code)) then
 ich=hcode%nch
 RETURN
 end if
 l=mod(nb,8)
 if (btest(ichar(code(nc)),l)) then
 node=hcode%iright(node)
 else
 node=hcode%left(node)
 end if
 if (node <= hcode%nch) then
 ich=node-1
 RETURN
 end if
end do
END SUBROUTINE hufdec

* * *

MODULE arcode_info
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NWK=20
NWK is the number of working digits (see text).
TYPE arithcode
 INTEGER(I4B), DIMENSION(:,), POINTER :: ilob, iupb, ncumfq
 INTEGER(I4B) :: jdif, nc, minint, nch, ncum, nrad
END TYPE arithcode
CONTAINS
SUBROUTINE arcode_allocate(acode, mc)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
INTEGER(I4B) :: mc
allocate(acode%ilob(NWK), acode%iupb(NWK), acode%ncumfq(mc+2))
END SUBROUTINE arcode_allocate
SUBROUTINE arcode_deallocate(acode)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
deallocate(acode%ncumfq, acode%iupb, acode%ilob)
nullify(acode%ilob)
nullify(acode%iupb)
Given a table `nfreq` of the frequency of occurrence of `size(nfreq)` symbols, and given a desired output radix `nradd`, initialize the cumulative frequency table and other variables for arithmetic compression. Store the code in `acode`.

```fortran
MAXINT is a large positive integer that does not overflow.
if (nradd > 256) call nrerror('output radix may not exceed 256 in arcmak')
acode%minint=MAXINT/nradd
acode%nch=size(nfreq)
acode%nrad=nradd
call arcode_allocate(acode,acode%nch)
acode%ncumfq(1)=0
acode%ncumfq(2:acode%nch+1)=cumsum(max(nfreq(1:acode%nch),1))
acode%ncumfq(acode%nch+2)=acode%ncumfq(acode%nch+1)+1
acode%ncum=acode%ncumfq(acode%nch+2)
```

Compress (`isign = 1`) or decompress (`isign = -1`) the single character `ich` into or out of the character array pointed to by `codep`, starting with byte `codep(lcd)` and (if necessary) incrementing `lcd` so that, on return, `lcd` points to the first unused byte in `codep`. Note that this routine saves the result of previous calls until a new byte of code is produced, and only then increments `lcd`. An initializing call with `isign=0` is required for each different array `codep`. The routine `arcmak` must have previously been called to initialize the code `acode`. A call with `ich=arcode%nch` (as set in `arcmak`) has the reserved meaning “end of message.”

```fortran
INTEGER(i4b) :: ihi,j,ja,jh,jl,m
if (isign == 0) then
  Initialize enough digits of the upper and lower bounds.
  acode%jdif=acode%nrad-1
  acode%ilob(:)=0
  acode%iupb(:)=acode%nrad-1
  do j=NWK,1,-1
    acode%nc=j
    if (acode%jdif > acode%minint) RETURN
    Initialization complete.
    acode%jdif=acode%jdif+1*acode%nrad-1
    do
      call nrerror('NWK too small in arcode')
    end do
    return
  end do
else if (isign > 0) then
  If encoding, check for valid input character.
  if (ich > acode%nch .or. ich < 0) call nrerror('bad ich in arcode')
else
  If decoding, locate the character `ich` by bisection.
  ja=char(codep(lcd))=acode%ilob(acode%nc)
  do j=acode%nc+1,NWK
```
ja=ja*acode%nrad*(ichar(codep(j+lcd-acode%nc))-acode%ilob(j))
end do
ich=0
ihi=acode%nch+1
do
if (ihi-ich <= 1) exit
m=(ich+ihi)/2
if (ja > jtry(acode%jdif,acode%ncumfq(m+1),acode%ncum)) then
 ich=m
else
 ihi=m
end if
end do
end if
if (ich == acode%nch) RETURN
Detected end of message.
end if
Following code is common for encoding and decoding. Convert character ich to a new subrange [ilob,iupb).
jh=jtry(acode%jdif,acode%ncumfq(ich+2),acode%ncum)
jl=jtry(acode%jdif,acode%ncumfq(ich+1),acode%ncum)
acode%jdif=jh-jl
call arcsum(acode%ilob,acode%iupb,jh,NWK,acode%nrad,acode%nc)
How many leading digits to output (if encoding) or skip over?
call arcsum(acode%ilob,acode%iupb,jl,NWK,acode%nrad,acode%nc)
do j=acode%nc,NWK
 if (ich /= acode%nch .and. acode%iupb(j) /= acode%ilob(j)) exit
 if (acode%nc > size(codep)) codep=>reallocate(codep,2*size(codep))
 if (isign > 0) codep(lcd)=char(acode%ilob(j))
lcd=lcd+1
end do
if (j > NWK) RETURN
Ran out of message. Did someone forget to encode a terminating ncd?
j=0
How many digits to shift?
do
 if (acode%jdif >= acode%minint) exit
 j=j+1
 acode%jdif=acode%jdif*acode%nrad
end do
if (acode%nc-j < 1) call nrerror('NWK too small in arcde')
if (j /= 0) then
 Shift them.
 acode%ilob((acode%nc-j):(NWK-j))=acode%iupb(acode%nc:NWK)
 acode%iupb((acode%nc-j):(NWK-j))=acode%ilob(acode%nc:NWK)
end if
acode%nc=acode%nc-j
acode%ilob((NWK-j+1):NWK)=0
acode%iupb((NWK-j+1):NWK)=0
end if
Normal return.
CONTAINS
FUNCTION jtry(m,n,k)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: m,n,k
INTEGER(I4B) :: jtry
Calculate (m*n)/k without overflow. Program efficiency can be improved by substituting an
assembly language routine that does integer multiply to a double register.
jtry=int((real(m,dp)*real(n,dp))/real(k,dp))
END FUNCTION jtry
SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: iin
INTEGER(I4B), DIMENSION(:,), INTENT(OUT) :: iout
INTEGER(I4B), INTENT(IN) :: nwk,nrad,nc
INTEGER(I4B), INTENT(INOUT) :: ja
Add the integer ja to the radix nrad multiple-precision integer iin(nc..nwk). Return the result in iout(nc..nwk).

```fortran
INTEGER(I4B) :: j, jtmp, karry
karry=0
DO j=nwk, nc+1, -1
   jtmp=ja
   ja=ja/nrad
   iout(j)=iin(j)+(jtmp-ja*nrad)+karry
   IF (iout(j) >= nrad) THEN
      iout(j)=iout(j)-nrad
      karry=1
   ELSE
      karry=0
   END IF
END DO
iout(nc)=iin(nc)+ja+karry
END SUBROUTINE arcsum
END SUBROUTINE arcode
```

⋆⋆⋆

```fortran
MODULE mops
USE nrtype
INTEGER(I4B), PARAMETER :: NPAR_ICARRY=64
CONTAINS

SUBROUTINE icarry(karry, isum, nbits)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: karry
Performs deferred carry operation on an array isum of multiple-precision digits. Nonzero bits of higher order than nbits (typically 8) are carried to the next-lower (leftward) component of isum. The final (most leftward) carry value is returned as karry.

INTEGER(I2B), DIMENSION(:,), INTENT(INOUT) :: isum
INTEGER(I4B), INTENT(IN) :: nbits
INTEGER(I4B) :: n, j
INTEGER(I2B), DIMENSION(size(isum)) :: ihi
INTEGER(I2B) :: mb, ihh
n=size(isum)
mb=ishft(1, nbits)-1
karry=0
IF (n < NPAR_ICARRY ) THEN
   DO j=n, 2, -1
      ihh=ishft(isum(j), -nbits)
      IF (ihh /= 0) THEN
         isum(j)=iand(isum(j), mb)
         isum(j-1)=isum(j-1)+ihh
      END IF
   END DO
   ihh=ishft(isum(1), -nbits)
   isum(1)=iand(isum(1), mb)
   karry=karry+ihh
ELSE
   DO
      ihh=ishft(isum,-nbits)
      IF (all(ihh == 0)) EXIT
      Check if done.
      WHERE (ihh /= 0) isum=iand(isum, mb) Remove bits to be carried and add
      WHERE (ih(2:n) /= 0) isum(1:n-1)=isum(1:n-1)+ih(2:n) them to left.
      karry=karry+ih(1) Final carry.
   END DO
END IF
END SUBROUTINE icarry
```
SUBROUTINE mpadd(w,u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

 Adds the unsigned radix 256 integers u(1:n) and v(1:n) yielding the unsigned integer w(1:n+1).

INTEGER(I2B), DIMENSION(n) :: isum
INTEGER(I4B) :: karry
isum=ichar(u(1:n))+ichar(v(1:n))
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpadd

SUBROUTINE mpsub(is,w,u,v,n)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: is
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

 Subtracts the unsigned radix 256 integer v(1:n) from u(1:n) yielding the unsigned integer w(1:n). If the result is negative (wraps around), is is returned as −1; otherwise it is returned as 0.

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=255+ichar(u(1:n))-ichar(v(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
w(1:n)=char(isum)
is=karry-1
END SUBROUTINE mpsub

SUBROUTINE mpsad(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

 Short addition: The integer iv (in the range 0 ≤ iv ≤ 255) is added to the unsigned radix 256 integer u(1:n), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))
isum(n)=isum(n)+iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsad

SUBROUTINE mpsmu(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

 Short multiplication: The unsigned radix 256 integer u(1:n) is multiplied by the integer iv (in the range 0 ≤ iv ≤ 255), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))*iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsmu

SUBROUTINE mpneg(u,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n

 Negates the unsigned radix 256 integer u(1:n) yielding w(1:n+1).

INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))
call icarry(isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(isum)
END SUBROUTINE mpneg
CHARACTER(1), DIMENSION(:,), INTENT(INOUT) :: u
INTEGER(14B), INTENT(IN) :: n

Ones-complement negate the unsigned radix 256 integer u(1:n).

INTEGER(14B) :: karry
INTEGER(12B), DIMENSION(n) :: isum
isum=255-ichar(u(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
u(1:n)=char(isum)
END SUBROUTINE mpneg

SUBROUTINE mplsh(u,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: n

Left shift u(2..n+1) onto u(1:n).
u(1:n)=u(2:n+1)
END SUBROUTINE mplsh

SUBROUTINE mpmov(u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n

Move v(1:n) onto u(1:n).
u(1:n)=v(1:n)
END SUBROUTINE mpmov

SUBROUTINE mpsdv(w,u,n,iv,ir)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv
INTEGER(I4B), INTENT(OUT) :: ir

Short division: The unsigned radix 256 integer u(1:n) is divided by the integer iv (in the range 0 ≤ iv ≤ 255), yielding a quotient w(1:n) and a remainder ir (with 0 ≤ ir ≤ 255).

Note: Your Numerical Recipes authors don’t know how to parallelize this routine in Fortran 90!

INTEGER(14B) :: i,j
ir=0
do j=1,n
 i=256*ir+ichar(u(j))
w(j)=char(i/iv)
ir=mod(i,iv)
end do
END SUBROUTINE mpsdv

END MODULE mpops

SUBROUTINE mpmul(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : realft
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,m
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u,v
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w

! The logical dimensions are: CHARACTER(1) :: w(n+m),u(n),v(m)
REAL(DP), PARAMETER :: RX=256.0
Uses fast Fourier transform to multiply the unsigned radix 256 integers u(1:n) and v(1:m), yielding a product w(1:n+m).

INTEGER(I4B) :: j,mn,nn
REAL(DP) :: cy,t
REAL(DP), DIMENSION(:,), ALLOCATABLE :: a,b,tb
mn=max(m,n)
nn=1

Find the smallest useable power of two for the transform.
do
 if (nn >= mn) exit
nn=nn+nn
end do
nn=nn+nn
allocate(a(nn),b(nn),tb((nn-1)/2))
a(1:n)=ichar(u(1:n))
 Move U to a double-precision floating array.
a(n+1:nn)=0.0
b(1:m)=ichar(v(1:m))
b(m+1:nn)=0.0
call realft(a(1:nn),1)
call realft(b(1:nn),1)
b(1)=b(1)*a(1)
 Then multiply the complex results (real and imaginary parts).
b(2)=b(2)*a(2)
tb=b(3:nn:2)
b(3:nn:2)=tb*a(3:nn:2)-b(4:nn:2)*a(4:nn:2)
call realft(b(1:nn),-1)
 Then do the inverse Fourier transform.
b(1)=b(1)/nn
cy=0.0
do j=nn,1,-1
 The 0.5 allows for roundoff error.
t=b(j)+cy+0.5_dp
b(j)=mod(t,RX)
cy=int(t/RX)
 Make a final pass to do all the carries.
end do
if (cy >= RX) call nrerror('mpmul: sanity check failed in fftmul')
w(1)=char(int(cy))
w(2:(n+m))=char(int(b(1:(n+m-1))))
deallocate(a,b,tb)
END SUBROUTINE mpmul

SUBROUTINE mpinv(u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mpops, ONLY : mpmov,mpneg
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=4
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp
 Character string v(1:m) is interpreted as a radix 256 number with the radix point after (nonzero) v(1); u(1:n) is set to the most significant digits of its reciprocal, with the radix point after u(1).
INTEGER(I4B) :: i,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:), ALLOCATABLE :: rr,s
allocate(rr(max(n,m)+n+1),s(n))
mm=min(MF,m)
fu=1.0_sp/poly(BI,real(ichar(v(:)),sp))
 Use ordinary floating arithmetic to get an initial approximation.
do j=1,n
 Iterate Newton’s rule to convergence.
i=1+int(fu)
u(j)=char(i)
fu=256.0_sp*(fu-i)
end do
 Construct 2 − UV in S.
call mpmul(rr,u,v,n,m)
call mpmov(s,rr(2:),n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-254)
call mpmul(rr,s,u,n)
call mpmov(u,rr(2:),n)
call mpmov(s,rr(2:),n)
call mpmov(s,rr(2:),n)
if (all(ichar(s(2:n-1)) == 0)) exit
end do
deallocate(rr,s)
END SUBROUTINE mpinv

SUBROUTINE mpdiv(q,r,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : mpinv,mpmul
USE mops, ONLY : mpsad,mpmov,mpsub
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: q,r
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: u,v
!
integer(14b), parameter :: MACC=6
integer(14b) :: is
!
allocate(rr(2*(n+MACC)),s(2*(n+MACC)))
!
call mpinv(s,v,n+MACC,m)
!
set \(S = \frac{1}{V} \).
!
call mpmul(rr,s,u,n+MACC,n)
!
set \(Q = SU \).
!
call mpsad(s,rr,n+n+MACC/2,1)
!
call mpmov(q,s3,n-m+1)
!
call mpmul(rr,q,v,n-m+1,m)
!
multiply and subtract to get the remainder.
!
call mpsub(is,rr2,u,rr2,n)
!
if (is /= 0) call nrerror('MACC too small in mpdiv')
!
call mpmov(r,rr(n-m+2:),m)
!
deallocate(rr,s)
END SUBROUTINE mpdiv

SUBROUTINE mpsqrt(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mops, ONLY : mplsh,mpmov,mpneg,mpsdv
IMPLICIT NONE
CHARACTER(1), DIMENSION(:,), INTENT(OUT) :: w,u
CHARACTER(1), DIMENSION(:,), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=3
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp
!
character string \(v(1:m) \) is interpreted as a radix 256 number with
radix point after \(v(1) \); \(w(1:n) \) is set to its square root (radix point after \(w(1) \)), and
\(u(1:n) \) is set to the reciprocal thereof (radix point before \(u(1) \)). \(w \) and \(u \) need not be distinct, in which case
they are set to the square root.
!
integer(14b) :: i,ir,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:,), ALLOCATABLE :: r,s
!
allocate(r(2*n),s(2*n))
!
m=max(m,MF)
!
fu=1.0_sp/sqrt(poly(BI,real(ichar(v(:)),sp)))
!
use ordinary floating arithmetic
!
iterate Newton's rule to convergence.
!
do j=1,n
i=int(fu)
!
\(u(j) = \text{char}(i) \)

fu=256.0_sp*(fu-i)
end do
!
call mpmul(r,u,u,n,n)
SUBROUTINE mpsqrt
CALL MPLSHELL(R,N)
CALL MPMPUL(S,R,1,N,MIN(M,N))
CALL MPLSHELL(S,N)
CALL MPMPNEG(S,N)
S(1)=CHAR(ICHAR(S(1))-253)
CALL MPSDEV(S,S,1,N,MIN(M,N))

IF (ANY(ICHAR(S(2:N-1)) /= 0)) THEN
 IF FRACTIONAL PART OF S IS NOT ZERO, IT HAS NOT CONVERGED TO 1.
 CALL MPMPUL(R,S,U,N,N)
 REPLACE U BY SU.
 CALL MPMPUL(U,R(2:),N)
 CYCLE
END IF
CALL MPMPUL(R,U,V,N,MIN(M,N))
GET SQUARE ROOT FROM RECIPROCAL AND RETURN.
CALL MPMOV(W,R(2:),N)
DEALLOCATE(R,S)
RETURN
END SUBROUTINE MPSQRT

SUBROUTINE MP2DFR(A,S,N,M)
USE NRTYPE
USE MPOPS, ONLY : MPLSHELL,MPSMUL
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: N
INTEGER(I4B), INTENT(OUT) :: M
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: A
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: S
INTEGER(I4B), PARAMETER :: IAZ=48
CONVERTS A RADIX 256 FRACTION A(1:N) (RADIX POINT BEFORE A(1)) TO A DECIMAL FRACTION REPRESENTED AS AN ASCI STRING S(1:M), WHERE M IS A RETURNED VALUE. THE INPUT ARRAY A(1:N) IS DESTROYED. NOTE: FOR SIMPLICITY, THIS ROUTINE IMPLEMENTS A SLOW (O(N^2)) ALGORITHM. FAST (O(N LN N), MORE COMPLICATED, RADIX CONVERSION ALGORITHMS DO EXIST.
INTEGER(I4B) :: J
M=INT(2.408*SP*N)
DO J=1,M
 CALL MPSMUL(A,A,N,10)
 S(J)=CHAR(ICHAR(A(1))+IAZ)
 CALL MPLSHELL(A,N)
END DO
END SUBROUTINE MP2DFR

SUBROUTINE MPPI(N)
USE NRTYPE
USE NR, ONLY : MP2DFR, MPINV, MPMPUL, MPSQRT
USE MPOPS, ONLY : MPADD, MPLSHELL, MPMOV, MPSDEV
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: N
INTEGER(I4B), PARAMETER :: IAOFF=48
DEMONSTRATE MULTIPLE PRECISION ROUTINES BY CALCULATING AND PRINTING THE FIRST N BYTES OF PI.
INTEGER(I4B) :: IR,J,M
CHARACTER(1), DIMENSION(N) :: SX,SXI
CHARACTER(1), DIMENSION(2*N) :: T,Y
CHARACTER(1), DIMENSION(3*N) :: S
CHARACTER(1), DIMENSION(N+1) :: X,BIGPI
T(1)=CHAR(2)
T(2:N)=CHAR(0)
CALL MPSQRT(SX,SXI,X,N)
SET X0 = \sqrt{2}.
call mpadd(bigpi,t,x,n)
SET \pi_0 = 2 + \sqrt{2}.
call mplshell(bigpi,n)
call mpsqrt(sx,sxi,x,n)
SET Y0 = 2^{1/4}.
call mpmov(y,sx,n)
do
 call mpadd(x,sx,sxi,n)
call mpdv(x,x(2:),n,2,ir)
call mpsqrt(sx,sxi,x,n,n)
call mpaln(t,y,sx,n)
call mpadd(t(2:),t(2:),sxi,n)
x(1)=char(ichar(x(1))+1)
y(1)=char(ichar(y(1))+1)
call mpnsv(s,y,n,n)
call mpmul(y,t(3:),s,n,n)
call mpaln(x,s,1,n,n)
m=mod(255+ichar(t(2)),256)
if (abs(ichar(t(n+1))-m) > 1 .or. any(ichar(t(3:n)) /= m)) then
 call mpnsv(s,mpbigpi(1),t(2:),n,n)
call mpmov(mpbigpi(1),s(2:),n)
cycle
end if
write (*,*) 'pi=
 s(1)=char(ichar(mpbigpi(1))+IAOFF)
 s(2)='.call mp2dfr(mpbigpi(1),s(3:),n-1,m)
 Convert to decimal for printing. NOTE: The conversion routine, for this demonstration
 only, is a slow (\propto N^2) algorithm. Fast (\propto N \ln N), more complicated, radix conversion
 algorithms do exist.
write (*,'(1x,64a1)') (s(j),j=1,m+1)
RETURN
end do
END SUBROUTINE mppi
References

The references collected here are those of general usefulness, cited in this volume. For references to the material in Volume 1, see the References section of that volume.

A first group of references relates to the Fortran 90 language itself:

A second group of references relates to, or includes material on, parallel programming and algorithms:

C1. Listing of Utility Modules (nrtype and nrutil)

C1.1 Numerical Recipes Types (nrtype)

The file supplied as nrtype.f90 contains a single module named nrtype, which in turn contains definitions for a number of named constants (that is, PARAMETERS), and a couple of elementary derived data types used by the sparse matrix routines in this book. Of the named constants, by far the most important are those that define the KIND types of virtually all the variables used in this book: I4B, I2B, and I1B for integer variables, SP and DP for real variables (and SPC and DPC for the corresponding complex cases), and LGT for the default logical type.

```
MODULE nrtype
  Symbolic names for kind types of 4-, 2-, and 1-byte integers:
  INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
  INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
  INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)

  Symbolic names for kind types of single- and double-precision reals:
  INTEGER, PARAMETER :: SP = KIND(1.0)
  INTEGER, PARAMETER :: DP = KIND(1.0D0)

  Symbolic names for kind types of single- and double-precision complex:
  INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
  INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))

  Symbolic name for kind type of default logical:
  INTEGER, PARAMETER :: LGT = KIND(.true.)

  Frequently used mathematical constants (with precision to spare):
  REAL(SP), PARAMETER :: PI = 3.141592653589793238462643383279502884197_sp
  REAL(SP), PARAMETER :: PIO2 = 1.57079632679489661923132169163975144209858_sp
  REAL(SP), PARAMETER :: TWOPI = 6.283185307179586476925286766559005768394_sp
  REAL(SP), PARAMETER :: SQRT2 = 1.41421356237309504880168872420969807856967_sp
  REAL(DP), PARAMETER :: PI_D = 3.141592653589793238462643383279502884197_dp
  REAL(DP), PARAMETER :: PIO2_D = 1.57079632679489661923132169163975144209858_dp
  REAL(DP), PARAMETER :: TWOPI_D = 6.283185307179586476925286766559005768394_dp
  REAL(DP), PARAMETER :: EULER = 0.5772156649015328606065120900824024310422_sp

  Derived data types for sparse matrices, single and double precision (see use in Chapter B2):
  TYPE sprs2_sp
    INTEGER(I4B) :: n, len
    REAL(SP), DIMENSION(:,), POINTER :: val
    INTEGER(I4B), DIMENSION(:,), POINTER :: irow
    INTEGER(I4B), DIMENSION(:,), POINTER :: jcol
  END TYPE sprs2_sp
  TYPE sprs2_dp
    INTEGER(I4B) :: n, len
    REAL(DP), DIMENSION(:,), POINTER :: val
    INTEGER(I4B), DIMENSION(:,), POINTER :: irow
    INTEGER(I4B), DIMENSION(:,), POINTER :: jcol
  END TYPE sprs2_dp
```

1361
About Converting to Higher Precision

You might hope that changing all the Numerical Recipes routines from single precision to double precision would be as simple as redefining the values of SP and DP in nrtype. Well ... not quite.

Converting algorithms to a higher precision is not a purely mechanical task because of the distinction between “roundoff error” and “truncation error.” (Please see Volume 1, §1.2, if you are not familiar with these concepts.) While increasing the precision implied by the kind values SP and DP will indeed reduce a routine’s roundoff error, it will not reduce any truncation error that may be intrinsic to the algorithm. Sometimes, a routine contains “accuracy parameters” that can be adjusted to reduce the truncation error to the new, desired level. In other cases, however, the truncation error cannot be so easily reduced; then, a whole new algorithm is needed. Clearly such new algorithms are beyond the scope of a simple mechanical “conversion.”

If, despite these cautionary words, you want to proceed with converting some routines to a higher precision, here are some hints:

If your machine has a kind type that is distinct from, and has equal or greater precision than, the kind type that we use for DP, then, in nrtype, you can simply redefine DP to this new highest precision and redefine SP to what was previously DP. For example, DEC machines usually have a “quadruple precision” real type available, which can be used in this way. You should not need to make any further edits of nrtype or nrutil.

If, on the other hand, the kind type that we already use for DP is the highest precision available, then you must leave DP defined as it is, and redefine SP in nrtype to be this same kind type. Now, however, you will also have to edit nrutil, because some overloaded routines that were previously distinguishable (by the different kind types) will now be seen by the compiler as indistinguishable — and it will object strenuously. Simply delete all the "dp" function names from the list of overloaded procedures (i.e., from the MODULE PROCEDURE statements). Note that it is not necessary to delete the routines from the MODULE itself. Similarly, in the interface file nr.f90 you must delete the "dp" interfaces, except for the aprs . . . routines. (Since they have TYPE(aprs2dp) or TYPE(aprs2sp), they are treated as distinct even though they have functionally equivalent kind types.)

Finally, the following table gives some suggestions for changing the accuracy parameters, or constants, in some of the routines. Please note that this table is not necessarily complete, and that higher-precision performance is not guaranteed for all the routines, even if you make all the changes indicated. The above edits, and these suggestions, do, however, work in the majority of cases.
<table>
<thead>
<tr>
<th>In routine...</th>
<th>change...</th>
<th>to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>beschb</td>
<td>NUSE1=5, NUSE2=5</td>
<td>NUSE1=7, NUSE2=8</td>
</tr>
<tr>
<td>bessi</td>
<td>IACC=40</td>
<td>IACC=200</td>
</tr>
<tr>
<td>bessik</td>
<td>EPS=1.0e-10</td>
<td>EPS=epsilon(x)</td>
</tr>
<tr>
<td>bessj</td>
<td>IACC=40</td>
<td>IACC=160</td>
</tr>
<tr>
<td>bessjy</td>
<td>EPS=1.0e-10</td>
<td>EPS=epsilon(x)</td>
</tr>
<tr>
<td>broydn</td>
<td>TOLF=1.0e-4</td>
<td>TOLF=1.0e-8</td>
</tr>
<tr>
<td></td>
<td>TOLMIN=1.0e-6</td>
<td>TOLMIN=1.0e-12</td>
</tr>
<tr>
<td>fdjac</td>
<td>EPS=1.0e-4</td>
<td>EPS=1.0e-8</td>
</tr>
<tr>
<td>frprmn</td>
<td>EPS=1.0e-10</td>
<td>EPS=1.0e-18</td>
</tr>
<tr>
<td>gauher</td>
<td>EPS=3.0e-13</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>gaujac</td>
<td>EPS=3.0e-14</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>gaulag</td>
<td>EPS=3.0e-13</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>gaulag</td>
<td>EPS=3.0e-14</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>hypgeo</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-1</td>
</tr>
<tr>
<td>linmin</td>
<td>TOL=1.0e-4</td>
<td>TOL=1.0e-8</td>
</tr>
<tr>
<td>nevt</td>
<td>TOLF=1.0e-4</td>
<td>TOLF=1.0e-8</td>
</tr>
<tr>
<td>probks</td>
<td>EPS1=0.001</td>
<td>EPS1=1.0e-6</td>
</tr>
<tr>
<td>qromb</td>
<td>EPS2=1.0e-8</td>
<td>EPS2=1.0e-16</td>
</tr>
<tr>
<td>qromo</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-10</td>
</tr>
<tr>
<td>qroot</td>
<td>TINY=1.0e-6</td>
<td>TINY=1.0e-14</td>
</tr>
<tr>
<td>qsimp</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-10</td>
</tr>
<tr>
<td>qtrap</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-10</td>
</tr>
<tr>
<td>rc</td>
<td>ERRTOL=0.04</td>
<td>ERRTOL=0.001</td>
</tr>
<tr>
<td>rd</td>
<td>ERRTOL=0.05</td>
<td>ERRTOL=0.001</td>
</tr>
<tr>
<td>rf</td>
<td>ERRTOL=0.08</td>
<td>ERRTOL=0.002</td>
</tr>
<tr>
<td>rj</td>
<td>ERRTOL=0.08</td>
<td>ERRTOL=0.002</td>
</tr>
<tr>
<td>sfroid</td>
<td>conv=0.0e-6</td>
<td>conv=1.0e-14</td>
</tr>
<tr>
<td>shoot</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>shootf</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>simplx</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-14</td>
</tr>
<tr>
<td>sncndn</td>
<td>CA=0.0003</td>
<td>CA=1.0e-8</td>
</tr>
<tr>
<td>sor</td>
<td>EPS=1.0e-5</td>
<td>EPS=1.0e-13</td>
</tr>
<tr>
<td>sphfpt</td>
<td>DXX=1.0e-4</td>
<td>DXX=1.0e-8</td>
</tr>
<tr>
<td>sphoot</td>
<td>dx=1.0e-4</td>
<td>dx=1.0e-8</td>
</tr>
<tr>
<td>svdfit</td>
<td>TOL=1.0e-5</td>
<td>TOL=1.0e-13</td>
</tr>
<tr>
<td>zroots</td>
<td>EPS=1.0e-6</td>
<td>EPS=1.0e-14</td>
</tr>
</tbody>
</table>
C1.2 Numerical Recipes Utilities (nrutil)

The file supplied as \texttt{nrutil.f90} contains a single module named \texttt{nrutil}, which contains specific implementations for all the Numerical Recipes utility functions described in detail in Chapter 23.

The specific implementations given are something of a compromise between demonstrating parallel techniques (when they can be achieved in Fortran 90) and running efficiently on conventional, serial machines. The parameters at the beginning of the module (names beginning with \texttt{NPAR} are typically related to array lengths \textit{below which} the implementations revert to serial operations. On a purely serial machine, these can be set to large values to suppress many parallel constructions.

The length and repetitiveness of the \texttt{nrutil.f90} file stems in large part from its extensive use of overloading. Indeed, the file would be even longer if we overloaded versions for all the applicable data types that each utility could, in principle, instantiate. The descriptions in Chapter 23 detail both the full set of intended data types and shapes for each routine, and also the types and shapes actually here implemented (which can also be gleaned by examining the file). The intended result of all this overloading is, in essence, to give the utility routines the desirable properties of many of the Fortran 90 intrinsic functions, namely, to be both \textit{generic} (apply to many data types) and \textit{elemental} (apply element-by-element to arbitrary shapes). Fortran 95’s provision of user-defined elemental functions will reduce the multiplicity of overloading in some of our routines; unfortunately the necessity to overload for multiple data types will still be present.

Finally, it is worth reemphasizing the following point, already made in Chapter 23: The purpose of the \texttt{nrutil} utilities is to remove from the Numerical Recipes programs just those programming tasks and “idioms” whose efficient implementation is \textit{most} hardware and compiler dependent, so as to allow for specific, efficient implementations on different machines. One should therefore not expect the utmost in efficiency from the general purpose, one-size-fits-all, implementation listed here.

Correspondingly, we would encourage the incorporation of efficient \texttt{nrutil} implementations, and/or comparable capabilities under different names, with as broad as possible a set of overloaded data types, in libraries associated with specific compilers or machines. In support of this goal, we have specifically put this Appendix C1, and the files \texttt{nrtype.f90} and \texttt{nrutil.f90}, into the public domain.

\footnotesize
\begin{verbatim}
MODULE nrutil

TABLE OF CONTENTS OF THE NRUTIL MODULE:
 routines that move data:
 arraycopy, swap, reallocate
 routines returning a location as an integer value
 ifirstloc, imaxloc, iminloc
 routines for argument checking and error handling:
 assert, asserteq, nrerror
 routines relating to polynomials and recurrences
 arth, geop, cumsum, cumprod, poly, polyterm, zroots, unity
 routines for "outer" operations on vectors
 outerand, outersum, outerdiff, outerprod, outerdiv
 routines for scatter-with-combine
 scatter_add, scatter_max
 routines for skew operations on matrices
 diagadd, diagmult, getdiag, putdiag.
\end{verbatim}
unit, matrix, lower triangle, upper triangle
miscellaneous routines
vabs

USE nrtype

Parameters for crossover from serial to parallel algorithms (these are used only within this
nrutil module):

IMPLICIT NONE

INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 Each NPAR2 must be ≤ the
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2 corresponding NPAR.
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8

Next, generic interfaces for routines with overloaded versions. Naming conventions for ap-

Parameters for crossover from serial to parallel algorithms (these are used only within this
nrutil module):

IMPLICIT NONE

INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 Each NPAR2 must be ≤ the
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2 corresponding NPAR.
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8

Next, generic interfaces for routines with overloaded versions. Naming conventions for ap-

Parameters for crossover from serial to parallel algorithms (these are used only within this
nrutil module):

IMPLICIT NONE

INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 Each NPAR2 must be ≤ the
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2 corresponding NPAR.
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8

Next, generic interfaces for routines with overloaded versions. Naming conventions for ap-
MODULE PROCEDURE outerprod_r, outerprod_d
END INTERFACE
INTERFACE outerdiff
 MODULE PROCEDURE outerdiff_r, outerdiff_d, outerdiff_i
END INTERFACE
Routines for scatter-with-combine, scatter_add, scatter_max:
INTERFACE scatter_add
 MODULE PROCEDURE scatter_add_r, scatter_add_d
END INTERFACE
INTERFACE scatter_max
 MODULE PROCEDURE scatter_max_r, scatter_max_d
END INTERFACE
Routines for skew operations on matrices (unit_matrix, lower_triangle, upper_triangle not currently overloaded):
INTERFACE diagadd
 MODULE PROCEDURE diagadd_rv, diagadd_r
END INTERFACE
INTERFACE diagmult
 MODULE PROCEDURE diagmult_rv, diagmult_r
END INTERFACE
Routines that move data:
CONTAINS
SUBROUTINE array_copy_r(src, dest, n_copied, n_not_copied)
 Copy array where size of source not known in advance.
 REAL(SP), DIMENSION(:,), INTENT(IN) :: src
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: dest
 INTEGER(14B), INTENT(OUT) :: n_copied, n_not_copied
 n_copied = min(size(src), size(dest))
 n_not_copied = size(src) - n_copied
 dest(1:n_copied) = src(1:n_copied)
END SUBROUTINE array_copy_r
SUBROUTINE array_copy_d(src, dest, n_copied, n_not_copied)
 REAL(DP), DIMENSION(:,), INTENT(IN) :: src
 REAL(DP), DIMENSION(:,), INTENT(OUT) :: dest
 INTEGER(14B), INTENT(OUT) :: n_copied, n_not_copied
 n_copied = min(size(src), size(dest))
 n_not_copied = size(src) - n_copied
 dest(1:n_copied) = src(1:n_copied)
END SUBROUTINE array_copy_d
SUBROUTINE array_copy_i(src, dest, n_copied, n_not_copied)
 INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: src
 INTEGER(I4B), DIMENSION(:,), INTENT(OUT) :: dest
 INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
 n_copied = min(size(src), size(dest))
 n_not_copied = size(src) - n_copied
 dest(1:n_copied) = src(1:n_copied)
END SUBROUTINE array_copy_i
SUBROUTINE swap_i(a, b)
 Swap the contents of a and b.
 INTEGER(I4B), INTENT(INOUT) :: a, b
 INTEGER(I4B) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_i
SUBROUTINE swap_r(a,b)
REAL(SP), INTENT(INOUT) :: a,b
REAL(SP) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_r

SUBROUTINE swap_rv(a,b)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(SIZE(a)) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_rv

SUBROUTINE swap_c(a,b)
COMPLEX(SPC), INTENT(INOUT) :: a,b
COMPLEX(SPC) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_c

SUBROUTINE swap_cv(a,b)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(SIZE(a)) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_cv

SUBROUTINE swap_cm(a,b)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_cm

SUBROUTINE swap_z(a,b)
COMPLEX(DPC), INTENT(INOUT) :: a,b
COMPLEX(DPC) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_z

SUBROUTINE swap_zv(a,b)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(SIZE(a)) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_zv

SUBROUTINE swap_zm(a,b)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: dum
 dum = a
 a = b
 b = dum
END SUBROUTINE swap_zm

SUBROUTINE masked_swap_rs(a,b,mask)
REAL(SP), INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN) :: mask
REAL(SP) :: swp
 swp
if (mask) then
 swp = a
 a = b
 b = swp
end if
END SUBROUTINE masked_swap_rs

SUBROUTINE masked_swap_rv(a,b,mask)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a)) :: swp
where (mask)
 swp = a
 a = b
 b = swp
end where
END SUBROUTINE masked_swap_rv

SUBROUTINE masked_swap_rm(a,b,mask)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:,:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)
 swp = a
 a = b
 b = swp
end where
END SUBROUTINE masked_swap_rm

FUNCTION reallocate_rv(p,n)
 Reallocation a pointer to a new size, preserving its previous contents.
 REAL(SP), DIMENSION(:), POINTER :: p, reallocate_rv
 INTEGER(I4B), INTENT(IN) :: n
 INTEGER(I4B) :: nold,ierr
 allocate(reallocate_rv(n),stat=ierr)
 if (ierr /= 0) call &
 nrerror('reallocate_rv: problem in attempt to allocate memory')
 if (.not. associated(p)) RETURN
 nold = size(p)
 reallocate_rv(1:min(nold,n)) = p(1:min(nold,n))
 deallocate(p)
END FUNCTION reallocate_rv

FUNCTION reallocate_iv(p,n)
 Integer a pointer to a new size, preserving its previous contents.
 INTEGER(I4B), DIMENSION(:), POINTER :: p, reallocate_iv
 INTEGER(I4B), INTENT(IN) :: n
 INTEGER(I4B) :: nold,ierr
 allocate(reallocate_iv(n),stat=ierr)
 if (ierr /= 0) call &
 nrerror('reallocate_iv: problem in attempt to allocate memory')
 if (.not. associated(p)) RETURN
 nold = size(p)
 reallocate_iv(1:min(nold,n)) = p(1:min(nold,n))
 deallocate(p)
END FUNCTION reallocate_iv

FUNCTION reallocate_hv(p,n)
 Character a pointer to a new size, preserving its previous contents.
 CHARACTER(1), DIMENSION(:), POINTER :: p, reallocate_hv
 INTEGER(I4B), INTENT(IN) :: n
 INTEGER(I4B) :: nold,ierr
 allocate(reallocate_hv(n),stat=ierr)
 if (ierr /= 0) call &
 nrerror('reallocate_hv: problem in attempt to allocate memory')
 if (.not. associated(p)) RETURN
 nold = size(p)
 reallocate_hv(1:min(nold,n)) = p(1:min(nold,n))
Routines returning a location as an integer value:

FUNCTION ifirstloc(mask)
 Index of first occurrence of .true. in a logical vector.
 LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
 INTEGER(I4B) :: ifirstloc
 INTEGER(I4B), DIMENSION(1) :: loc
 loc=maxloc(merge(1,0,mask))
 ifirstloc=loc(1)
 if (.not. mask(ifirstloc)) ifirstloc=size(mask)+1
END FUNCTION ifirstloc

FUNCTION imaxloc_r(arr)
 Index of maxloc on an array.
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 INTEGER(I4B) :: imaxloc_r
 INTEGER(I4B), DIMENSION(1) :: imax
 imax=maxloc(arr(:))
 imaxloc_r=imax(1)
END FUNCTION imaxloc_r

FUNCTION imaxloc_i(iarr)
 Index of maxloc on an array.
 INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
 INTEGER(I4B) :: imaxloc_i
 INTEGER(I4B), DIMENSION(1) :: imax
 imax=maxloc(iarr(:))
 imaxloc_i=imax(1)
END FUNCTION imaxloc_i

FUNCTION iminloc(arr)
 Index of minloc on an array.
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 INTEGER(I4B) :: iminloc
 imin=minloc(arr(:))
iminloc=imin(1)
END FUNCTION iminloc

Routines for argument checking and error handling:

SUBROUTINE assert1(n1,string)
 Report and die if any logical is false (used for arg range checking).
 CHARACTER(LEN=*), INTENT(IN) :: string
 LOGICAL, INTENT(IN) :: n1
 if (.not. n1) then
 write (*,*) 'nrerror: an assertion failed with this tag:', &
 string
 STOP 'program terminated by assert1'
 end if
END SUBROUTINE assert1

SUBROUTINE assert2(n1,n2,string)
 CHARACTER(LEN=*), INTENT(IN) :: string
 LOGICAL, INTENT(IN) :: n1,n2
 if (.not. (n1 .and. n2)) then
 write (*,*) 'nrerror: an assertion failed with this tag:', &
 string
 STOP 'program terminated by assert2'
 end if
END SUBROUTINE assert2

SUBROUTINE assert3(n1,n2,n3,string)
 CHARACTER(LEN=*), INTENT(IN) :: string
 LOGICAL, INTENT(IN) :: n1,n2,n3
 if (.not. (n1 .and. n2 .and. n3)) then
 write (*,*) 'nrerror: an assertion failed with this tag:', &
 string
 STOP 'program terminated by assert3'
 end if
END SUBROUTINE assert3

SUBROUTINE assert4(n1,n2,n3,n4,string)
 CHARACTER(LEN=*), INTENT(IN) :: string
 LOGICAL, INTENT(IN) :: n1,n2,n3,n4
 if (.not. (n1 .and. n2 .and. n3 .and. n4)) then
 write (*,*) 'nrerror: an assertion failed with this tag:', &
 string
 STOP 'program terminated by assert4'
 end if
END SUBROUTINE assert4

SUBROUTINE assert_v(n,string)
 CHARACTER(LEN=*), INTENT(IN) :: string
 LOGICAL, DIMENSION(:), INTENT(IN) :: n
 if (.not. all(n)) then
 write (*,*) 'nrerror: an assertion failed with this tag:', &
 string
 STOP 'program terminated by assert_v'
 end if
END SUBROUTINE assert_v

FUNCTION assert_eq2(n1,n2,string)
 Report and die if integers not all equal (used for size checking).
 CHARACTER(LEN=*), INTENT(IN) :: string
 INTEGER, INTENT(IN) :: n1,n2
 INTEGER :: assert_eq2
 if (n1 == n2) then
 assert_eq2=n1
 else
 write (*,*) 'nrerror: an assert_eq failed with this tag:', &
 string
 STOP 'program terminated by assert_eq2'
 end if
END FUNCTION assert_eq2
C1.2 Numerical Recipes Utilities (nrutil)

END FUNCTION assert_eq2
FUNCTION assert_eq3(n1,n2,n3,string)
CHARACTER(LEN=*) :: n1,n2,n3,string
INTEGER :: assert_eq3
if (n1 == n2 .and. n2 == n3) then
 assert_eq3=n1
else
 write ('*',*) 'nrerror: an assert_eq failed with this tag:', &
 string
 STOP 'program terminated by assert_eq3'
end if
END FUNCTION assert_eq3
FUNCTION assert_eq4(n1,n2,n3,n4,string)
CHARACTER(LEN=*) :: n1,n2,n3,n4,string
INTEGER :: assert_eq4
if (n1 == n2 .and. n2 == n3 .and. n3 == n4) then
 assert_eq4=n1
else
 write ('*',*) 'nrerror: an assert_eq failed with this tag:', &
 string
 STOP 'program terminated by assert_eq4'
end if
END FUNCTION assert_eq4
FUNCTION assert_eqn(nn,string)
CHARACTER(LEN=*) :: string
INTEGER, DIMENSION(:) :: nn
INTEGER :: assert_eqn
if (all(nn(2:) == nn(1))) then
 assert_eqn=nn(1)
else
 write ('*',*) 'nrerror: an assert_eq failed with this tag:', &
 string
 STOP 'program terminated by assert_eqn'
end if
END FUNCTION assert_eqn
SUBROUTINE nrerror(string)
 Report a message, then die.
CHARACTER(LEN=*) :: string
write ('*',*) 'nrerror: ',string
STOP 'program terminated by nrerror'
END SUBROUTINE nrerror

Routines relating to polynomials and recurrences:
FUNCTION arth_r(first,increment,n)
Array function returning an arithmetic progression.
REAL(SP) :: first,increment
INTEGER(I4B) :: n
REAL(SP) :: arth_r(n)
REAL(SP) :: temp
if (n > 0) arth_r(1)=first
if (n <= NPAR_ARTH) then
 do k=2,n
 arth_r(k)=arth_r(k-1)+increment
 end do
else
 do k=2,NPAR2_ARTH
 arth_r(k)=arth_r(k-1)+increment
 end do
 temp=increment*NPAR2_ARTH
 k=NPAR2_ARTH
end if
do
 if (k >= n) exit
 k2=k+k
 arth_r(k+1:min(k2,n))=temp+arth_r(1:min(k,n-k))
 temp=temp+temp
 k=k2
 end do
end if
end FUNCTION arth_r

FUNCTION arth_d(first,increment,n)
 REAL(DP), INTENT(IN) :: first,increment
 INTEGER(I4B), INTENT(IN) :: n
 REAL(DP), DIMENSION(n) :: arth_d
 INTEGER(I4B) :: k,k2
 REAL(DP) :: temp
 if (n > 0) arth_d(1)=first
 if (n <= NPAR_ARTH) then
 do k=2,n
 arth_d(k)=arth_d(k-1)+increment
 end do
 else
 do k=2,NPAR2_ARTH
 arth_d(k)=arth_d(k-1)+increment
 end do
 temp=increment*NPAR2_ARTH
 k=NPAR2_ARTH
 do
 if (k >= n) exit
 k2=k+k
 arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
 temp=temp+temp
 k=k2
 end do
 end if
end FUNCTION arth_d

FUNCTION arth_i(first,increment,n)
 INTEGER(I4B), INTENT(IN) :: first,increment,n
 INTEGER(I4B), DIMENSION(n) :: arth_i
 INTEGER(I4B) :: k,k2,temp
 if (n > 0) arth_i(1)=first
 if (n <= NPAR_ARTH) then
 do k=2,n
 arth_i(k)=arth_i(k-1)+increment
 end do
 else
 do k=2,NPAR2_ARTH
 arth_i(k)=arth_i(k-1)+increment
 end do
 temp=increment*NPAR2_ARTH
 k=NPAR2_ARTH
 do
 if (k >= n) exit
 k2=k+k
 arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
 temp=temp+temp
 k=k2
 end do
 end if
end FUNCTION arth_i

FUNCTION geop_r(first,factor,n)
 Array function returning a geometric progression.
 REAL(SP), INTENT(IN) :: first,factor
 REAL(SP), INTENT(IN) :: n
PARAMETER (NPAR2_GEOP = 100)

REAL(SP), DIMENSION(n) :: geop_r
INTEGER(I4B) :: k,k2
REAL(SP) :: temp
if (n > 0) geop_r(1)=first
if (n <= NPAR_GEOP) then
d k=2,n
 geop_r(k)=geop_r(k-1)*factor
end do
else
d k=2,NPAR2_GEOP
 geop_r(k)=geop_r(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
 if (k >= n) exit
 k2=k+k
 geop_r(k+1:min(k2,n))=temp*geop_r(1:min(k,n-k))
temp=temp*temp
 k=k2
end do
end if
END FUNCTION geop_r

FUNCTION geop_d(first,factor,n)
REAL(DP), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: geop_d
INTEGER(I4B) :: k,k2
REAL(DP) :: temp
if (n > 0) geop_d(1)=first
if (n <= NPAR_GEOP) then
d k=2,n
 geop_d(k)=geop_d(k-1)*factor
end do
else
d k=2,NPAR2_GEOP
 geop_d(k)=geop_d(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
 if (k >= n) exit
 k2=k+k
 geop_d(k+1:min(k2,n))=temp*geop_d(1:min(k,n-k))
temp=temp*temp
 k=k2
end do
end if
END FUNCTION geop_d

FUNCTION geop_i(first,factor,n)
INTEGER(I4B), INTENT(IN) :: first,factor,n
INTEGER(I4B), DIMENSION(n) :: geop_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) geop_i(1)=first
if (n <= NPAR_GEOP) then
d k=2,n
 geop_i(k)=geop_i(k-1)*factor
end do
else
d k=2,NPAR2_GEOP
 geop_i(k)=geop_i(k-1)*factor
end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do
 if (k >= n) exit
k2=k+k
 geop_i(k+1:min(k2,n))=temp*geop_i(1:min(k,n-k))
 temp=temp*temp
 k=k2
end do
end if
END FUNCTION geop_i

FUNCTION geop_c(first,factor,n)
 COMPLEX(SP), INTENT(IN) :: first,factor
 INTEGER(I4B), INTENT(IN) :: n
 COMPLEX(SP), DIMENSION(n) :: geop_c
 INTEGER(I4B) :: k,k2
 COMPLEX(SP) :: temp
 if (n > 0) geop_c(1)=first
 if (n <= NPAR_GEOP) then
 do k=2,n
 geop_c(k)=geop_c(k-1)*factor
 end do
 else
 do k=2,NPAR2_GEOP
 geop_c(k)=geop_c(k-1)*factor
 end do
 temp=factor**NPAR2_GEOP
 k=NPAR2_GEOP
 do
 if (k >= n) exit
 k2=k+k
 geop_c(k+1:min(k2,n))=temp*geop_c(1:min(k,n-k))
 temp=temp*temp
 k=k2
 end do
 end if
END FUNCTION geop_c

FUNCTION geop_dv(first,factor,n)
 REAL(DP), DIMENSION(:), INTENT(IN) :: first,factor
 INTEGER(I4B), INTENT(IN) :: n
 REAL(DP), DIMENSION(size(first),n) :: geop_dv
 INTEGER(I4B) :: k,k2
 REAL(DP), DIMENSION(size(first)) :: temp
 if (n > 0) geop_dv(:,1)=first(:)
 if (n <= NPAR_GEOP) then
 do k=2,n
 geop_dv(:,k)=geop_dv(:,k-1)*factor(:)
 end do
 else
 do k=2,NPAR2_GEOP
 geop_dv(:,k)=geop_dv(:,k-1)*factor(:)
 end do
 temp=factor**NPAR2_GEOP
 k=NPAR2_GEOP
 do
 if (k >= n) exit
 k2=k+k
 geop_dv(:,k+1:min(k2,n))=geop_dv(:,1:min(k,n-k))**k
 temp=spread(temp,2,size(geop_dv(:,1:min(k,n-k)),2))
 k=k2
 end do
 end if
RECURSIVE FUNCTION cumsum_r(arr, seed) RESULT(ans)
 Cumulative sum on an array, with optional additive seed.
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 REAL(SP), OPTIONAL, INTENT(IN) :: seed
 REAL(SP), DIMENSION(size(arr)) :: ans
 INTEGER(I4B) :: n, j
 REAL(SP) :: sd
 n=size(arr)
 if (n == 0_i4b) RETURN
 sd=0.0_sp
 if (present(seed)) sd=seed
 ans(1)=arr(1)+sd
 if (n < NPAR_CUMSUM) then
 do j=2,n
 ans(j)=ans(j-1)+arr(j)
 end do
 else
 ans(2:n:2)=cumsum_r(arr(2:n:2)+arr(1:n-1:2),sd)
 ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)
 end if
END FUNCTION cumsum_r

RECURSIVE FUNCTION cumsum_i(arr, seed) RESULT(ans)
 INTEGER(I4B), DIMENSION(:), INTENT(IN) :: arr
 INTEGER(I4B), OPTIONAL, INTENT(IN) :: seed
 INTEGER(I4B), DIMENSION(size(arr)) :: ans
 INTEGER(I4B) :: n, j, sd
 n=size(arr)
 if (n == 0_i4b) RETURN
 sd=0_i4b
 if (present(seed)) sd=seed
 ans(1)=arr(1)+sd
 if (n < NPAR_CUMSUM) then
 do j=2,n
 ans(j)=ans(j-1)+arr(j)
 end do
 else
 ans(2:n:2)=cumsum_i(arr(2:n:2)+arr(1:n-1:2),sd)
 ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)
 end if
END FUNCTION cumsum_i

RECURSIVE FUNCTION cumprod(arr, seed) RESULT(ans)
 Cumulative product on an array, with optional multiplicative seed.
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 REAL(SP), OPTIONAL, INTENT(IN) :: seed
 REAL(SP), DIMENSION(size(arr)) :: ans
 INTEGER(I4B) :: n, j
 REAL(SP) :: sd
 n=size(arr)
 if (n == 0_i4b) RETURN
 sd=1.0_sp
 if (present(seed)) sd=seed
 ans(1)=arr(1)*sd
 if (n < NPAR_CUMPROD) then
 do j=2,n
 ans(j)=ans(j-1)*arr(j)
 end do
 else
 ans(2:n:2)=cumprod(arr(2:n:2)*arr(1:n-1:2),sd)
 ans(3:n:2)=ans(2:n-1:2)*arr(3:n:2)
 end if
END FUNCTION cumprod
FUNCTION poly_rr(x,coeffs)
 ! Polynomial evaluation.
 REAL(SP), INTENT(IN) :: x
 REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
 REAL(SP) :: poly_rr
 REAL(SP), DIMENSION(:), ALLOCATABLE :: vec
 INTEGER(I4B) :: i,n,nn
 n=size(coeffs)
 if (n <= 0) then
 poly_rr=0.0_sp
 else if (n < NPAR_POLY) then
 poly_rr=coeffs(n)
 do i=n-1,1,-1
 poly_rr=x*poly_rr+coeffs(i)
 end do
 else
 allocate(vec(n+1))
 pow=x
 vec(1:n)=coeffs
 do
 vec(n+1)=0.0_sp
 nn=ishft(n+1,-1)
 vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
 if (nn == 1) exit
 pow=pow*vec
 n=nn
 end do
 poly_rr=vec(1)
 deallocate(vec)
 end if
END FUNCTION poly_rr

FUNCTION poly_dd(x,coeffs)
 REAL(DP), INTENT(IN) :: x
 REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs
 REAL(DP) :: poly_dd
 REAL(DP) :: pow
 REAL(DP), DIMENSION(:), ALLOCATABLE :: vec
 INTEGER(I4B) :: i,n,nn
 n=size(coeffs)
 if (n <= 0) then
 poly_dd=0.0_dp
 else if (n < NPAR_POLY) then
 poly_dd=coeffs(n)
 do i=n-1,1,-1
 poly_dd=x*poly_dd+coeffs(i)
 end do
 else
 allocate(vec(n+1))
 pow=x
 vec(1:n)=coeffs
 do
 vec(n+1)=0.0_dp
 nn=ishft(n+1,-1)
 vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
 if (nn == 1) exit
 pow=pow*vec
 n=nn
 end do
 poly_dd=vec(1)
 deallocate(vec)
 end if
END FUNCTION poly_dd
FUNCTION poly_rc(x,coeffs)
COMPLEX(SPC), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
COMPLEX(SPC) :: poly_rc
COMPLEX(SPC) :: pow
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then
 poly_rc=0.0_sp
else if (n < NPAR_POLY) then
 poly_rc=coeffs(n)
do i=n-1,1,-1
 poly_rc=x*poly_rc+coeffs(i)
end do
else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do
 vec(n+1)=0.0_sp
 nn=ishft(n+1,-1)
 vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
 if (nn == 1) exit
 pow=pow*pow
 n=nn
doo
 if (n <= 0) then
 poly_cc=0.0_sp
 else if (n < NPAR_POLY) then
 poly_cc=coeffs(n)
do i=n-1,1,-1
 poly_cc=x*poly_cc+coeffs(i)
end do
else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do
 vec(n+1)=0.0_sp
 nn=ishft(n+1,-1)
 vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
 if (nn == 1) exit
 pow=pow*pow
 n=nn
doo
FUNCTION poly_rrv(x,coeffs)
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(SP), DIMENSION(size(x)) :: poly_rrv

INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then
 poly_rrv=0.0_sp
else if (m < n .or. m < NPAR_POLY) then
 poly_rrv=coeffs(m)
 do i=m-1,1,-1
 poly_rrv=x*poly_rrv+coeffs(i)
 end do
else
 do i=1,n
 poly_rrv(i)=poly_rr(x(i),coeffs)
 end do
end if
END FUNCTION poly_rrv

FUNCTION poly_ddv(x,coeffs)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(DP), DIMENSION(size(x)) :: poly_ddv

INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then
 poly_ddv=0.0_dp
else if (m < n .or. m < NPAR_POLY) then
 poly_ddv=coeffs(m)
 do i=m-1,1,-1
 poly_ddv=x*poly_ddv+coeffs(i)
 end do
else
 do i=1,n
 poly_ddv(i)=poly_dd(x(i),coeffs)
 end do
end if
END FUNCTION poly_ddv

FUNCTION poly_msk_rrv(x,coeffs,mask)
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(x)) :: poly_msk_rrv

poly_msk_rrv=unpack(poly_rrv(pack(x,mask),coeffs),mask,0.0_sp)
END FUNCTION poly_msk_rrv

FUNCTION poly_msk_ddv(x,coeffs,mask)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(DP), DIMENSION(size(x)) :: poly_msk_ddv

poly_msk_ddv=unpack(poly_ddv(pack(x,mask),coeffs),mask,0.0_dp)
END FUNCTION poly_msk_ddv

RECURSIVE FUNCTION poly_term_rr(a,b) RESULT(u)
Tabulate cumulants of a polynomial.

REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: b
REAL(SP), DIMENSION(size(a)) :: u

INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) RETURN
u(1)=a(1)
if (n < NPAR_POLYTERM) then
 do j=2,n
 u(j)=a(j)+b*u(j-1)
 end do
else
 u(2:n:2)=poly_term_rr(a(2:n:2)+a(1:n-1:2)*b,b*b)
 u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)
end if

END FUNCTION poly_term_rr

RECURSIVE FUNCTION poly_term_cc(a,b) RESULT(u)
 COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
 COMPLEX(SPC), INTENT(IN) :: b
 COMPLEX(SPC), DIMENSION(size(a)) :: u
 INTEGER(I4B) :: n,j
 n=size(a)
 if (n <= 0) RETURN
 u(1)=a(1)
 if (n < NPAR_POLYTERM) then
 do j=2,n
 u(j)=a(j)+b*u(j-1)
 end do
 else
 u(2:n:2)=poly_term_cc(a(2:n:2)+a(1:n-1:2)*b,b*b)
 u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)
 end if
END FUNCTION poly_term_cc

FUNCTION zroots_unity(n,nn)
 Complex function returning nn powers of the nth root of unity.
 INTEGER(I4B), INTENT(IN) :: n,nn
 COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
 INTEGER(I4B) :: k
 REAL(SP) :: theta
 zroots_unity(1)=1.0
 theta=TWOPI/n
 k=1
 do
 if (k >= nn) exit
 zroots_unity(k+1)=cmplx(cos(k*theta),sin(k*theta),SPC)
 zroots_unity(k+2:min(2*k,nn))=zroots_unity(k+1)*&
 zroots_unity(2:min(k,nn-k))
 k=2*k
 end do
END FUNCTION zroots_unity

FUNCTION outerprod_r(a,b)
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(size(a),size(b)) :: outerprod_r
 outerprod_r = spread(a,dim=2,ncopies=size(b)) * &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_r

FUNCTION outerprod_d(a,b)
 REAL(DP), DIMENSION(:), INTENT(IN) :: a,b
 REAL(DP), DIMENSION(size(a),size(b)) :: outerprod_d
 outerprod_d = spread(a,dim=2,ncopies=size(b)) * &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_d

FUNCTION outerdiv(a,b)
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(size(a),size(b)) :: outerdiv
 outerdiv = spread(a,dim=2,ncopies=size(b)) / &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiv

FUNCTION outersum(a,b)
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outersum
outersum = spread(a,dim=2,ncopies=size(b)) + &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outersum

FUNCTION outerdiff_r(a,b)
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerdiff_r
outerdiff_r = spread(a,dim=2,ncopies=size(b)) - &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_r

FUNCTION outerdiff_d(a,b)
REAL(DP), DIMENSION(:,), INTENT(IN) :: a,b
REAL(DP), DIMENSION(size(a),size(b)) :: outerdiff_d
outerdiff_d = spread(a,dim=2,ncopies=size(b)) - &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_d

FUNCTION outerdiff_i(a,b)
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: a,b
INTEGER(I4B), DIMENSION(size(a),size(b)) :: outerdiff_i
outerdiff_i = spread(a,dim=2,ncopies=size(b)) - &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_i

FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
outerand = spread(a,dim=2,ncopies=size(b)) .and. &
 spread(b,dim=1,ncopies=size(a))
END FUNCTION outerand

Routines for scatter-with-combine.

SUBROUTINE scatter_add_r(dest,source,dest_index)
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:,), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
m=size(dest)
DO j=1,n
 i=dest_index(j)
 IF (i > 0 .AND. i <= m) dest(i)=dest(i)+source(j)
END DO
END SUBROUTINE scatter_add_r

SUBROUTINE scatter_add_d(dest,source,dest_index)
REAL(DP), DIMENSION(:,), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:,), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
m=size(dest)
DO j=1,n
 i=dest_index(j)
 IF (i > 0 .AND. i <= m) dest(i)=dest(i)+source(j)
END DO
END SUBROUTINE scatter_add_d

SUBROUTINE scatter_max_r(dest,source,dest_index)
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:,), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
m=size(dest)
DO j=1,n
 i=dest_index(j)
 IF (i > 0 .AND. i <= m) dest(i)=max(dest(i),source(j))
END DO
END SUBROUTINE scatter_max_r

Permission is granted to make one paper copy for your personal use and internet users to make one paper copy of this page for their own
personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))
end do
END SUBROUTINE scatter_max_r
SUBROUTINE scatter_max_d(dest,source,dest_index)
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),'scatter_max_d')
m=size(dest)
do j=1,n
 i=dest_index(j)
 if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))
end do
END SUBROUTINE scatter_max_d

Routines for skew operations on matrices:
SUBROUTINE diagadd_rv(mat,diag)
 Adds vector or scalar diag to the diagonal of matrix mat.
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 REAL(SP), DIMENSION(:), INTENT(IN) :: diag
 INTEGER(I4B) :: j,n
 n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),'diagadd_rv')
do j=1,n
 mat(j,j)=mat(j,j)+diag(j)
 end do
END SUBROUTINE diagadd_rv
SUBROUTINE diagadd_r(mat,diag)
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 REAL(SP), INTENT(IN) :: diag
 INTEGER(I4B) :: j,n
 n = min(size(mat,1),size(mat,2))
do j=1,n
 mat(j,j)=mat(j,j)+diag
 end do
END SUBROUTINE diagadd_r
SUBROUTINE diagmult_rv(mat,diag)
 Multiplies vector or scalar diag into the diagonal of matrix mat.
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 REAL(SP), DIMENSION(:), INTENT(IN) :: diag
 INTEGER(I4B) :: j,n
 n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),'diagmult_rv')
do j=1,n
 mat(j,j)=mat(j,j)*diag(j)
 end do
END SUBROUTINE diagmult_rv
SUBROUTINE diagmult_r(mat,diag)
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 REAL(SP), INTENT(IN) :: diag
 INTEGER(I4B) :: j,n
 n = min(size(mat,1),size(mat,2))
do j=1,n
 mat(j,j)=mat(j,j)*diag
 end do
END SUBROUTINE diagmult_r
FUNCTION get_diag_rv(mat)
 Return as a vector the diagonal of matrix mat.
 REAL(SP), DIMENSION(:,:), INTENT(IN) :: mat
 REAL(SP), DIMENSION(size(mat,1)) :: get_diag_rv
 INTEGER(I4B) :: j
 j=assert_eq2(size(mat,1),size(mat,2),'get_diag_rv')
do j=1,size(mat,1)
 get_diag_rv(j)=mat(j,j)
 end do
END FUNCTION get_diag_rv
FUNCTION get_diag_dv(mat)
 REAL(DP), DIMENSION(:,,:), INTENT(IN) :: mat
 INTEGER(14B) :: j
 REAL(DP), DIMENSION(size(mat,1)) :: get_diag_dv
 do j=1,size(mat,1)
 get_diag_dv(j)=mat(j,j)
 end do
END FUNCTION get_diag_dv

SUBROUTINE put_diag_r(diagv,mat)
 Set the diagonal of matrix mat to the values of a vector or scalar.
 REAL(SP), DIMENSION(:), INTENT(IN) :: diagv
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 INTEGER(I4B) :: j,n
 n=assert_eq2(size(diagv),min(size(mat,1),size(mat,2)),'put_diag_rv')
 do j=1,n
 mat(j,j)=diagv(j)
 end do
END SUBROUTINE put_diag_r

SUBROUTINE put_diag_r(diagv,mat)
 Set the diagonal of matrix mat to the values of a vector or scalar.
 REAL(SP), DIMENSION(:), INTENT(IN) :: diagv
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
 INTEGER(I4B) :: j,n
 n=assert_eq2(size(diagv),min(size(mat,1),size(mat,2)),'put_diag_rv')
 do j=1,n
 mat(j,j)=diagv(j)
 end do
END SUBROUTINE put_diag_r

SUBROUTINE unit_matrix(mat)
 Set the matrix mat to be a unit matrix (if it is square).
 REAL(SP), DIMENSION(:,:), INTENT(OUT) :: mat
 INTEGER(I4B) :: i,n
 n=min(size(mat,1),size(mat,2))
 do i=1,n
 mat(i,i)=1.0_sp
 end do
END SUBROUTINE unit_matrix

FUNCTION upper_triangle(j,k,extra)
 Return an upper triangular logical mask.
 INTEGER(I4B), INTENT(IN) :: j,k
 INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
 LOGICAL(LGT), DIMENSION(:,k) :: upper_triangle
 INTEGER(I4B) :: n
 n=0
 if (present(extra)) n=extra
 upper_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) < n)
END FUNCTION upper_triangle

FUNCTION lower_triangle(j,k,extra)
 Return a lower triangular logical mask.
 INTEGER(I4B), INTENT(IN) :: j,k
 INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
 LOGICAL(LGT), DIMENSION(:,k) :: lower_triangle
 INTEGER(I4B) :: n
 n=0
 if (present(extra)) n=extra
 lower_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) > -n)
END FUNCTION lower_triangle

Other routines:
FUNCTION vabs(v)
 Return the length (ordinary L_2 norm) of a vector.
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP) :: vabs
vabs=sqrt(dot_product(v,v))
END FUNCTION vabs

END MODULE nrutil
C2. Alphabetical Listing of Explicit Interfaces

The file supplied as nr.f90 contains explicit interfaces for all the Numerical Recipes routines (except those already in the module nrutil). The interfaces are in alphabetical order, by the generic interface name, if one exists, or by the specific routine name if there is no generic name.

The file nr.f90 is normally invoked via a USE statement within a main program or subroutine that references a Numerical Recipes routine. See §21.1 for an example.

```
MODULE nr
  INTERFACE
    SUBROUTINE airy(x,ai,bi,aip,bip)
      USE nrtype
      REAL(SP), INTENT(IN) :: x
      REAL(SP), INTENT(OUT) :: ai,bi,aip,bip
    END SUBROUTINE airy
  END INTERFACE

  INTERFACE
    SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
      USE nrtype
      INTEGER(I4B), INTENT(INOUT) :: iter
      REAL(SP), INTENT(INOUT) :: yb
      REAL(SP), INTENT(IN) :: ftol,temptr
      REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y,pb
      REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: p
    INTERFACE
      FUNCTION func(x)
        USE nrtype
        REAL(SP), DIMENSION(:,), INTENT(IN) :: x
        REAL(SP) :: func
      END FUNCTION func
    END INTERFACE
    END SUBROUTINE amebsa
  END INTERFACE

  INTERFACE
    SUBROUTINE amoeba(p,y,ftol,func,iter)
      USE nrtype
      INTEGER(I4B), INTENT(OUT) :: iter
      REAL(SP), INTENT(IN) :: ftol
      REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
      REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: p
    INTERFACE
      FUNCTION func(x)
        USE nrtype
        REAL(SP), DIMENSION(:,), INTENT(IN) :: x
        REAL(SP) :: func
      END FUNCTION func
    END INTERFACE
    END SUBROUTINE amoeba
  END INTERFACE
END MODULE nr
```
Appendix C2. Alphabetical Listing of Explicit Interfaces

END INTERFACE
SUBROUTINE anneal(x,y,iorder)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
END SUBROUTINE anneal

END INTERFACE
SUBROUTINE asolve(b,x,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE asolve

END INTERFACE
SUBROUTINE atimes(x,r,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE atimes

END INTERFACE
SUBROUTINE avevar(data,ave,var)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var
END SUBROUTINE avevar

END INTERFACE
SUBROUTINE balanc(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE balanc

END INTERFACE
SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,al
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE banbks

END INTERFACE
SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: al
END SUBROUTINE bandec

END INTERFACE
SUBROUTINE banmul(a,m1,m2,x,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
END SUBROUTINE banmul
END INTERFACE

INTERFACE
SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c
END SUBROUTINE bcucof
END INTERFACE

INTERFACE
SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,&
 ansys,ansy1,ansy2)
USE nrtype
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2
END SUBROUTINE bcuint
END INTERFACE

INTERFACE beschb
SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_v
END INTERFACE

INTERFACE bessi
FUNCTION bessi_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
END FUNCTION bessi_s

FUNCTION bessi_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(size(x)), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
END FUNCTION bessi_v
END INTERFACE

INTERFACE bessi0
FUNCTION bessi0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
END FUNCTION bessi0_v
END INTERFACE

INTERFACE bessi1
FUNCTION bessi1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s
END FUNCTION bessi1_s
END INTERFACE
FUNCTION bessi1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
END FUNCTION bessi1_v
END INTERFACE

INTERFACE bessj
FUNCTION bessj_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
END FUNCTION bessj_s
FUNCTION bessj_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj_v
END FUNCTION bessj_v
END INTERFACE

INTERFACE bessj0
FUNCTION bessj0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s
END FUNCTION bessj0_s
FUNCTION bessj0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
END FUNCTION bessj0_v
END INTERFACE

INTERFACE bessj1
FUNCTION bessj1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s
END FUNCTION bessj1_s
FUNCTION bessj1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj1_v
END FUNCTION bessj1_v
END INTERFACE

INTERFACE bessjy
SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), DIMENT(IN) :: x,xnu
REAL(SP), DIMENT(OUT) :: rj,ry,rjp,ryp
END SUBROUTINE bessjy_s
SUBROUTINE bessjy_v(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), DIMENT(IN) :: xnu
REAL(SP), DIMENT(:), INTENT(IN) :: x
REAL(SP), DIMENT(:), INTENT(OUT) :: rj,ry,rjp,ryp
END SUBROUTINE bessjy_v
END INTERFACE
END SUBROUTINE bessy_v
END INTERFACE

INTERFACE bessk
 FUNCTION bessk_s(n,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: bessk_s
 END FUNCTION bessk_s
 END INTERFACE

INTERFACE bessk_v
 FUNCTION bessk_v(n,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: bessk_v
 END FUNCTION bessk_v
END INTERFACE

INTERFACE bessk0
 FUNCTION bessk0_s(x)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: bessk0_s
 END FUNCTION bessk0_s
 END INTERFACE

INTERFACE bessk0_v
 FUNCTION bessk0_v(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: bessk0_v
 END FUNCTION bessk0_v
END INTERFACE

INTERFACE bessk1
 FUNCTION bessk1_s(x)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: bessk1_s
 END FUNCTION bessk1_s
 END INTERFACE

INTERFACE bessk1_v
 FUNCTION bessk1_v(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: bessk1_v
 END FUNCTION bessk1_v
END INTERFACE

INTERFACE bessy
 FUNCTION bessy_s(n,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: bessy_s
 END FUNCTION bessy_s
 END INTERFACE

INTERFACE bessy_v
 FUNCTION bessy_v(n,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: bessy_v
 END FUNCTION bessy_v
END INTERFACE

INTERFACE bessy0
 FUNCTION bessy0_s(x)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: bessy0_s
 END FUNCTION bessy0_s
 END INTERFACE

INTERFACE bessy0_v
 FUNCTION bessy0_v(x)
 USE nrtype
 REAL(SP), DIMENSION(size(x)) :: bessy0_v
 END FUNCTION bessy0_v
END INTERFACE
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
END FUNCTION bessy0_v
END INTERFACE

INTERFACE bessy1
FUNCTION bessy1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy1_s
END FUNCTION bessy1_s
END INTERFACE

FUNCTION bessy1_v(x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
END FUNCTION bessy1_v
END INTERFACE

INTERFACE beta
FUNCTION beta_s(z,w)
USE nrtype
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s
END FUNCTION beta_s
END INTERFACE

FUNCTION beta_v(z,w)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
END FUNCTION beta_v
END INTERFACE

INTERFACE betacf
FUNCTION betacf_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betacf_s
END FUNCTION betacf_s
END INTERFACE

FUNCTION betacf_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
END FUNCTION betacf_v
END INTERFACE

INTERFACE betai
FUNCTION betai_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betai_s
END FUNCTION betai_s
END INTERFACE

FUNCTION betai_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(a)) :: betai_v
END FUNCTION betai_v
END INTERFACE

INTERFACE bico
FUNCTION bico_s(n,k)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,k
REAL(SP) :: bico_s
END FUNCTION bico_s
END INTERFACE

FUNCTION bico_v(n,k)
USE nrtype
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v
END INTERFACE
INTERFACE chebev
 FUNCTION chebev_s(a,b,c,x)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b,x
 REAL(SP), DIMENSION(:), INTENT(IN) :: c
 REAL(SP) :: chebev_s
END FUNCTION chebev_s
 FUNCTION chebev_v(a,b,c,x)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
 REAL(SP), DIMENSION(size(x)) :: chebev_v
END FUNCTION chebev_v
END INTERFACE
END INTERFACE
FUNCTION chebft(a,b,n,func)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END FUNCTION chebft
END INTERFACE
INTERFACE
 FUNCTION chebpc(c)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: c
 REAL(SP), DIMENSION(size(c)) :: chebpc
END FUNCTION chebpc
END INTERFACE
END INTERFACE
FUNCTION chint(a,b,c)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint
END FUNCTION chint
END INTERFACE
INTERFACE
 SUBROUTINE choldc(a,p)
 USE nrtype
 REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
 REAL(SP), DIMENSION(:), INTENT(OUT) :: p
END SUBROUTINE choldc
END INTERFACE
INTERFACE
 SUBROUTINE cholsl(a,p,b,x)
 USE nrtype
 REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
 REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
END SUBROUTINE cholsl
END INTERFACE
INTERFACE
 SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
 USE nrtype
END INTERFACE
INTEGER(1,4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df, chsq, prob
REAL(SP), DIMENSION(:,), INTENT(IN) :: bins, ebins
END SUBROUTINE chsone
END INTERFACE

INTERFACE
SUBROUTINE chstwo(bins1, bins2, knstrn, df, chsq, prob)
USE nrtype
INTEGER(1,4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df, chsq, prob
REAL(SP), DIMENSION(:,), INTENT(IN) :: bins1, bins2
END SUBROUTINE chstwo
END INTERFACE

INTERFACE
SUBROUTINE cisi(x, ci, si)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci, si
END SUBROUTINE cisi
END INTERFACE

INTERFACE
SUBROUTINE cntab1(nn, chisq, df, prob, cramrv, ccc)
USE nrtype
INTEGER(1,4B), DIMENSION(:,,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq, df, prob, cramrv, ccc
END SUBROUTINE cntab1
END INTERFACE

INTERFACE
SUBROUTINE cntab2(nn, h, hx, hy, hygx, hxgy, uygx, uxgy, uxy)
USE nrtype
INTEGER(1,4B), DIMENSION(:,,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h, hx, hy, hygx, hxgy, uygx, uxgy, uxy
END SUBROUTINE cntab2
END INTERFACE

INTERFACE
FUNCTION convlv(data, respns, isign)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: data
REAL(SP), DIMENSION(:,), INTENT(IN) :: respns
INTEGER(1,4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv
END FUNCTION convlv
END INTERFACE

INTERFACE
FUNCTION correl(data1, data2)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: data1, data2
REAL(SP), DIMENSION(size(data1)) :: correl
END FUNCTION correl
END INTERFACE

INTERFACE
SUBROUTINE cosft1(y)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
END SUBROUTINE cosft1
END INTERFACE

INTERFACE
SUBROUTINE cosft2(y, isign)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: y
INTEGER(1,4B), INTENT(IN) :: isign
END SUBROUTINE cosft2
END INTERFACE

INTERFACE
SUBROUTINE covsrt(covar,maska)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: maska
END SUBROUTINE covsrt

END INTERFACE

INTERFACE
SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE cyclic

END INTERFACE

INTERFACE
FUNCTION dawson_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s
END FUNCTION dawson_s

FUNCTION dawson_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
END FUNCTION dawson_v

END INTERFACE

INTERFACE
SUBROUTINE ddpoly(c,x,pd)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd
END SUBROUTINE ddpoly

END INTERFACE

INTERFACE
FUNCTION dbrent(ax,bx,cx,func,dbrent_dfunc,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
FUNCTION dbrent_dfunc(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dbrent_dfunc
END FUNCTION dbrent_dfunc
END INTERFACE

END FUNCTION dbrent

END INTERFACE

INTERFACE
FUNCTION decchk(string,ch)

SUBROUTINE covsrt(covar,maska)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: maska
END SUBROUTINE covsrt

END INTERFACE

INTERFACE
SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE cyclic

END INTERFACE

INTERFACE
FUNCTION dawson_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s
END FUNCTION dawson_s

FUNCTION dawson_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
END FUNCTION dawson_v

END INTERFACE

INTERFACE
SUBROUTINE ddpoly(c,x,pd)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd
END SUBROUTINE ddpoly

END INTERFACE

INTERFACE
FUNCTION dbrent(ax,bx,cx,func,dbrent_dfunc,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
FUNCTION dbrent_dfunc(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dbrent_dfunc
END FUNCTION dbrent_dfunc
END INTERFACE

END FUNCTION dbrent

END INTERFACE

INTERFACE
FUNCTION decchk(string,ch)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk
END FUNCTION decchk
END INTERFACE

INTERFACE
SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE
FUNCTION func(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func
FUNCTION dfunc(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc
END INTERFACE
END SUBROUTINE dfpmin
END INTERFACE

INTERFACE
FUNCTION dfriddr(func,x,h,err)
USE nrtype
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfriddr
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END FUNCTION dfriddr
END INTERFACE

INTERFACE
SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), INTENT(INOUT) :: endpts
END SUBROUTINE dftcor
END INTERFACE

INTERFACE
SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END SUBROUTINE dftint
Subroutine difeq(k,k1,k2,jsf,is1,isf,indexv,s,y)
 use nrtype
 integer(i4b), intent(in) :: is1,isf,jsf,k,k1,k2
 integer(i4b), dimension(:,), intent(in) :: indexv
 real(sp), dimension(:,,:), intent(out) :: s
 real(sp), dimension(:,,:), intent(in) :: y
end subroutine difeq

Function eclass(lista,listb,n)
 use nrtype
 integer(i4b), dimension(:), intent(in) :: lista,listb
 integer(i4b), intent(in) :: n
 integer(i4b), dimension(n) :: eclass
end function eclass

Function eclazz(equiv,n)
 use nrtype
 function equiv(i,j)
 use nrtype
 logical(lgt) :: equiv
 integer(i4b), intent(in) :: i,j
 end function equiv
 integer(i4b), intent(in) :: n
 integer(i4b), dimension(n) :: eclazz
end function eclazz

Function ei(x)
 use nrtype
 real(sp), intent(in) :: x
 real(sp) :: ei
end function ei

Subroutine eigsrt(d,v)
 use nrtype
 real(sp), dimension(:), intent(inout) :: d
 real(sp), dimension(:,:), intent(inout) :: v
end subroutine eigsrt

Function elle_s(phi,ak)
 use nrtype
 real(sp), intent(in) :: phi,ak
 real(sp) :: elle_s
end function elle_s

Function elle_v(phi,ak)
 use nrtype
 real(sp), dimension(:), intent(in) :: phi,ak
 real(sp), dimension(size(phi)) :: elle_v
end function elle_v

Function ellef_s(phi,ak)
 use nrtype
 real(sp), intent(in) :: phi,ak
 real(sp) :: ellef_s
end function ellef_s

Function ellef_v(phi,ak)
 use nrtype
 real(sp), dimension(size(phi)) :: ellef_v
end function ellef_v

Function elf_s(phi,ak)
 use nrtype
 real(sp), intent(in) :: phi,ak
 real(sp) :: elf_s
end function elf_s

Function elf_v(phi,ak)
 use nrtype
 real(sp), dimension(size(phi)) :: elf_v
end function elf_v
END FUNCTION ellf_s
FUNCTION ellf_v(phi,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
END FUNCTION ellf_v
END INTERFACE

INTERFACE ellpi
FUNCTION ellpi_s(phi,en,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s
END FUNCTION ellpi_s
FUNCTION ellpi_v(phi,en,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,en,ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
END FUNCTION ellpi_v
END INTERFACE

INTERFACE
SUBROUTINE elmhes(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE elmhes
END INTERFACE

INTERFACE erf
FUNCTION erf_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s
END FUNCTION erf_s
FUNCTION erf_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
END FUNCTION erf_v
END INTERFACE

INTERFACE erfc
FUNCTION erfc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s
END FUNCTION erfc_s
FUNCTION erfc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
END FUNCTION erfc_v
END INTERFACE

INTERFACE erfcc
FUNCTION erfcc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s
END FUNCTION erfcc_s
FUNCTION erfcc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v
END FUNCTION erfcc_v
END INTERFACE

INTERFACE
SUBROUTINE eulsum(sum, term, jterm)
USE nrtype
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm
END SUBROUTINE eulsum
END INTERFACE

INTERFACE
FUNCTION evlmem(fdt, d, xms)
USE nrtype
REAL(SP), INTENT(IN) :: fdt, xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem
END FUNCTION evlmem
END INTERFACE

INTERFACE
SUBROUTINE expdev_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE expdev_s
SUBROUTINE expdev_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE expdev_v
END INTERFACE

INTERFACE
FUNCTION expint(n, x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: expint
END FUNCTION expint
END INTERFACE

INTERFACE
FUNCTION factln_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factln_s
END FUNCTION factln_s
FUNCTION factln_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
END FUNCTION factln_v
END INTERFACE

INTERFACE
FUNCTION factrl_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factrl_s
END FUNCTION factrl_s
FUNCTION factrl_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
END FUNCTION factrl_v
END INTERFACE

INTERFACE
SUBROUTINE fasper(x, y, ofac, hifac, px, py, jmax, prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x, y
REAL(SP), INTENT(IN) :: ofac, hifac
INTEGER(I4B), INTENT(INOUT) :: jmax
END SUBROUTINE fasper
END INTERFACE
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), POINTER :: px,py
END SUBROUTINE fasper
END INTERFACE

INTERFACE
SUBROUTINE fdjac(x,fvec,df)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: fvec
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: df
END SUBROUTINE fdjac
END INTERFACE

INTERFACE
SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE fgauss
END INTERFACE

INTERFACE
SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(IN) :: sig
END SUBROUTINE fit
END INTERFACE

INTERFACE
SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
END SUBROUTINE fitexy
END INTERFACE

INTERFACE
SUBROUTINE fixrts(d)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
END SUBROUTINE fixrts
END INTERFACE

INTERFACE
FUNCTION fleg(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fleg
END FUNCTION fleg
END INTERFACE

INTERFACE
SUBROUTINE flmoon(n,nph,jd,frac)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac
END SUBROUTINE flmoon
END INTERFACE

INTERFACE
SUBROUTINE four1_dp(data,isign)
USE nrtype
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_dp
END INTERFACE

Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable lists including this one, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
SUBROUTINE four1_sp(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_sp
END INTERFACE

INTERFACE
SUBROUTINE four1_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_alt
END INTERFACE

INTERFACE
SUBROUTINE four1_gather(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_gather
END INTERFACE

INTERFACE
SUBROUTINE four2(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four2
END INTERFACE

INTERFACE
SUBROUTINE four2_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four2_alt
END INTERFACE

INTERFACE
SUBROUTINE four3(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four3
END INTERFACE

INTERFACE
SUBROUTINE four3_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four3_alt
END INTERFACE

INTERFACE
SUBROUTINE fourcol(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol
END INTERFACE

INTERFACE
SUBROUTINE fourcol_3d(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol_3d
END INTERFACE

INTERFACE
SUBROUTINE fourn_gather(data,nn,isign)
Appendix C2. Alphabetical Listing of Explicit Interfaces

USE nrtype
COMPLEX(3PC), DIMENSION(:,), INTENT(INOUT) :: data
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourn_gather

END INTERFACE

INTERFACE fournrow
 SUBROUTINE fournrow_dp(data,isign)
 USE nrtype
 COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: data
 INTEGER(I4B), INTENT(IN) :: isign
 END SUBROUTINE fournrow_dp

 SUBROUTINE fournrow_sp(data,isign)
 USE nrtype
 COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
 INTEGER(I4B), INTENT(IN) :: isign
 END SUBROUTINE fournrow_sp

END INTERFACE

INTERFACE fournrow_3d
 SUBROUTINE fournrow_3d(data,isign)
 USE nrtype
 COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
 INTEGER(I4B), INTENT(IN) :: isign
 END SUBROUTINE fournrow_3d

END INTERFACE

INTERFACE
 FUNCTION fpoly(x,n)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 INTEGER(I4B), INTENT(IN) :: n
 REAL(SP), DIMENSION(n) :: fpoly
 END FUNCTION fpoly

END INTERFACE

INTERFACE
 SUBROUTINE fred2(a,b,t,f,w,g,ak)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
 INTERFACE
 FUNCTION g(t)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: t
 REAL(SP), DIMENSION(size(t)) :: g
 END FUNCTION g

 FUNCTION ak(t,s)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: t,s
 REAL(SP), DIMENSION(size(t),size(s)) :: ak
 END FUNCTION ak
 END INTERFACE

 END SUBROUTINE fred2

END INTERFACE

INTERFACE
 FUNCTION fredin(x,a,b,t,f,w,g,ak)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
 REAL(SP), DIMENSION(size(x)) :: fredin
 INTERFACE
 FUNCTION g(t)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: t
 REAL(SP), DIMENSION(size(t)) :: g
 END FUNCTION g

 FUNCTION ak(t,s)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: t,s
 REAL(SP), DIMENSION(size(t),size(s)) :: ak
 END FUNCTION ak
 END INTERFACE

 END SUBROUTINE fredin

END INTERFACE

INTERFACE
 FUNCTION fred(x,a,b,t,f,w,g,ak)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
 REAL(SP), DIMENSION(size(x)) :: fred
 INTERFACE
 FUNCTION g(t)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: t
 REAL(SP), DIMENSION(size(t)) :: g
 END INTERFACE

END INTERFACE

Sample page from NUMERICAL RECIPES IN FORTRAN 90: The Art of SCIENTIFIC Computing (ISBN 0-521-57439-0) by W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Copyright (C) 1992 by Cambridge University Press. Programs Copyright (C) 1992 by Numerical Recipes Software. Permission is granted for personal use and for one paper copy to be made for each Internet user for noncommercial purposes. A disk copy of the program is not available for Internet distribution. All other rights reserved. Further reproduction, or any copying of machine-readable lists (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak
END INTERFACE
END FUNCTION fredin
END INTERFACE

INTERFACE
SUBROUTINE frenel(x,s,c)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
END SUBROUTINE frenel
END INTERFACE

INTERFACE
SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
END SUBROUTINE frprmn
END INTERFACE

INTERFACE
SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE ftest
END INTERFACE

INTERFACE
FUNCTION gamdev(ia)
USE nrtype
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev
END FUNCTION gamdev
END INTERFACE

INTERFACE gammln
FUNCTION gammln_s(xx)
USE nrtype
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
END FUNCTION gammln_v
END INTERFACE

INTERFACE gammp
FUNCTION gammp_s(a,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammp_v
END FUNCTION gammp_v
END INTERFACE
INTERFACE gammq
 FUNCTION gammq_s(a,x)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,x
 REAL(SP) :: gammq_s
 END FUNCTION gammq_s
 FUNCTION gammq_v(a,x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
 REAL(SP), DIMENSION(size(a)) :: gammq_v
 END FUNCTION gammq_v
END INTERFACE

INTERFACE gasdev
 SUBROUTINE gasdev_s(harvest)
 USE nrtype
 REAL(SP), INTENT(OUT) :: harvest
 END SUBROUTINE gasdev_s
 SUBROUTINE gasdev_v(harvest)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
 END SUBROUTINE gasdev_v
END INTERFACE

INTERFACE
 SUBROUTINE gaucof(a,b,amu0,x,w)
 USE nrtype
 REAL(SP), INTENT(IN) :: amu0
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
 REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
 END SUBROUTINE gaucof
END INTERFACE

INTERFACE
 SUBROUTINE gauher(x,w)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
 END SUBROUTINE gauher
END INTERFACE

INTERFACE
 SUBROUTINE gaujac(x,w,alf,bet)
 USE nrtype
 REAL(SP), INTENT(IN) :: alf,bet
 REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
 END SUBROUTINE gaujac
END INTERFACE

INTERFACE
 SUBROUTINE gaulag(x,w,alf)
 USE nrtype
 REAL(SP), INTENT(IN) :: alf
 REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
 END SUBROUTINE gaulag
END INTERFACE

INTERFACE
 SUBROUTINE gauleg(x1,x2,x,w)
 USE nrtype
 REAL(SP), INTENT(IN) :: x1,x2
 REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
 END SUBROUTINE gauleg
END INTERFACE

INTERFACE
 SUBROUTINE gaussj(a,b)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
 END SUBROUTINE gaussj
END INTERFACE
INTERFACE gcf
FUNCTION gcf_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
END FUNCTION gcf_s
FUNCTION gcf_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
END FUNCTION gcf_v
END INTERFACE
INTERFACE
FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END FUNCTION golden
END INTERFACE
INTERFACE gser
FUNCTION gser_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
END FUNCTION gser_s
FUNCTION gser_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
END FUNCTION gser_v
END INTERFACE
INTERFACE
SUBROUTINE hqr(a,wr,wi)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: wr,wi
END SUBROUTINE hqr
END INTERFACE
INTERFACE
SUBROUTINE hunt(xx,x,jlo)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
END SUBROUTINE hunt
END INTERFACE
INTERFACE
SUBROUTINE hypdrv(s,ry,rdys)
USE nrtype
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry
REAL(SP), DIMENSION(:), INTENT(IN) :: rydys
END SUBROUTINE hypdrv
END INTERFACE
REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds
END SUBROUTINE hypdrv

END INTERFACE

INTERFACE
 FUNCTION hypgeo(a,b,c,z)
 USE nrtype
 COMPLEX(SPC), INTENT(IN) :: a,b,c,z
 COMPLEX(SPC) :: hypgeo
 END FUNCTION hypgeo
END INTERFACE

END INTERFACE

INTERFACE
 FUNCTION icrc(crc,buf,jinit,jrev)
 USE nrtype
 CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
 INTEGER(I2B), INTENT(IN) :: crc,jinit
 INTEGER(I4B), INTENT(IN) :: jrev
 INTEGER(I2B) :: icrc
 END FUNCTION icrc
END INTERFACE

INTERFACE
 FUNCTION igray(n,is)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n,is
 INTEGER(I4B) :: igray
 END FUNCTION igray
END INTERFACE

INTERFACE
 SUBROUTINE index_bypack(arr,index,partial)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: index
 INTEGER, OPTIONAL, INTENT(IN) :: partial
 END SUBROUTINE index_bypack
END INTERFACE

INTERFACE indexx
 SUBROUTINE indexx_sp(arr,index)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: arr
 INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
 END SUBROUTINE indexx_sp
 SUBROUTINE indexx_i4b(iarr,index)
 USE nrtype
 INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
 INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
 END SUBROUTINE indexx_i4b
END INTERFACE

INTERFACE
 FUNCTION interp(uc)
 USE nrtype
 REAL(DP), DIMENSION(:,,:), INTENT(IN) :: uc
 REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp
 END FUNCTION interp
END INTERFACE

INTERFACE
 FUNCTION rank(indx)
 USE nrtype
 INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: indx
 END FUNCTION rank
END INTERFACE
INTEGER(I4B), DIMENSION(size(indx)) :: rank
END FUNCTION rank

END INTERFACE

INTERFACE
 FUNCTION irbit1(iseed)
 USE nrtype
 INTEGER(I4B), INTENT(INOUT) :: iseed
 INTEGER(I4B) :: irbit1
 END FUNCTION irbit1
END INTERFACE

INTERFACE
 FUNCTION irbit2(iseed)
 USE nrtype
 INTEGER(I4B), INTENT(INOUT) :: iseed
 INTEGER(I4B) :: irbit2
 END FUNCTION irbit2
END INTERFACE

INTERFACE
 SUBROUTINE jacobi(a,d,v,nrot)
 USE nrtype
 INTEGER(I4B), INTENT(OUT) :: nrot
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: d
 REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
 REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: v
 END SUBROUTINE jacobi
END INTERFACE

INTERFACE
 SUBROUTINE jacobn(x,y,dfdx,dfdy)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP), DIMENSION(:), INTENT(IN) :: y
 REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
 REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
 END SUBROUTINE jacobn
END INTERFACE

INTERFACE
 FUNCTION julday(mm,id,iyyy)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
 INTEGER(I4B) :: julday
 END FUNCTION julday
END INTERFACE

INTERFACE
 SUBROUTINE kendl1(data1,data2,tau,z,prob)
 USE nrtype
 REAL(SP), INTENT(OUT) :: tau,z,prob
 REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
 END SUBROUTINE kendl1
END INTERFACE

INTERFACE
 SUBROUTINE kendl2(tab,tau,z,prob)
 USE nrtype
 REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
 REAL(SP), INTENT(OUT) :: tau,z,prob
 END SUBROUTINE kendl2
END INTERFACE

INTERFACE
 FUNCTION kermom(y,m)
 USE nrtype
 REAL(DP), INTENT(IN) :: y
 INTEGER(I4B), INTENT(IN) :: m
 REAL(DP), DIMENSION(m) :: kermom
 END FUNCTION kermom
END INTERFACE
Appendix C2. Alphabetical Listing of Explicit Interfaces

INTERFACE
SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE
SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl
END INTERFACE
END SUBROUTINE ks2d1s
END INTERFACE

INTERFACE
SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob
END SUBROUTINE ks2d2s
END INTERFACE

INTERFACE
SUBROUTINE ksone(data,func,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: data
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END SUBROUTINE ksone
END INTERFACE

INTERFACE
SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:,), INTENT(IN) :: data1,data2
END SUBROUTINE kstwo
END INTERFACE

INTERFACE
SUBROUTINE laguer(a,x,its)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:,), INTENT(IN) :: a
END SUBROUTINE laguer
END INTERFACE

INTERFACE
SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:,), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE
SUBROUTINE funcs(x,arr)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(OUT) :: arr
END SUBROUTINE funcs
END INTERFACE

Sample page from NUMERICAL RECIPES IN FORTRAN 90: The Art of PARALLEL Scientific Computing (ISBN 0-521-57439-0) Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission granted to make one paper copy for your personal use. Further reproduction or copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
END INTERFACE
END SUBROUTINE lfit
END INTERFACE

INTERFACE
SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,itmax
REAL(DP), INTENT(IN) :: tol
INTEGER(I4B), INTENT(OUT) :: iter
REAL(DP), INTENT(OUT) :: err
END SUBROUTINE linbcg
END INTERFACE

INTERFACE
SUBROUTINE linmin(p,xi,fret)
USE nrtype
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
END SUBROUTINE linmin
END INTERFACE

INTERFACE
SUBROUTINE lnsrch(xold,fold,g,p,x,f,stpmax,check,func)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xold,g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold,stpmax
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
FUNCTION func(x)
USE nrtype
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func
END INTERFACE
END SUBROUTINE lnsrch
END INTERFACE

INTERFACE
FUNCTION locate(xx,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate
END FUNCTION locate
END INTERFACE

INTERFACE
FUNCTION lop(u)
USE nrtype
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop
END FUNCTION lop
END INTERFACE

INTERFACE
SUBROUTINE lubksb(a,indx,b)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: b
END SUBROUTINE lubksb
END INTERFACE

INTERFACE
SUBROUTINE ludcmp(a,indx,d)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:,), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: d
END SUBROUTINE ludcmp
END INTERFACE
USE nrtype
REAL(SP), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(INOUT) :: indx
REAL(SP), INTENT(INOUT) :: d
END SUBROUTINE ludcmp
END INTERFACE

INTERFACE
SUBROUTINE machar(ibeta,irnd,ngrd,machep,negep,negep,nmaxexp,eps,epsneg,xmin,xmax)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: ibeta,irnd,ngrd,machep,negep,nmaxexp,&
eps,epsneg,xmin,xmax
REAL(SP), INTENT(OUT) :: d
END SUBROUTINE machar
END INTERFACE

INTERFACE
SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype
REAL(8), INTENT(IN) :: x,y
REAL(8), INTENT(OUT) :: a,b,abdev
END SUBROUTINE medfit
END INTERFACE

INTERFACE
SUBROUTINE memcof(data,xms,d)
USE nrtype
REAL(8), INTENT(OUT) :: xms
REAL(8), INTENT(IN) :: data
REAL(8), INTENT(OUT) :: d
END SUBROUTINE memcof
END INTERFACE

INTERFACE
SUBROUTINE mgfas(u,maxcyc)
USE nrtype
REAL(8), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc
END SUBROUTINE mgfas
END INTERFACE

INTERFACE
SUBROUTINE mglin(u,ncycle)
USE nrtype
REAL(8), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle
END SUBROUTINE mglin
END INTERFACE

INTERFACE
SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype
REAL(8), INTENT(IN) :: aa,bb
REAL(8), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE
FUNCTION funk(x)
USE nrtype
REAL(8), INTENT(size(x)) :: funk
END FUNCTION funk
END INTERFACE
END SUBROUTINE midexp
END INTERFACE

INTERFACE
SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype
REAL(8), INTENT(IN) :: aa,bb
REAL(8), INTENT(INOUT) :: s
INTERFACE
FUNCTION funk(x)
USE nrtype
REAL(8), INTENT(size(x)) :: funk
END FUNCTION funk
END INTERFACE
END SUBROUTINE midinf
END INTERFACE
INTEGER(I4B), INTENT(IN) :: n

INTERFACE
 FUNCTION funk(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: funk
 END FUNCTION funk
END INTERFACE
END SUBROUTINE midinf

INTERFACE
SUBROUTINE midpnt(func,a,b,s,n)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), INTENT(INOUT) :: s
 INTEGER(I4B), INTENT(IN) :: n
 INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
 END INTERFACE
END SUBROUTINE midpnt
END INTERFACE

INTERFACE
SUBROUTINE midsql(func,aa,bb,s,n)
 USE nrtype
 REAL(SP), INTENT(IN) :: aa,bb
 REAL(SP), INTENT(INOUT) :: s
 INTEGER(I4B), INTENT(IN) :: n
 INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
 END INTERFACE
END SUBROUTINE midsql
END INTERFACE

INTERFACE
SUBROUTINE midsqu(func,aa,bb,s,n)
 USE nrtype
 REAL(SP), INTENT(IN) :: aa,bb
 REAL(SP), INTENT(INOUT) :: s
 INTEGER(I4B), INTENT(IN) :: n
 INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
 END INTERFACE
END SUBROUTINE midsqu
END INTERFACE

INTERFACE
RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
 USE nrtype
 INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP) :: func
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 END FUNCTION func
 END INTERFACE
END SUBROUTINE miser

Copyright (C) 1986-1996 by Cambridge University Press. Programs Copyright (C) 1986-1996 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable lists including this one to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).
END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(4B), INTENT(IN) :: ndim, npts
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave, var
END SUBROUTINE miser
END INTERFACE
INTERFACE
SUBROUTINE mmid(y, dydx, xs, htot, nstep, yout, derivs)
USE nrtype
INTEGER(4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs, htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y, dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE mmid
END INTERFACE
INTERFACE
SUBROUTINE mnbrak(ax, bx, cx, fa, fb, fc, func)
USE nrtype
REAL(SP), INTENT(INOUT) :: ax, bx
REAL(SP), INTENT(OUT) :: cx, fa, fb, fc
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END SUBROUTINE mnbrak
END INTERFACE
INTERFACE
SUBROUTINE mnewt(ntrial, x, tolx, tolf, usrfun)
USE nrtype
INTEGER(4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx, tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE
SUBROUTINE usrfun(x, fvec, fjac)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun
END INTERFACE
END SUBROUTINE mnewt
END INTERFACE
INTERFACE
SUBROUTINE moment(data, ave, adev, sdev, var, skew, curt)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
END SUBROUTINE moment
END INTERFACE
INTERFACE
SUBROUTINE mp2dfr(a, s, n, m)
USE nrtype
END INTERFACE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(INOUT) :: m
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: a
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: s
END SUBROUTINE mp2dfr
END INTERFACE
 INTERFACE
 SUBROUTINE mpdiv(q,r,u,v,n,m)
 USE nrtype
 CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: q,r
 CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
 INTEGER(I4B), INTENT(IN) :: n,m
 END SUBROUTINE mpdiv
END INTERFACE
 INTERFACE
 SUBROUTINE mpinv(u,v,n,m)
 USE nrtype
 CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
 CHARACTER(1), DIMENSION(:), INTENT(OUT) :: v
 INTEGER(I4B), INTENT(IN) :: n,m
 END SUBROUTINE mpinv
END INTERFACE
 INTERFACE
 SUBROUTINE mpmul(w,u,v,n,m)
 USE nrtype
 CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
 CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
 INTEGER(I4B), INTENT(IN) :: n,m
 END SUBROUTINE mpmul
END INTERFACE
 INTERFACE
 SUBROUTINE mppi(n)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: n
 END SUBROUTINE mppi
END INTERFACE
 INTERFACE
 SUBROUTINE mprove(a,alud,indx,b,x)
 USE nrtype
 REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
 INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
 REAL(SP), DIMENSION(:), INTENT(OUT) :: b
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
 END SUBROUTINE mprove
END INTERFACE
 INTERFACE
 SUBROUTINE mpsqrt(w,u,v,n,m)
 USE nrtype
 CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: w,u
 CHARACTER(1), DIMENSION(:), INTENT(OUT) :: v
 INTEGER(I4B), INTENT(IN) :: n,m
 END SUBROUTINE mpsqrt
END INTERFACE
 INTERFACE
 SUBROUTINE mrqcof(x,y,sig,a,maska,alpha,beta,chisq,funcs)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
 REAL(SP), DIMENSION(:), INTENT(OUT) :: beta
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
 REAL(SP), DIMENSION(:), INTENT(OUT) :: alpha
 REAL(SP), DIMENSION(:), INTENT(OUT) :: chisq
 LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
 END SUBROUTINE mrqcof
INTERFACE
 SUBROUTINE funcs(x,a,yfit,dyda)
 USE nrtype

REAL(SP), DIMENSION(:), INTENT(IN) :: x, a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
END SUBROUTINE mrqcof

END INTERFACE

INTERFACE
SUBROUTINE mrqmin(x, y, sig, a, maska, covar, alpha, chisq, funcs, alamda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x, y, sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: covar, alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE
SUBROUTINE funcs(x, a, yfit, dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x, a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs
END INTERFACE
END SUBROUTINE mrqmin

END INTERFACE

INTERFACE
SUBROUTINE newt(x, check)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
END SUBROUTINE newt

END INTERFACE

INTERFACE
SUBROUTINE odeint(ystart, x1, x2, eps, h1, hmin, derivs, rkqs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: ystart
REAL(SP), INTENT(IN) :: x1, x2, eps, h1, hmin
INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
SUBROUTINE rkqs(y, dydx, x, htry, eps, yscal, hdid, hnext, derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx, yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry, eps
REAL(SP), INTENT(OUT) :: hdid, hnext
INTERFACE
SUBROUTINE derivs(x, y, dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
END SUBROUTINE odeint
END INTERFACE
INTERFACE
 SUBROUTINE orthog(anu,alpha,beta,a,b)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: anu,alpha,beta
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: a,b
 END SUBROUTINE orthog
END INTERFACE

INTERFACE
 SUBROUTINE pade(cof,resid)
 USE nrtype
 REAL(DP), DIMENSION(:,), INTENT(INOUT) :: cof
 REAL(SP), INTENT(OUT) :: resid
 END SUBROUTINE pade
END INTERFACE

INTERFACE
 FUNCTION pccheb(d)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: d
 REAL(SP), DIMENSION(size(d)) :: pccheb
 END FUNCTION pccheb
END INTERFACE

INTERFACE
 SUBROUTINE pcshft(a,b,d)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
 END SUBROUTINE pcshft
END INTERFACE

INTERFACE
 SUBROUTINE pearsn(x,y,r,prob,z)
 USE nrtype
 REAL(SP), INTENT(OUT) :: r,prob,z
 REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
 END SUBROUTINE pearsn
END INTERFACE

INTERFACE
 SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
 USE nrtype
 INTEGER(I4B), INTENT(OUT) :: jmax
 REAL(SP), INTENT(IN) :: ofac,hifac
 REAL(SP), INTENT(OUT) :: prob
 REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y
 REAL(SP), DIMENSION(:,), POINTER :: px,py
 END SUBROUTINE period
END INTERFACE

INTERFACE
 FUNCTION plgndr_s(l,m,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: l,m
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: plgndr_s
 END FUNCTION plgndr_s

 FUNCTION plgndr_v(l,m,x)
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: l,m
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: plgndr_v
 END FUNCTION plgndr_v
END INTERFACE

INTERFACE
 SUBROUTINE plgndr
 USE nrtype
 INTEGER(I4B), INTENT(IN) :: l,m,x
 END SUBROUTINE plgndr
END INTERFACE

INTERFACE
 FUNCTION poidev(xm)
 USE nrtype
 END FUNCTION poidev
END INTERFACE
REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev
END FUNCTION poidev
END INTERFACE

INTERFACE
FUNCTION polcoe(x,y)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe
END FUNCTION polcoe
END INTERFACE

INTERFACE
FUNCTION polcof(xa,ya)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof
END FUNCTION polcof
END INTERFACE

INTERFACE
SUBROUTINE poldiv(u,v,q,r)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:,), INTENT(OUT) :: q,r
END SUBROUTINE poldiv
END INTERFACE

INTERFACE
SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polin2
END INTERFACE

INTERFACE
SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polint
END INTERFACE

INTERFACE
SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: xi
INTEGER(14B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
END SUBROUTINE powell
END INTERFACE

INTERFACE
FUNCTION predic(data,d,nfut)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: data,d
INTEGER(14B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic
END FUNCTION predic
END INTERFACE

INTERFACE
FUNCTION probks(alam)
USE nrtype
REAL(SP), INTENT(IN) :: alam
END FUNCTION probks
END INTERFACE
REAL(SP) :: probks
END FUNCTION probks
END INTERFACE

INTERFACE psdes
SUBROUTINE psdes_s(lword,rword)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_s
SUBROUTINE psdes_v(lword,rword)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_v
END INTERFACE

INTERFACE
SUBROUTINE put(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE put
END INTERFACE

INTERFACE
SUBROUTINE putset(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
END SUBROUTINE putset
END INTERFACE

INTERFACE
FUNCTION pythag_dp(a,b)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
END FUNCTION pythag_dp
FUNCTION pythag_sp(a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp
END FUNCTION pythag_sp
END INTERFACE

INTERFACE
SUBROUTINE pzextr(iest,xest,yest,yz,dy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy
END SUBROUTINE pzextr
END INTERFACE

INTERFACE
SUBROUTINE qrdcmp(a,c,d,sing)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: c,d
LOGICAL(LGT), INTENT(OUT) :: sing
END SUBROUTINE qrdcmp
END INTERFACE

INTERFACE
FUNCTION qromb(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE

FUNCTION qromo(func,a,b,choose)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END FUNCTION qromo
END INTERFACE

INTERFACE
SUBROUTINE qromo(func,a,b,c,d)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE qromo
END INTERFACE

INTERFACE
SUBROUTINE qrsolv(a,c,d,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE qrsolv
END INTERFACE

INTERFACE
SUBROUTINE qrupdt(r,qt,u,v)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: r,qt
REAL(SP), DIMENSION(:), INTENT(INOUT) :: u,v
END SUBROUTINE qrupdt
END INTERFACE

INTERFACE
FUNCTION qsimp(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp
INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), DIMENSION(:,), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
END INTERFACE
END FUNCTION qsimp
END INTERFACE
INTERFACE
 FUNCTION qtrap(func,a,b)
 USE nrtyp
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP) :: qtrap
 INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), DIMENSION(:,), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
 END INTERFACE
 END FUNCTION qtrap
END INTERFACE
INTERFACE
 SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x,y
 REAL(SP), DIMENSION(:,), INTENT(IN) :: xx,yy
 REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
 END SUBROUTINE quadct
END INTERFACE
INTERFACE
 SUBROUTINE quadmx(a)
 USE nrtyp
 REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: a
 END SUBROUTINE quadmx
END INTERFACE
INTERFACE
 SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x,y
 REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
 END SUBROUTINE quadvl
END INTERFACE
INTERFACE
 FUNCTION ran(idum)
 INTEGER(selected_int_kind(9)), INTENT(INOUT) :: idum
 REAL :: ran
 END FUNCTION ran
END INTERFACE
INTERFACE ran0
 SUBROUTINE ran0_s(harvest)
 USE nrtyp
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
 END SUBROUTINE ran0_s
 SUBROUTINE ran0_v(harvest)
 USE nrtyp
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
 END SUBROUTINE ran0_v
END INTERFACE
INTERFACE ran1
 SUBROUTINE ran1_s(harvest)
 USE nrtyp
 END SUBROUTINE ran1_s
END INTERFACE
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
END SUBROUTINE ran1_v

END INTERFACE

INTERFACE ran2
SUBROUTINE ran2_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
END SUBROUTINE ran2_v

END INTERFACE

INTERFACE ran3
SUBROUTINE ran3_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(OUT) :: harvest
END SUBROUTINE ran3_v

END INTERFACE

INTERFACE
SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE ratint

END INTERFACE

INTERFACE
SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:,), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:,), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func
END INTERFACE
END SUBROUTINE ratlsq

END INTERFACE

INTERFACE ratval
FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype
REAL(DP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s
END FUNCTION ratval_s

FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype
REAL(DP), DIMENSION(:,), INTENT(IN) :: x

INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
END FUNCTION ratval_v
END INTERFACE

INTERFACE rc
FUNCTION rc_s(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
END FUNCTION rc_s
END INTERFACE

INTERFACE rd
FUNCTION rd_s(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
END FUNCTION rd_s
END INTERFACE

INTERFACE realft
SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_dp
SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_sp
END INTERFACE

INTERFACE
RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
END FUNCTION recur1
END INTERFACE

INTERFACE
FUNCTION recur2(a,b,c)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2
END FUNCTION recur2
END INTERFACE

INTERFACE
SUBROUTINE relax(u,rhs)
USE nrtype
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: rhs
END SUBROUTINE relax
END INTERFACE
END INTERFACE

INTERFACE
 SUBROUTINE relax2(u,rhs)
 USE nrtype
 REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: u
 REAL(DP), DIMENSION(:,,:), INTENT(IN) :: rhs
 END SUBROUTINE relax2
END INTERFACE

INTERFACE
 FUNCTION resid(u,rhs)
 USE nrtype
 REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u,rhs
 REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid
 END FUNCTION resid
END INTERFACE

INTERFACE rf
 FUNCTION rf_s(x,y,z)
 USE nrtype
 REAL(SP), INTENT(IN) :: x,y,z
 REAL(SP) :: rf_s
 END FUNCTION rf_s
 FUNCTION rf_v(x,y,z)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,z
 REAL(SP), DIMENSION(size(x)) :: rf_v
 END FUNCTION rf_v
END INTERFACE

INTERFACE rj
 FUNCTION rj_s(x,y,z,p)
 USE nrtype
 REAL(SP), INTENT(IN) :: x,y,z,p
 REAL(SP) :: rj_s
 END FUNCTION rj_s
 FUNCTION rj_v(x,y,z,p)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: x,y,z,p
 REAL(SP), DIMENSION(size(x)) :: rj_v
 END FUNCTION rj_v
END INTERFACE

INTERFACE
 SUBROUTINE rk4(y,dydx,x,h,yout,derivs)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: y,dydx
 REAL(SP), INTENT(IN) :: x,h
 REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
 INTERFACE
 SUBROUTINE derivs(x,y,dydx)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP), DIMENSION(:,), INTENT(IN) :: y
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
 END SUBROUTINE derivs
 END INTERFACE
 END SUBROUTINE rk4
END INTERFACE

INTERFACE
 SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: y,dydx
 REAL(SP), INTENT(IN) :: x,h
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: yout,yerr
 INTERFACE
 SUBROUTINE derivs(x,y,dydx)
 USE nrtype
 REAL(SP), INTENT(IN) :: x
 REAL(SP), DIMENSION(:,), INTENT(IN) :: y
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
 END SUBROUTINE derivs
 END INTERFACE
 END SUBROUTINE rkck
END INTERFACE
Appendix C2. Alphabetical Listing of Explicit Interfaces

```
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:, ), INTENT(IN) :: y
REAL(SP), DIMENSION(:, ), INTENT(OUT) :: dydx
END SUBROUTINE derive
END INTERFACE
END SUBROUTINE rkck
END INTERFACE
END SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype
REAL(SP), DIMENSION(:, ), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:, ), INTENT(IN) :: y
REAL(SP), DIMENSION(:, ), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE rkdumb
END INTERFACE
END SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:, ), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:, ), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:, ), INTENT(IN) :: y
REAL(SP), DIMENSION(:, ), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE rkqs
END INTERFACE
END SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:,), INTENT(IN) :: isign
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft2
END INTERFACE
END SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,,:,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:,,:), INTENT(IN) :: isign
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft3
END INTERFACE
END SUBROUTINE rotate(r,qt,i,a,b)
USE nrtype
REAL(SP), DIMENSION(:,,:), TARGET, INTENT(INOUT) :: r,qt
```
INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a, b
END SUBROUTINE rotate

END INTERFACE

INTERFACE
SUBROUTINE rsolv(a,d,b)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE rsolv
END INTERFACE

INTERFACE
SUBROUTINE rsolv(a,d,b)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION((size(a,1)+1)/2,(size(a,1)+1)/2) :: rsolv
END SUBROUTINE rsolv
END INTERFACE

INTERFACE
FUNCTION rstrct(uf)
USE nrtype
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct
END FUNCTION rstrct
END INTERFACE

INTERFACE
FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END FUNCTION rtbis
END INTERFACE

INTERFACE
FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END FUNCTION rtflsp
END INTERFACE

INTERFACE
FUNCTION rtnewt(funcd,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtnewt
INTERFACE
SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd
END INTERFACE
END FUNCTION rtnewt
END INTERFACE

INTERFACE
FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE
SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd
END INTERFACE
END FUNCTION rtsafe
END INTERFACE
REAL(SP), INTENT(IN) :: x1, x2, xacc
REAL(SP) :: rtsafe

INTERFACE
 SUBROUTINE funcd(x, fval, fderiv)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x
 REAL(SP), INTENT(OUT) :: fval, fderiv
 END SUBROUTINE funcd
END INTERFACE

END FUNCTION rtsafe

INTERFACE
 FUNCTION rtsec(func, x1, x2, xacc)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x1, x2, xacc
 REAL(SP) :: rtsec
 INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: func
 END FUNCTION func
 END INTERFACE
 END FUNCTION rtsec
END INTERFACE

INTERFACE
 SUBROUTINE rzextr(iest, xest, yest, yz, dy)
 USE nrtyp
 INTEGER(I4B), INTENT(IN) :: iest
 REAL(SP), INTENT(IN) :: xest
 REAL(SP), DIMENSION(:), INTENT(IN) :: yest
 REAL(SP), DIMENSION(:), INTENT(OUT) :: yz, dy
 END SUBROUTINE rzextr
END INTERFACE

INTERFACE
 FUNCTION savgol(nl, nrr, ld, m)
 USE nrtyp
 INTEGER(I4B), INTENT(IN) :: nl, nrr, ld, m
 REAL(SP), DIMENSION(nl+nrr+1) :: savgol
 END FUNCTION savgol
END INTERFACE

INTERFACE
 SUBROUTINE scrsho(func)
 USE nrtyp
 INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: func
 END FUNCTION func
 END INTERFACE
 END SUBROUTINE scrsho
END INTERFACE

INTERFACE
 FUNCTION select(k, arr)
 USE nrtyp
 INTEGER(I4B), INTENT(IN) :: k
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
 REAL(SP) :: select
 END FUNCTION select
END INTERFACE

INTERFACE
 FUNCTION select_bypack(k, arr)
 USE nrtyp
 INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: func
 END FUNCTION func
 END INTERFACE
 END FUNCTION select
END INTERFACE

INTERFACE
 FUNCTION select_bypack(k, arr)
 USE nrtyp
 INTERFACE
 FUNCTION func(x)
 USE nrtyp
 REAL(SP), INTENT(IN) :: x
 REAL(SP) :: func
 END FUNCTION func
 END INTERFACE
 END FUNCTION select
END INTERFACE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack
END FUNCTION select_bypack
END INTERFACE

INTERFACE
SUBROUTINE select_heap(arr,heap)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: arr
REAL(SP), DIMENSION(:,), INTENT(OUT) :: heap
END SUBROUTINE select_heap
END INTERFACE

INTERFACE
FUNCTION select_inplace(k,arr)
USE nrtype
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:,), INTENT(IN) :: arr
REAL(SP) :: select_inplace
END FUNCTION select_inplace
END INTERFACE

INTERFACE
SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
END SUBROUTINE simplx
END INTERFACE

INTERFACE
SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:,), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE simpr
END INTERFACE

INTERFACE
SUBROUTINE sinft(y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
END SUBROUTINE sinft
END INTERFACE

INTERFACE
SUBROUTINE slvsm2(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsm2
END INTERFACE

INTERFACE
SUBROUTINE slvsm1(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
END SUBROUTINE slvsm1
END INTERFACE
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsml

END INTERFACE

INTERFACE
SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
USE nrtype
REAL(SP), INTENT(IN) :: uu, emmc
REAL(SP), INTENT(OUT) :: sn, cn, dn
END SUBROUTINE sncndn
END INTERFACE

INTERFACE
FUNCTION snrm(sx,itol)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm
END FUNCTION snrm
END INTERFACE

INTERFACE
SUBROUTINE sobseq(x,init)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
END SUBROUTINE sobseq
END INTERFACE

INTERFACE
SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype
INTEGER(I4B), INTENT(IN) :: itmax, nb
REAL(SP), INTENT(IN) :: conv, slowc
REAL(SP), DIMENSION(:), INTENT(IN) :: scalv
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: y
END SUBROUTINE solvde
END INTERFACE

INTERFACE
SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a, b, c, d, e, f
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
END SUBROUTINE sor
END INTERFACE

INTERFACE
SUBROUTINE sort(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort
END INTERFACE

INTERFACE
SUBROUTINE sort2(arr,slave)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr, slave
END SUBROUTINE sort2
END INTERFACE

INTERFACE
SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr, slave1, slave2
END SUBROUTINE sort3
END INTERFACE

INTERFACE
SUBROUTINE sort_bypack(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_bypack
END INTERFACE
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_bypack

END INTERFACE

INTERFACE
SUBROUTINE sort_byreshape(arr)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_byreshape

END INTERFACE

INTERFACE
SUBROUTINE sort_heap(arr)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_heap

END INTERFACE

INTERFACE
SUBROUTINE sort_pick(arr)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_pick

END INTERFACE

INTERFACE
SUBROUTINE sort_radix(arr)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_radix

END INTERFACE

INTERFACE
SUBROUTINE sort_shell(arr)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(INOUT) :: arr
END SUBROUTINE sort_shell

END INTERFACE

INTERFACE
SUBROUTINE spctrm(p,k,ovrlap,unit,n_window)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(OUT) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(LGT), INTENT(IN) :: ovrlap
INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window,unit
END SUBROUTINE spctrm

END INTERFACE

INTERFACE
SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs
END SUBROUTINE spear

END INTERFACE

INTERFACE
SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:,), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_v

END INTERFACE
Appendix C2. Alphabetical Listing of Explicit Interfaces

INTERFACE
SUBROUTINE splie2(x1a, x2a, ya, y2a)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1a, x2a
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: y2a
END SUBROUTINE splie2

END INTERFACE

INTERFACE
FUNCTION splin2(x1a, x2a, ya, y2a, x1, x2)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x1a, x2a
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: ya, y2a
REAL(SP), INTENT(IN) :: x1, x2
REAL(SP) :: splin2
END FUNCTION splin2

END INTERFACE

INTERFACE
SUBROUTINE spline(x, y, yp1, ypn, y2)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: x, y
REAL(SP), INTENT(IN) :: yp1, ypn
REAL(SP), INTENT(OUT) :: y2
END SUBROUTINE spline

END INTERFACE

INTERFACE
FUNCTION splint(xa, ya, y2a, x)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: xa, ya, y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint
END FUNCTION splint

END INTERFACE

INTERFACE sprsax
SUBROUTINE sprsax_dp(sa, x, b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_dp

SUBROUTINE sprsax_sp(sa, x, b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_sp

END INTERFACE

INTERFACE sprsdiag
SUBROUTINE sprsdiag_dp(sa, b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_dp

SUBROUTINE sprsdiag_sp(sa, b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_sp

END INTERFACE

INTERFACE sprsin
SUBROUTINE sprsin_sp(a, thresh, sa)
USE nrtype
REAL(SP), DIMENSION (:,:), INTENT(IN) :: a
END INTERFACE
real(sp), intent(in) :: thresh
type(sprs2_sp), intent(out) :: sa
end subroutine sprsin_sp

subroutine sprsin_dp(a,thresh,sa)
use nrtype
real(dp), dimension(:,,:), intent(in) :: a
real(dp), intent(in) :: thresh
type(sprs2_dp), intent(out) :: sa
end subroutine sprsin_dp

end interface

interface
subroutine sprstp(sa)
use nrtype
type(sprs2_sp), intent(inout) :: sa
end subroutine sprstp
end interface

interface sprstx
subroutine sprstx_dp(sa,x,b)
use nrtype
type(sprs2_dp), intent(in) :: sa
real(dp), dimension (:), intent(in) :: x
real(dp), dimension (:), intent(out) :: b
end subroutine sprstx_dp
subroutine sprstx_sp(sa,x,b)
use nrtype
type(sprs2_sp), intent(in) :: sa
real(sp), dimension (:), intent(in) :: x
real(sp), dimension (:), intent(out) :: b
end subroutine sprstx_sp
end interface

end interface

interface
subroutine stifbs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
use nrtype
real(sp), dimension (:), intent(inout) :: y
real(sp), dimension (:), intent(in) :: dydx,yscal
real(sp), intent(in) :: htry,eps
real(sp), intent(inout) :: x
real(sp), intent(out) :: hdid,hnext
interface
subroutine derivs(x,y,dydx)
use nrtype
real(sp), intent(in) :: x
real(sp), dimension (:), intent(in) :: y
real(sp), dimension (:), intent(out) :: dydx
end subroutine derivs
end interface
end subroutine stifbs
end interface

end interface

interface
subroutine stif(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
use nrtype
real(sp), dimension (:), intent(inout) :: y
real(sp), dimension (:), intent(in) :: dydx,yscal
real(sp), intent(inout) :: x
real(sp), intent(in) :: htry,eps
real(sp), intent(out) :: hdid,hnext
interface
subroutine derivs(x,y,dydx)
use nrtype
real(sp), intent(in) :: x
real(sp), dimension (:), intent(in) :: y
real(sp), dimension (:), intent(out) :: dydx
end subroutine derivs
end interface
end subroutine stif
end interface
Appendix C2. Alphabetical Listing of Explicit Interfaces

END INTERFACE
END SUBROUTINE stiff
END INTERFACE

INTERFACE
SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), DIMENSION(:,), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:,), INTENT(OUT) :: yout
INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:,), INTENT(IN) :: y
REAL(SP), DIMENSION(:,), INTENT(OUT) :: dydx
END SUBROUTINE derivs
END INTERFACE
END SUBROUTINE stoerm
END INTERFACE

INTERFACE
SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype
REAL(DP), DIMENSION(:,,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_dp
SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_sp
END INTERFACE

INTERFACE
SUBROUTINE svdcmp_dp(a,w,v)
USE nrtype
REAL(DP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_dp
SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype
REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_sp
END INTERFACE

INTERFACE
SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,v,w
REAL(SP), DIMENSION(:,), INTENT(OUT) :: chisq,funcs
INTERFACE
FUNCTION funcs(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs
END INTERFACE
END SUBROUTINE svdfit
END INTERFACE

INTERFACE
 SUBROUTINE svdvar(v,w,cvm)
 USE nrtype
 REAL(SP), DIMENSION(:,,:), INTENT(IN) :: v
 REAL(SP), DIMENSION(:,), INTENT(IN) :: w
 REAL(SP), DIMENSION(:,,:), INTENT(OUT) :: cvm
 END SUBROUTINE svdvar
END INTERFACE

INTERFACE
 FUNCTION toeplz(r,y)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: r,y
 REAL(SP), DIMENSION(size(y)) :: toeplz
 END FUNCTION toeplz
END INTERFACE

INTERFACE
 SUBROUTINE tptest(data1,data2,t,prob)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
 REAL(SP), INTENT(OUT) :: t,prob
 END SUBROUTINE tptest
END INTERFACE

INTERFACE
 SUBROUTINE tqli(d,e,z)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(INOUT) :: d,e
 REAL(SP), DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: z
 END SUBROUTINE tqli
END INTERFACE

INTERFACE
 SUBROUTINE trapzd(func,a,b,s,n)
 USE nrtype
 REAL(SP), INTENT(IN) :: a,b
 REAL(SP), INTENT(INOUT) :: s
 INTEGER(I4B), INTENT(IN) :: n
 INTERFACE
 FUNCTION func(x)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: x
 REAL(SP), DIMENSION(size(x)) :: func
 END FUNCTION func
 END INTERFACE
 END SUBROUTINE trapzd
END INTERFACE

INTERFACE
 SUBROUTINE tred2(a,d,e,novectors)
 USE nrtype
 REAL(SP), DIMENSION(:,,:), INTENT(INOUT) :: a
 REAL(SP), DIMENSION(:,), INTENT(INOUT) :: d,e
 LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors
 END SUBROUTINE tred2
END INTERFACE

! On a purely serial machine, for greater efficiency, remove
! the generic name tridag from the following interface,
! and put it on the next one after that.
INTERFACE tridag
 RECURSIVE SUBROUTINE tridag_par(a,b,c,r,u)
 USE nrtype
 REAL(SP), DIMENSION(:,), INTENT(IN) :: a,b,c,r
 REAL(SP), DIMENSION(:,), INTENT(OUT) :: u
 END SUBROUTINE tridag_par
END INTERFACE
Appendix C2. Alphabetical Listing of Explicit Interfaces

INTERFACE
 SUBROUTINE tridag_ser(a,b,c,r,u)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
 REAL(SP), DIMENSION(:), INTENT(OUT) :: u
 END SUBROUTINE tridag_ser
END INTERFACE

INTERFACE
 SUBROUTINE ttest(data1,data2,t,prob)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
 REAL(SP), INTENT(OUT) :: t,prob
 END SUBROUTINE ttest
END INTERFACE

INTERFACE
 SUBROUTINE tutest(data1,data2,t,prob)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
 REAL(SP), INTENT(OUT) :: t,prob
 END SUBROUTINE tutest
END INTERFACE

INTERFACE
 SUBROUTINE twofft(data1,data2,fft1,fft2)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
 COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2
 END SUBROUTINE twofft
END INTERFACE

INTERFACE
 FUNCTION vander(x,q)
 USE nrtype
 REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
 REAL(DP), DIMENSION(size(x)) :: vander
 END FUNCTION vander
END INTERFACE

INTERFACE
 SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: region
 INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
 REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
 INTERFACE
 FUNCTION func(pt,wgt)
 USE nrtype
 REAL(SP), DIMENSION(:), INTENT(IN) :: pt
 REAL(SP), INTENT(IN) :: wgt
 REAL(SP) :: func
 END FUNCTION func
 END INTERFACE
 END SUBROUTINE vegas
END INTERFACE

INTERFACE
 SUBROUTINE voltra(t0,h,t,f,g,ak)
 USE nrtype
 REAL(SP), INTENT(IN) :: t0,h
 REAL(SP), DIMENSION(:,:), INTENT(OUT) :: t,f
 INTERFACE
 FUNCTION g(t)
 USE nrtype
 REAL(SP), INTENT(IN) :: t
 REAL(SP) :: g
 END FUNCTION g
 END INTERFACE
 END SUBROUTINE voltra
END INTERFACE
FUNCTION ak(t,s)
USE nrtype
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,::), POINTER :: ak
END FUNCTION ak
END INTERFACE

SUBROUTINE voltra
END INTERFACE

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE
SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep
END INTERFACE
END SUBROUTINE wt1
END INTERFACE

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE
SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep
END INTERFACE
END SUBROUTINE wtn
END INTERFACE

FUNCTION wwghts(n,h,kermom)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE
FUNCTION kermom(y,m)
USE nrtype
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom
END INTERFACE
END FUNCTION wwghts
END INTERFACE

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
Appendix C2. Alphabetical Listing of Explicit Interfaces

END INTERFACE
END SUBROUTINE zbrac

END INTERFACE
INTERFACE
SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END SUBROUTINE zbrak

END INTERFACE
INTERFACE
FUNCTION zbrent(func,x1,x2,tol)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END FUNCTION zbrent

END INTERFACE
INTERFACE
SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti
END SUBROUTINE zrhqr

END INTERFACE
INTERFACE
FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func
END INTERFACE
END FUNCTION zriddr

END INTERFACE
INTERFACE
SUBROUTINE zroots(a,roots,polish)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: roots
LOGICAL(LGT), INTENT(IN) :: polish
END SUBROUTINE zroots

END INTERFACE
END MODULE nr
C3. Index of Programs and Dependencies

The following table lists, in alphabetical order, all the routines in Volume 2 of *Numerical Recipes*. When a routine requires subsidiary routines, either from this book or else user-supplied, the full dependency tree is shown: A routine calls directly all routines to which it is connected by a solid line in the column immediately to its right; it calls indirectly the connected routines in all columns to its right. Typographical conventions: Routines from this book are in typewriter font (e.g., `eulsum`, `gammln`). The smaller, slanted font is used for the second and subsequent occurrences of a routine in a single dependency tree. (When you are getting routines from the *Numerical Recipes* machine-readable media or hypertext archives, you need specify names only in the larger, upright font.) User-supplied routines are indicated by the use of text font and square brackets, e.g., `[func]`. Consult the text for individual specifications of these routines. The right-hand side of the table lists chapter and page numbers for each program.

<table>
<thead>
<tr>
<th>Routine</th>
<th>Dependencies</th>
<th>Chapter and Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>airy</td>
<td><code>bessik</code></td>
<td>B6 (p. 1121)</td>
</tr>
<tr>
<td></td>
<td><code>bessjy</code></td>
<td></td>
</tr>
<tr>
<td><code>ameba</code></td>
<td><code>ran</code></td>
<td>B10 (p. 1222)</td>
</tr>
<tr>
<td></td>
<td><code>ran_state</code></td>
<td></td>
</tr>
<tr>
<td><code>amoeba</code></td>
<td>[func]</td>
<td>B10 (p. 1208)</td>
</tr>
<tr>
<td><code>anneal</code></td>
<td><code>ran</code></td>
<td>B10 (p. 1219)</td>
</tr>
<tr>
<td></td>
<td><code>ran_state</code></td>
<td></td>
</tr>
<tr>
<td><code>arcmak</code></td>
<td></td>
<td>B20 (p. 1349)</td>
</tr>
<tr>
<td><code>arcode</code></td>
<td><code>arcmak</code></td>
<td>B20 (p. 1350)</td>
</tr>
<tr>
<td><code>avevar</code></td>
<td></td>
<td>B14 (p. 1270)</td>
</tr>
<tr>
<td><code>badluk</code></td>
<td><code>julday</code></td>
<td>B1 (p. 1011)</td>
</tr>
<tr>
<td></td>
<td><code>filmoon</code></td>
<td></td>
</tr>
<tr>
<td><code>balanc</code></td>
<td></td>
<td>B11 (p. 1230)</td>
</tr>
<tr>
<td><code>banbks</code></td>
<td></td>
<td>B2 (p. 1021)</td>
</tr>
<tr>
<td><code>bandec</code></td>
<td></td>
<td>B2 (p. 1020)</td>
</tr>
<tr>
<td><code>banmul</code></td>
<td></td>
<td>B2 (p. 1019)</td>
</tr>
<tr>
<td><code>bcucof</code></td>
<td></td>
<td>B3 (p. 1049)</td>
</tr>
<tr>
<td></td>
<td><code>bcucof</code></td>
<td>B3 (p. 1050)</td>
</tr>
<tr>
<td><code>beschb</code></td>
<td><code>chebev</code></td>
<td>B6 (p. 1118)</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>bessi</td>
<td></td>
<td>B6 (p. 1114)</td>
</tr>
<tr>
<td>bessi0</td>
<td></td>
<td>B6 (p. 1109)</td>
</tr>
<tr>
<td>bessi1</td>
<td></td>
<td>B6 (p. 1111)</td>
</tr>
<tr>
<td>bessik</td>
<td>beschb</td>
<td>B6 (p. 1118)</td>
</tr>
<tr>
<td>bessj</td>
<td>bessj0</td>
<td>B6 (p. 1106)</td>
</tr>
<tr>
<td></td>
<td>bessj1</td>
<td></td>
</tr>
<tr>
<td>bessj0</td>
<td></td>
<td>B6 (p. 1101)</td>
</tr>
<tr>
<td>bessj1</td>
<td></td>
<td>B6 (p. 1103)</td>
</tr>
<tr>
<td>bessjy</td>
<td>beschb</td>
<td>B6 (p. 1115)</td>
</tr>
<tr>
<td>bessk</td>
<td>bessk0</td>
<td>B6 (p. 1113)</td>
</tr>
<tr>
<td></td>
<td>bessk1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bessi0</td>
<td>B6 (p. 1110)</td>
</tr>
<tr>
<td></td>
<td>bessi1</td>
<td>B6 (p. 1112)</td>
</tr>
<tr>
<td>bessy</td>
<td>bessy1</td>
<td>B6 (p. 1105)</td>
</tr>
<tr>
<td></td>
<td>bessy0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bessj1</td>
<td></td>
</tr>
<tr>
<td>beta</td>
<td>gammln</td>
<td>B6 (p. 1098)</td>
</tr>
<tr>
<td>betacf</td>
<td></td>
<td>B6 (p. 1097)</td>
</tr>
<tr>
<td>betai</td>
<td>gammln</td>
<td>B6 (p. 1097)</td>
</tr>
<tr>
<td></td>
<td>betacf</td>
<td></td>
</tr>
<tr>
<td>bico</td>
<td>factln</td>
<td>B6 (p. 1087)</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
</tr>
<tr>
<td>bnldev</td>
<td>ran1</td>
<td>B7 (p. 1155)</td>
</tr>
<tr>
<td></td>
<td>ran_state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
</tr>
<tr>
<td>brent</td>
<td>[func]</td>
<td>B10 (p. 1204)</td>
</tr>
<tr>
<td>broydn</td>
<td>fmin</td>
<td>B9 (p. 1199)</td>
</tr>
<tr>
<td></td>
<td>fdjac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[funcv]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qrdcmp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qrupd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rotate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pythag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rsolv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lnsrch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fmin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[funcv]</td>
<td></td>
</tr>
<tr>
<td>bsstep</td>
<td>mmid</td>
<td>B16 (p. 1303)</td>
</tr>
<tr>
<td></td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pzextr</td>
<td></td>
</tr>
<tr>
<td>caldat</td>
<td></td>
<td>B1 (p. 1013)</td>
</tr>
<tr>
<td>chder</td>
<td></td>
<td>B5 (p. 1077)</td>
</tr>
<tr>
<td>chebev</td>
<td></td>
<td>B5 (p. 1076)</td>
</tr>
<tr>
<td>chebft</td>
<td>[func]</td>
<td>B5 (p. 1076)</td>
</tr>
<tr>
<td>chebpc</td>
<td></td>
<td>B5 (p. 1078)</td>
</tr>
<tr>
<td>chint</td>
<td></td>
<td>B5 (p. 1078)</td>
</tr>
<tr>
<td>chixy</td>
<td></td>
<td>B15 (p. 1287)</td>
</tr>
</tbody>
</table>
Appendix C3. Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>choldc</td>
<td></td>
<td>B2 (p. 1038)</td>
</tr>
<tr>
<td>chols1</td>
<td></td>
<td>B2 (p. 1039)</td>
</tr>
<tr>
<td>chsone</td>
<td>gammq, gser</td>
<td>B14 (p. 1272)</td>
</tr>
<tr>
<td>chstwo</td>
<td>gammq, gser</td>
<td>B14 (p. 1272)</td>
</tr>
<tr>
<td>cis</td>
<td></td>
<td>B6 (p. 1125)</td>
</tr>
<tr>
<td>cntab1</td>
<td>gammq, gser</td>
<td>B14 (p. 1275)</td>
</tr>
<tr>
<td>cntab2</td>
<td></td>
<td>B14 (p. 1275)</td>
</tr>
<tr>
<td>convl</td>
<td>realft, four1, fourrow</td>
<td>B13 (p. 1253)</td>
</tr>
<tr>
<td>correl</td>
<td>realft, four1, fourrow</td>
<td>B13 (p. 1254)</td>
</tr>
<tr>
<td>cosft1</td>
<td>realft, four1, fourrow</td>
<td>B12 (p. 1245)</td>
</tr>
<tr>
<td>cosft2</td>
<td>realft, four1, fourrow</td>
<td>B12 (p. 1246)</td>
</tr>
<tr>
<td>covrt</td>
<td></td>
<td>B15 (p. 1289)</td>
</tr>
<tr>
<td>cyclic</td>
<td>tridag</td>
<td>B2 (p. 1030)</td>
</tr>
<tr>
<td>daub4</td>
<td></td>
<td>B13 (p. 1264)</td>
</tr>
<tr>
<td>dawson</td>
<td></td>
<td>B6 (p. 1127)</td>
</tr>
<tr>
<td>dbrent</td>
<td>[func], [dfunc]</td>
<td>B10 (p. 1205)</td>
</tr>
<tr>
<td>ddpoly</td>
<td></td>
<td>B5 (p. 1071)</td>
</tr>
<tr>
<td>decchk</td>
<td></td>
<td>B20 (p. 1345)</td>
</tr>
<tr>
<td>dfpmin</td>
<td>[func], [dfunc], lnsrch, [func]</td>
<td>B10 (p. 1215)</td>
</tr>
<tr>
<td>dfri dr</td>
<td>[func]</td>
<td>B5 (p. 1075)</td>
</tr>
<tr>
<td>dftcor</td>
<td></td>
<td>B13 (p. 1261)</td>
</tr>
<tr>
<td>dftint</td>
<td>[func], realft, four1, fourrow, polint, dftcor</td>
<td>B13 (p. 1263)</td>
</tr>
<tr>
<td>difeq</td>
<td></td>
<td>B17 (p. 1320)</td>
</tr>
<tr>
<td>dlinmin</td>
<td>mnbrak, dbrent, [func], [dfunc]</td>
<td>B10 (p. 1212)</td>
</tr>
<tr>
<td>eclass</td>
<td></td>
<td>B8 (p. 1180)</td>
</tr>
<tr>
<td>eclazz</td>
<td>[equiv]</td>
<td>B8 (p. 1180)</td>
</tr>
<tr>
<td>ei</td>
<td></td>
<td>B6 (p. 1097)</td>
</tr>
<tr>
<td>eigsrt</td>
<td></td>
<td>B11 (p. 1227)</td>
</tr>
<tr>
<td>elle</td>
<td>rf, rd</td>
<td>B6 (p. 1136)</td>
</tr>
<tr>
<td>Program</td>
<td>Dependencies</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>elf</td>
<td>rf</td>
<td>B6</td>
</tr>
<tr>
<td>ellpi</td>
<td>rf</td>
<td>B6</td>
</tr>
<tr>
<td></td>
<td>rj</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rf</td>
<td></td>
</tr>
<tr>
<td>elmhes</td>
<td></td>
<td>B11</td>
</tr>
<tr>
<td>erf</td>
<td>gammpl gser gammln</td>
<td>B6</td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammq gser gammln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
</tr>
<tr>
<td>erfcc</td>
<td></td>
<td>B6</td>
</tr>
<tr>
<td>eulsum</td>
<td></td>
<td>B5</td>
</tr>
<tr>
<td>evlmem</td>
<td></td>
<td>B13</td>
</tr>
<tr>
<td></td>
<td>ran1 ran_state</td>
<td></td>
</tr>
<tr>
<td>expdev</td>
<td>ran1 ran_state</td>
<td>B7</td>
</tr>
<tr>
<td></td>
<td>expint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>factln gmln</td>
<td>B6</td>
</tr>
<tr>
<td></td>
<td>factrl gmln</td>
<td>B6</td>
</tr>
<tr>
<td></td>
<td>fasper avevar four1 fourrow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>realft</td>
<td></td>
</tr>
<tr>
<td>fdjac</td>
<td>[funcv]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammq gser gammln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
</tr>
<tr>
<td>fitexy</td>
<td>avevar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fit gammq gser gcf gammln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mnbrak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>brent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammq gcf gammln</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chixy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fixrts zroots laguer indexxx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fleg</td>
<td>B15</td>
</tr>
<tr>
<td></td>
<td>flmoon</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>fmin [funcv]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>four1 fourrow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>four1 alt fourcol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>four1 gather</td>
<td></td>
</tr>
<tr>
<td></td>
<td>four2 fourrow</td>
<td></td>
</tr>
</tbody>
</table>

Appendix C3. Index of Programs and Dependencies
<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>four2_alt</td>
<td>fourcol</td>
</tr>
<tr>
<td>four3</td>
<td>fourrow_3d</td>
</tr>
<tr>
<td>four3_alt</td>
<td>fourcol_3d</td>
</tr>
<tr>
<td>fourcol</td>
<td></td>
</tr>
<tr>
<td>fourcol_3d</td>
<td></td>
</tr>
<tr>
<td>fourn_gather</td>
<td></td>
</tr>
<tr>
<td>fourrow</td>
<td></td>
</tr>
<tr>
<td>fourrow_3d</td>
<td></td>
</tr>
<tr>
<td>fpoly</td>
<td></td>
</tr>
<tr>
<td>fred2</td>
<td>gauleg</td>
</tr>
<tr>
<td></td>
<td>[ak]</td>
</tr>
<tr>
<td></td>
<td>[g]</td>
</tr>
<tr>
<td></td>
<td>ludcmm</td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
</tr>
<tr>
<td>fredex</td>
<td>quadmx</td>
</tr>
<tr>
<td></td>
<td>wghts</td>
</tr>
<tr>
<td></td>
<td>kermom</td>
</tr>
<tr>
<td>fredin</td>
<td>[ak]</td>
</tr>
<tr>
<td></td>
<td>[g]</td>
</tr>
<tr>
<td>frenel</td>
<td></td>
</tr>
<tr>
<td>frprmn</td>
<td>[func]</td>
</tr>
<tr>
<td></td>
<td>[dfunc]</td>
</tr>
<tr>
<td></td>
<td>linmin</td>
</tr>
<tr>
<td></td>
<td>mnbrak</td>
</tr>
<tr>
<td></td>
<td>brent</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td>ftest</td>
<td>avevar</td>
</tr>
<tr>
<td></td>
<td>betai</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td></td>
<td>betacf</td>
</tr>
<tr>
<td>gamdev</td>
<td>ran1</td>
</tr>
<tr>
<td></td>
<td>ran_state</td>
</tr>
<tr>
<td>gammln</td>
<td></td>
</tr>
<tr>
<td>gammpl</td>
<td>gser</td>
</tr>
<tr>
<td></td>
<td>gcf</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td>gammq</td>
<td>gser</td>
</tr>
<tr>
<td></td>
<td>gcf</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td>gasdev</td>
<td>ran1</td>
</tr>
<tr>
<td></td>
<td>ran_state</td>
</tr>
<tr>
<td>gaucof</td>
<td>tqli</td>
</tr>
<tr>
<td></td>
<td>pythag</td>
</tr>
<tr>
<td></td>
<td>eigert</td>
</tr>
<tr>
<td>gauher</td>
<td></td>
</tr>
<tr>
<td>gaujac</td>
<td>gammln</td>
</tr>
<tr>
<td>gaulag</td>
<td>gammln</td>
</tr>
<tr>
<td>gaulag</td>
<td>gammln</td>
</tr>
<tr>
<td>gauleg</td>
<td></td>
</tr>
<tr>
<td>gaussj</td>
<td></td>
</tr>
<tr>
<td>gcf</td>
<td>gammln</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>golden</td>
<td>[func]</td>
</tr>
<tr>
<td>gser</td>
<td>gammln</td>
</tr>
<tr>
<td>hqr</td>
<td></td>
</tr>
<tr>
<td>hufdec</td>
<td>hufmak</td>
</tr>
<tr>
<td>hufenc</td>
<td>hufmak</td>
</tr>
<tr>
<td>hufmak</td>
<td></td>
</tr>
<tr>
<td>hunt</td>
<td></td>
</tr>
<tr>
<td>hypdrv</td>
<td></td>
</tr>
<tr>
<td>hypgeo</td>
<td>hypser</td>
</tr>
<tr>
<td></td>
<td>odeint</td>
</tr>
<tr>
<td></td>
<td>bsstep</td>
</tr>
<tr>
<td></td>
<td>mmid</td>
</tr>
<tr>
<td></td>
<td>hypdrv</td>
</tr>
<tr>
<td></td>
<td>pzextr</td>
</tr>
<tr>
<td>hypser</td>
<td></td>
</tr>
<tr>
<td>icrc</td>
<td></td>
</tr>
<tr>
<td>igray</td>
<td></td>
</tr>
<tr>
<td>index</td>
<td>hypack</td>
</tr>
<tr>
<td>indexx</td>
<td></td>
</tr>
<tr>
<td>interp</td>
<td></td>
</tr>
<tr>
<td>irbit1</td>
<td></td>
</tr>
<tr>
<td>irbit2</td>
<td></td>
</tr>
<tr>
<td>jacobi</td>
<td></td>
</tr>
<tr>
<td>jacobn</td>
<td></td>
</tr>
<tr>
<td>julday</td>
<td></td>
</tr>
<tr>
<td>kend11</td>
<td>erfcc</td>
</tr>
<tr>
<td>kend12</td>
<td>erfcc</td>
</tr>
<tr>
<td>kermom</td>
<td></td>
</tr>
<tr>
<td>ks2d1s</td>
<td>quadct</td>
</tr>
<tr>
<td></td>
<td>quadvl</td>
</tr>
<tr>
<td></td>
<td>pearsn</td>
</tr>
<tr>
<td></td>
<td>beta1</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td></td>
<td>betacf</td>
</tr>
<tr>
<td></td>
<td>probks</td>
</tr>
<tr>
<td>ks2d2s</td>
<td>quadct</td>
</tr>
<tr>
<td></td>
<td>pearsn</td>
</tr>
<tr>
<td></td>
<td>beta1</td>
</tr>
<tr>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td></td>
<td>betacf</td>
</tr>
<tr>
<td></td>
<td>probks</td>
</tr>
<tr>
<td>ksone</td>
<td>sort</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td></td>
<td>probks</td>
</tr>
<tr>
<td>kstwo</td>
<td>sort2</td>
</tr>
<tr>
<td></td>
<td>probks</td>
</tr>
<tr>
<td>laguer</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>lfit</td>
<td>...</td>
</tr>
<tr>
<td>gaussj</td>
<td>...</td>
</tr>
<tr>
<td>linbcg</td>
<td>...</td>
</tr>
<tr>
<td>linmin</td>
<td>...</td>
</tr>
<tr>
<td>lnsrch</td>
<td>...</td>
</tr>
<tr>
<td>locate</td>
<td>...</td>
</tr>
<tr>
<td>lop</td>
<td>...</td>
</tr>
<tr>
<td>lubksb</td>
<td>...</td>
</tr>
<tr>
<td>ludcmp</td>
<td>...</td>
</tr>
<tr>
<td>machar</td>
<td>...</td>
</tr>
<tr>
<td>medfit</td>
<td>...</td>
</tr>
<tr>
<td>memcof</td>
<td>...</td>
</tr>
<tr>
<td>mgfas</td>
<td>...</td>
</tr>
<tr>
<td>mglin</td>
<td>...</td>
</tr>
<tr>
<td>midexp</td>
<td>...</td>
</tr>
<tr>
<td>midinf</td>
<td>...</td>
</tr>
<tr>
<td>midpnt</td>
<td>...</td>
</tr>
<tr>
<td>midsq1</td>
<td>...</td>
</tr>
<tr>
<td>midsqu</td>
<td>...</td>
</tr>
<tr>
<td>miser</td>
<td>...</td>
</tr>
<tr>
<td>mmid</td>
<td>...</td>
</tr>
<tr>
<td>mnbrak</td>
<td>...</td>
</tr>
<tr>
<td>mnewt</td>
<td>...</td>
</tr>
<tr>
<td>moment</td>
<td>...</td>
</tr>
<tr>
<td>mp2dfr</td>
<td>...</td>
</tr>
<tr>
<td>Function 1</td>
<td>Function 2</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>mpdiv</td>
<td>mpinv</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mprove</td>
<td>lubksb</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>mrqmin</td>
<td>gaussj</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>newt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>odefint</td>
<td>[derivs]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>orthogonal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>pade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>period</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>plgnrd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>poidev</td>
<td>ran1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>polcoe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>polcof</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>poldiv</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>Index</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>polin2</td>
<td>polint</td>
</tr>
<tr>
<td>polint</td>
<td></td>
</tr>
<tr>
<td>powell</td>
<td>linmin</td>
</tr>
<tr>
<td></td>
<td>mnbrak</td>
</tr>
<tr>
<td></td>
<td>brent</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td>predic</td>
<td></td>
</tr>
<tr>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>psdes</td>
<td></td>
</tr>
<tr>
<td>pwt</td>
<td>pwtset</td>
</tr>
<tr>
<td>pwtset</td>
<td></td>
</tr>
<tr>
<td>pythag</td>
<td></td>
</tr>
<tr>
<td>pzextr</td>
<td></td>
</tr>
<tr>
<td>qrdcmp</td>
<td></td>
</tr>
<tr>
<td>qromb</td>
<td>trapzd</td>
</tr>
<tr>
<td></td>
<td>polint</td>
</tr>
<tr>
<td>qromo</td>
<td>midpnt</td>
</tr>
<tr>
<td></td>
<td>polint</td>
</tr>
<tr>
<td>qroot</td>
<td>poldiv</td>
</tr>
<tr>
<td>qrsolv</td>
<td>rsolv</td>
</tr>
<tr>
<td>qrupdt</td>
<td>rotate</td>
</tr>
<tr>
<td></td>
<td>pythag</td>
</tr>
<tr>
<td>qsimp</td>
<td>trapzd</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td>qtrap</td>
<td>trapzd</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td>quad3d</td>
<td>polint</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
</tr>
<tr>
<td></td>
<td>[y1]</td>
</tr>
<tr>
<td></td>
<td>[y2]</td>
</tr>
<tr>
<td></td>
<td>[z1]</td>
</tr>
<tr>
<td></td>
<td>[z2]</td>
</tr>
<tr>
<td>quadct</td>
<td></td>
</tr>
<tr>
<td>quadmx</td>
<td>wghts</td>
</tr>
<tr>
<td></td>
<td>kermom</td>
</tr>
<tr>
<td>quadvl</td>
<td></td>
</tr>
<tr>
<td>ran</td>
<td></td>
</tr>
<tr>
<td>ran0</td>
<td>ran_state</td>
</tr>
<tr>
<td>ran1</td>
<td>ran_state</td>
</tr>
<tr>
<td>ran2</td>
<td>ran_state</td>
</tr>
<tr>
<td>ran3</td>
<td>ran_state</td>
</tr>
<tr>
<td>ran_state</td>
<td></td>
</tr>
<tr>
<td>rank</td>
<td></td>
</tr>
<tr>
<td>ratint</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C3. Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Page</th>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ratlsq</td>
<td>B5</td>
<td>[func]</td>
<td>p. 1081</td>
</tr>
<tr>
<td>svdcmp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pythag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>svbksb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rtval</td>
<td>B5</td>
<td></td>
<td>p. 1072</td>
</tr>
<tr>
<td>rc</td>
<td>B6</td>
<td></td>
<td>p. 1134</td>
</tr>
<tr>
<td>rd</td>
<td>B6</td>
<td></td>
<td>p. 1130</td>
</tr>
<tr>
<td>realft</td>
<td>B12</td>
<td>four1, fourrow</td>
<td>p. 1243</td>
</tr>
<tr>
<td>recur1</td>
<td>B5</td>
<td></td>
<td>p. 1073</td>
</tr>
<tr>
<td>recur2</td>
<td>B5</td>
<td></td>
<td>p. 1074</td>
</tr>
<tr>
<td>relax</td>
<td>B19</td>
<td></td>
<td>p. 1338</td>
</tr>
<tr>
<td>relax2</td>
<td>B19</td>
<td></td>
<td>p. 1341</td>
</tr>
<tr>
<td>resid</td>
<td>B19</td>
<td></td>
<td>p. 1338</td>
</tr>
<tr>
<td>rf</td>
<td>B6</td>
<td></td>
<td>p. 1128</td>
</tr>
<tr>
<td>rj</td>
<td>B6</td>
<td>rc, rf</td>
<td>p. 1131</td>
</tr>
<tr>
<td>rk4</td>
<td>B16</td>
<td>[derivs]</td>
<td>p. 1297</td>
</tr>
<tr>
<td>rkck</td>
<td>B16</td>
<td>[derivs]</td>
<td>p. 1299</td>
</tr>
<tr>
<td>rkdumb</td>
<td>B16</td>
<td>[derivs]</td>
<td>p. 1297</td>
</tr>
<tr>
<td>rkqs</td>
<td>B16</td>
<td>rkck</td>
<td>p. 1298</td>
</tr>
<tr>
<td>rlft2</td>
<td>B12</td>
<td>four2, fourrow</td>
<td>p. 1248</td>
</tr>
<tr>
<td>rlft3</td>
<td>B12</td>
<td>four3, fourrow, fourrow_3d</td>
<td>p. 1249</td>
</tr>
<tr>
<td>rotate</td>
<td>B2</td>
<td></td>
<td>p. 1041</td>
</tr>
<tr>
<td>rsolv</td>
<td>B2</td>
<td></td>
<td>p. 1040</td>
</tr>
<tr>
<td>rstrct</td>
<td>B19</td>
<td></td>
<td>p. 1337</td>
</tr>
<tr>
<td>rtbis</td>
<td>B9</td>
<td>[func]</td>
<td>p. 1184</td>
</tr>
<tr>
<td>rtflsp</td>
<td>B9</td>
<td>[func]</td>
<td>p. 1185</td>
</tr>
<tr>
<td>rtnewt</td>
<td>B9</td>
<td>[funcd]</td>
<td>p. 1189</td>
</tr>
<tr>
<td>rtsafe</td>
<td>B9</td>
<td>[funcd]</td>
<td>p. 1190</td>
</tr>
<tr>
<td>rtsec</td>
<td>B9</td>
<td>[func]</td>
<td>p. 1186</td>
</tr>
<tr>
<td>rzextr</td>
<td>B16</td>
<td></td>
<td>p. 1306</td>
</tr>
<tr>
<td>savgol</td>
<td>B14</td>
<td>ludcmp, lubksb</td>
<td>p. 1283</td>
</tr>
<tr>
<td>scrsho</td>
<td>B9</td>
<td>[func]</td>
<td>p. 1182</td>
</tr>
<tr>
<td>select</td>
<td>B8</td>
<td></td>
<td>p. 1177</td>
</tr>
<tr>
<td>select_bypack</td>
<td>B8</td>
<td></td>
<td>p. 1178</td>
</tr>
<tr>
<td>select_heap</td>
<td>B8</td>
<td>sort</td>
<td>p. 1179</td>
</tr>
<tr>
<td>select_inplace</td>
<td>B8</td>
<td>select</td>
<td>p. 1178</td>
</tr>
</tbody>
</table>
Appendix C.3. Index of Programs and Dependencies

sfroid plgndr B17 (p. 1319)
solve difeq B17 (p. 1314)
shoot [load] B17 (p. 1314)
 odeint [derivs] rkqs rkck [derivs]
 [score] B17 (p. 1314)
shootf [load1] B17 (p. 1315)
 odeint [derivs] rkqs rkck [derivs]
 [score] B17 (p. 1315)
 [load2] B17 (p. 1315)
simplx B10 (p. 1216)
simp ludecmp B16 (p. 1310)
 lubksb [derivs]
sinf realft four1 fourrow B12 (p. 1245)
s1vsm2 B19 (p. 1342)
s1vsm1 B19 (p. 1337)
sncdn B6 (p. 1137)
snrm B2 (p. 1036)
sobseq B7 (p. 1160)
solve difeq B17 (p. 1316)
sor B19 (p. 1332)
sort B8 (p. 1169)
sort2 indexx B8 (p. 1170)
sort3 indexx B8 (p. 1175)
sort.bypack B8 (p. 1171)
sort_byreshape B8 (p. 1168)
sort_heap B8 (p. 1171)
sort_pick B8 (p. 1167)
sort_radix B8 (p. 1172)
sort_shell B8 (p. 1168)
spectr four1 fourrow B13 (p. 1254)
spear sort2 B14 (p. 1277)
 erfcc betai gammln betacf
sphbes bessjy beschb chebev B6 (p. 1121)
Appendix C3. Index of Programs and Dependencies

- sphfpt — newt
 - fdjac — shoot (q.v.)
 - lnsrch
 - fmin — shoot (q.v.)
 - ludcmp
 - lubksb

- spshoot — newt
 - fdjac — shoot (q.v.)
 - lnsrch
 - fmin — shoot (q.v.)
 - ludcmp
 - lubksb

- splie2 — spline
 - tridag

- splin2 — spline
 - splint — locate
 - spline
 - tridag

- spline — tridag

- splint — locate

- sprsax

- sprsdiag

- sprsin

- sprstp

- sprstx

- stifbs
 - jacobn
 - simpr

- stiff
 - jacobn
 - ludcmp
 - lubksb
 - pzextr

- stoelem — [derivs]

- svbkbs

- svdcmp — pythag

- svdfit — [funcs]
 - svdcmp — pythag
 - svbkbs

- svdvar

- toeplz

- tptest — avevar
 - beta1 — gamma
 - betacf

- tqli — pythag

- trapzd — [func]

- tred2

- tridag
Appendix C3. Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Array</th>
<th>Routine</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttest</td>
<td>avevar</td>
<td></td>
<td>B14 (p. 1269)</td>
</tr>
<tr>
<td></td>
<td>beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>betacf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tutest</td>
<td>avevar</td>
<td></td>
<td>B14 (p. 1270)</td>
</tr>
<tr>
<td></td>
<td>beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>betacf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>twofft</td>
<td>four1</td>
<td></td>
<td>B12 (p. 1242)</td>
</tr>
<tr>
<td></td>
<td>fourrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vander</td>
<td></td>
<td></td>
<td>B2 (p. 1037)</td>
</tr>
<tr>
<td>vegas</td>
<td>ran1</td>
<td></td>
<td>B7 (p. 1161)</td>
</tr>
<tr>
<td></td>
<td>ran_state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>voltra</td>
<td>[g]</td>
<td></td>
<td>B18 (p. 1326)</td>
</tr>
<tr>
<td></td>
<td>[ak]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ludcmp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt1</td>
<td>daub4</td>
<td></td>
<td>B13 (p. 1264)</td>
</tr>
<tr>
<td>wtn</td>
<td>daub4</td>
<td></td>
<td>B13 (p. 1267)</td>
</tr>
<tr>
<td>wghts</td>
<td>kermom</td>
<td></td>
<td>B18 (p. 1328)</td>
</tr>
<tr>
<td>zbrac</td>
<td>[func]</td>
<td></td>
<td>B9 (p. 1183)</td>
</tr>
<tr>
<td>zbrak</td>
<td>[func]</td>
<td></td>
<td>B9 (p. 1184)</td>
</tr>
<tr>
<td>zbrent</td>
<td>[func]</td>
<td></td>
<td>B9 (p. 1188)</td>
</tr>
<tr>
<td>zrdr</td>
<td>balanc</td>
<td></td>
<td>B9 (p. 1193)</td>
</tr>
<tr>
<td></td>
<td>hqr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indexxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zrdr</td>
<td>[func]</td>
<td></td>
<td>B9 (p. 1187)</td>
</tr>
<tr>
<td>zroots</td>
<td>laguer</td>
<td></td>
<td>B9 (p. 1192)</td>
</tr>
<tr>
<td></td>
<td>indexxx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Index to Volumes 1 and 2

In this index, page numbers 1 through 934 refer to Volume 1, Numerical Recipes in Fortran 77, while page numbers 935 through 1446 refer to Volume 2, Numerical Recipes in Fortran 90. Front matter in Volume 1 is indicated by page numbers in the range 1/i through 1/xxxi, while front matter in Volume 2 is indicated 2/i through 2/xx.

Abstract data types 2/xiii, 1030
Accelerated convergence of series 160ff., 1070
Accuracy 19f.
achievable in minimization 392, 397, 404
achievable in root finding 346f., 398f.
contrasted with fidelity 832, 840
CPU different from memory 181
vs. stability 704, 729, 830, 844
Accuracy parameters 1362f.
Acknowledgments 1/xvi, 2/ix
Ada 2/x
Adams-Bashford-Moulton method 741
Adams’ stopping criterion 366
Adaptive integration 123, 135, 703, 708ff.,
720, 726, 731f., 737, 742ff., 788, 1298ff.,
1303, 1308f.
Monte Carlo 300ff., 1161ff.
Addition, multiple precision 907, 1353
Addition theorem, elliptic integrals 255
ADI (alternating direction implicit) method
847, 861f., 906
Adjoint operator 867
Adobe Illustrator 1/xvi, 2/xx
Advective equation 826
AGM (arithmetic geometric mean) 906
Airy function 204, 234, 243f.
routine for 244f., 1121
Aitken’s delta squared process 160
Aitken’s interpolation algorithm 102
Algol 2/x, 2/xiv
Algorithms, non-numerical 881ff., 1343ff.
Aliasing 495, 569
see also Fourier transform
all() intrinsic function 945, 948
All-poles model 566
see also Maximum entropy method (MEM)
Approximate inverse of matrix 49
Approximation of functions 99, 1043
by Chebyshev polynomials 185f., 513,
1076ff.
by Padé approximant 194ff., 1080f.
by rational functions 197ff., 1081f.
by wavelets 594f., 782
see also Fitting
Argument
keyword 2/xiv, 947f., 1341
optional 2/xiv, 947f., 1092, 1228, 1230,
1256, 1272, 1275, 1340
Argument checking 994f., 1086, 1090, 1092,
1370f.
Index to Volumes 1 and 2

Arithmetic
 arbitrary precision 881, 906ff., 1352ff.
 floating point 881, 1345
 IEEE standard 276, 882, 1343
 rounding 882, 1343
Arithmetic coding 881, 902ff., 1349ff.
Arithmetic-geometric mean (AGM) method 906
Arithmetic-if statement 2/xi
Arithmetic progression 971ff., 996, 1072, 1127, 1365, 1371f.
Array 953ff.
 allocatable 938, 941, 952ff., 1197, 1212, 1266, 1293, 1306, 1336
 allocation 953
 array manipulation functions 950
 array sections 2/xii, 956, 1336
 associated pointer 953f.
 assumed-shape 942
 automatic 938, 954, 1197, 1212, 1336
 centered subarray of 113
 conformable to a scalar 942f., 965, 1094
 constructor 2/xii, 968, 971, 1022, 1052, 1055, 1057
 copying 991, 1034, 1327f., 1365f.
 cumulative product 997f., 1072, 1086, 1375
 cumulative sum 997, 1280ff., 1365, 1375
 deallocation 938, 953f., 1197, 1266, 1293
 disassociated pointer 953
 extents 938, 949
 in Fortran 90 941
 increasing storage for 955, 1070, 1302
 index loss 967f.
 index table 1173ff.
 indices 942
 inquiry functions 948ff.
 intrinsic procedures 2/xiii, 948ff.
 of length 0 944
 of length 1 949
 location of first “true” 993, 1041, 1369
 location of maximum value 993, 1015, 1017, 1365, 1369
 location of minimum value 993, 1369f.
 manipulation functions 950, 1247
 masked swapping of elements in two arrays 1368
 operations on 942, 949, 964ff., 969, 1026, 1040, 1050, 1200, 1326
 outer product 949, 1076
 parallel features 941ff., 964ff., 985
 passing variable number of arguments to function 1022
 of pointers forbidden 956, 1337
 reallocation 955, 992, 1070ff., 1365, 1368ff.
 reduction functions 948ff.
 shape 938, 944, 949
 size 938
 skew sections 945, 985
 stride 944
 subscript bounds 942
 subscript triplet 944
 swapping elements of two arrays 991, 1015, 1365ff.
 target 938
 three-dimensional, in Fortran 90 1248
 transformational functions 948ff.
 unary and binary functions 949
 undefined status 952ff., 961, 1266, 1293
 zero-length 944
Array section 2/xiii, 943ff., 960
 matches by shape 944
 pointer alias 939, 944ff., 1286, 1333
 skew 2/xii, 945, 960, 985, 1284
 vs. eoshift 1078
arraycopy() utility function 988, 991, 1034, 1153, 1278, 1328
arith() utility function 972, 974, 988, 996, 1072, 1080, 1127
 replaces do-list 968
Artificial viscosity 831, 837
Ascending transformation, elliptic integrals 256
ASCII character set 6, 888, 896, 902
Assembly language 269
assert() utility function 988, 994, 1086, 1090, 1249
asserteq() utility function 988, 995, 1022
associated() intrinsic function 952f.
Associated Legendre polynomials 246ff., 764, 1122f., 1319
 recurrence relation for 247
 relation to Legendre polynomials 246
Association, measures of 604, 622ff., 1275
Assumed-shape array 942
Asymptotic series 161
 exponential integral 218
Attenuation factors 583, 1261
Autocorrelation 492
 in linear prediction 558
 use of FFT 538ff., 1254
Wiener-Khinchin theorem 492, 566f.
AUTODIN-II polynomial 890
Automatic array 938, 954, 1197, 1212, 1336
 specifying size of 938, 954
Automatic deallocation 2/xv, 941
Automatic differentiation 329ff.
 exponential functions 529ff.
Autoregressive model (AR) see Maximum entropy method (MEM)
Average deviation of distribution 605, 1269
Averaging kernel, in Backus-Gilbert method 807
Backsubstitution 33ff., 39, 42, 92, 1017
 in band diagonal matrix 46, 1021
 in Cholesky decomposition 90, 1039
 complex equations 41
 direct for computing A^{-1}, B 40
 with QR decomposition 93, 1040
 relaxation solution of boundary value problems 755, 1316
 in singular value decomposition 56, 1022f.
Backtracking 419
 in quasi-Newton methods 376ff., 1195
Backus-Gilbert method 806ff.
Backus, John 2/x
Bader-Deuflhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476ff., 1230f.
Band diagonal matrix 42ff., 1019
LU decomposition 45, 1020
multiply by vector 44, 1019
storage 44, 1019
Band-pass filter 551, 554f.
wavelets 584, 592f.
Bandwidth limited function 495
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2/x, 2/xviii
Basis functions in general linear least squares 665
Bayes’ Theorem 810
Bayesian approach to inverse problems 799, 810f., 816f.
contrasted with frequentist 810
vs. historic maximum entropy method 816f.
views on straight line fitting 664
Bays’ shuffle 270
Bernoulli number 132
Bessel functions 223ff., 234ff., 936, 1101ff.
asymptotic form 223f., 229f.
complex 204
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalization formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 232, 234
reflection formulas 236
reflection formulas, modified functions 241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff., 1118
series for 160, 223
series for K_ν 241
series for Y_ν 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239
Best-fit parameters 650, 656, 660, 698, 1285ff.
see also Fitting
Beta function 206ff., 1089
incomplete see Incomplete beta function
BFGS algorithm see Broyden-Fletcher-Goldfarb-Shanno algorithm
Bias of exponent 19
Bias, removal in linear prediction 563
Biconjugate gradient method
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.
Bicubic interpolation 118ff., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087ff.
recurrences for 209
Binomial probability function 208
cumulative 222ff.
deviates from 281, 285ff., 1155
Binormal distribution 631, 690
Biorhgonality 77
Bisection 111, 359, 1045f.
compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346ff., 352ff., 390, 469, 1184f.
BISYNCH 890
Bit 18
manipulation functions see Bitwise logical functions
reversal in fast Fourier transform (FFT) 499f., 525
bit(size()) intrinsic function 951
Bitwise logical functions 2/xiii, 17, 287, 890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method for π 906, 1357
Boundary 155f., 425f., 745
Boundary conditions for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff., 848ff.
for spheroidal harmonics 764
two-point boundary value problems 702, 745ff., 1314ff.
Boundary value problems see Differential equations; Elliptic partial differential equations; Two-point boundary value problems
Box-Muller algorithm for normal deviate 279f., 1152
Bracketing
of function minimum 343, 390ff., 402, 1201f.
of roots 341, 343ff., 355ff., 362, 364, 369, 390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517
Brent’s method minimization 389, 395ff., 660ff., 1204ff., 1286
minimization, using derivative 389, 399, 1205
root finding 341, 349, 660ff., 1188ff., 1286
Broadcast (parallel capability) 965ff.
Broyden-Fletcher-Goldfarb-Shanno algorithm 390, 418ff., 1215
Broyden’s method 373, 382ff., 386, 1199ff.
singular Jacobian 386
btest() intrinsic function 951
Bubble sort 321, 1168
Bugs 4
in compilers 1/xvii
how to report 1/iv, 2/iv
Bulirsch-Stoer
algorithm for rational function interpolation 105ff., 1043
method (differential equations), stepsize control 719, 726
for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18
C (programming language) 13, 2/viii
and case construct 1010
Numerical Recipes in 1, 2/x, 2/xvii
C++ 1/xiv, 2/viii, 2/xvi, 7f.
class templates 1083, 1106
Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals 255ff., 1128ff.
case construct 2/xiv, 1010
trapping errors 1036
Cash-Karp parameters 710, 1299ff.
Cauchy probability distribution see Lorentzian probability distribution
Cauchy problem for partial differential equations 818ff.
Cayley’s representation of \(\exp(-iHt) \) 844
CCITT (Comité Consultatif International Télégraphique et Téléphonique) 889ff., 901
CCITT polynomial 889f.
ceil() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652f.
Central tendency, measures of 604ff., 1269
Change of variable
in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279
Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial
digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175
Characteristics of partial differential equations 818
Chebyshev acceleration in successive over-relaxation (SOR) 859ff., 1332
Chebyshev approximation 84, 124, 183, 184ff., 1076ff.
Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185f., 1076
contrasted with Padé approximation 195
derivative of approximated function 183, 189, 1077f.
economization of series 192f., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189, 1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081ff.
Remes exchange algorithm for filter 553
Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula for \(x^k \) in terms of 193, 1080
Check digit 894, 1345ff.
Checksum 881, 888
cyclic redundancy (CRC) 888ff., 1344ff.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fitting see Fitting; Least squares fitting
Chi-square probability function 209ff., 215, 615, 654, 798, 1272
as boundary of confidence region 688f.
related to incomplete gamma function 215
Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688f.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting 653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coordinates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617
Chip rate 290
Chirp signal 556
Cholesky decomposition 89f., 423, 455, 1038
backsubstitution 90, 1039
operation count 90
pivoting 90
solution of normal equations 668
Circulant 585
Class, data type 7
<table>
<thead>
<tr>
<th>Reference</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clenshaw's recurrence formula</td>
<td>176f., 191, 1078</td>
</tr>
<tr>
<td>for Chebyshev polynomials</td>
<td>187, 1076</td>
</tr>
<tr>
<td>stability</td>
<td>176f.</td>
</tr>
<tr>
<td>Clocking errors</td>
<td>891</td>
</tr>
<tr>
<td>CM computers (Thinking Machines Inc.)</td>
<td>964</td>
</tr>
<tr>
<td>CM Fortran</td>
<td>2/xv</td>
</tr>
<tr>
<td>cn function</td>
<td>261, 1137f.</td>
</tr>
<tr>
<td>Coarse-grid correction</td>
<td>864f.</td>
</tr>
<tr>
<td>Coarse-to-fine operator</td>
<td>864, 1337</td>
</tr>
<tr>
<td>Coding</td>
<td></td>
</tr>
<tr>
<td>arithmetic</td>
<td>902ff., 1349ff.</td>
</tr>
<tr>
<td>checksums</td>
<td>888, 1344</td>
</tr>
<tr>
<td>decoding a Huffman-encoded message</td>
<td>900, 1349</td>
</tr>
<tr>
<td>Huffman</td>
<td>896f., 1346ff.</td>
</tr>
<tr>
<td>run-length</td>
<td>901</td>
</tr>
<tr>
<td>variable length code</td>
<td>896, 1346ff.</td>
</tr>
<tr>
<td>Ziv-Lempel</td>
<td>896</td>
</tr>
<tr>
<td>see also Arithmetic coding; Huffman coding</td>
<td></td>
</tr>
<tr>
<td>Coefficients</td>
<td></td>
</tr>
<tr>
<td>binomial</td>
<td>208, 1087f.</td>
</tr>
<tr>
<td>for Gaussian quadrature</td>
<td>140ff., 1059ff.</td>
</tr>
<tr>
<td>for Gaussian quadrature, nonclassical weight function</td>
<td>151ff., 788f., 1064</td>
</tr>
<tr>
<td>for quadrature formulas</td>
<td>125ff., 789, 1328</td>
</tr>
<tr>
<td>Cohen, Malcolm</td>
<td>2/xiv</td>
</tr>
<tr>
<td>Column degeneracy</td>
<td>22</td>
</tr>
<tr>
<td>Column operations on matrix</td>
<td>29, 31f.</td>
</tr>
<tr>
<td>Column totals</td>
<td>624</td>
</tr>
<tr>
<td>Combinatorial minimization</td>
<td>see Annealing</td>
</tr>
<tr>
<td>Comité Consultatif International Télégraphique et Téléphonique (CCITT)</td>
<td>889f., 901</td>
</tr>
<tr>
<td>Common block</td>
<td></td>
</tr>
<tr>
<td>obsolescent</td>
<td>2/xif.</td>
</tr>
<tr>
<td>superseded by internal subprogram</td>
<td>957, 1067</td>
</tr>
<tr>
<td>superseded by module</td>
<td>940, 953, 1298, 1320, 1322, 1324, 1330</td>
</tr>
<tr>
<td>Communication costs, in parallel processing</td>
<td>969, 981, 1250</td>
</tr>
<tr>
<td>Communication theory, use in adaptive integration</td>
<td>721</td>
</tr>
<tr>
<td>Communications protocol</td>
<td>888</td>
</tr>
<tr>
<td>Comparison function for rejection method</td>
<td>281</td>
</tr>
<tr>
<td>Compilers</td>
<td>964, 1364</td>
</tr>
<tr>
<td>CM Fortran</td>
<td>968</td>
</tr>
<tr>
<td>DEC (Digital Equipment Corp.)</td>
<td>2/viii</td>
</tr>
<tr>
<td>IBM (International Business Machines)</td>
<td>2/viii</td>
</tr>
<tr>
<td>Microsoft Fortran PowerStation</td>
<td>2/viii</td>
</tr>
<tr>
<td>NAG (Numerical Algorithms Group)</td>
<td>2/viii, 2/xiv</td>
</tr>
<tr>
<td>for parallel supercomputers</td>
<td>2/viii</td>
</tr>
<tr>
<td>Complementary error function</td>
<td>1094f.</td>
</tr>
<tr>
<td>see Error function</td>
<td></td>
</tr>
<tr>
<td>Complete elliptic integral</td>
<td>see Elliptic integrals</td>
</tr>
<tr>
<td>Complex arithmetic</td>
<td>171f.</td>
</tr>
<tr>
<td>avoidance of in path integration</td>
<td>203</td>
</tr>
<tr>
<td>cubic equations</td>
<td>179f.</td>
</tr>
<tr>
<td>for linear equations</td>
<td>41</td>
</tr>
<tr>
<td>quadratic equations</td>
<td>178</td>
</tr>
<tr>
<td>Complex error function</td>
<td>252</td>
</tr>
<tr>
<td>Complex plane</td>
<td></td>
</tr>
<tr>
<td>fractal structure for Newton's rule</td>
<td>360f.</td>
</tr>
<tr>
<td>path integration for function evaluation</td>
<td>201ff., 263, 1138</td>
</tr>
<tr>
<td>Complex systems of linear equations</td>
<td>41f.</td>
</tr>
<tr>
<td>Compression of data</td>
<td>596f.</td>
</tr>
<tr>
<td>Concordant pair for Kendall's tau</td>
<td>637, 1281</td>
</tr>
<tr>
<td>Condition number</td>
<td>53, 78</td>
</tr>
<tr>
<td>Confidence level</td>
<td>687, 691ff.</td>
</tr>
<tr>
<td>Confidence limits</td>
<td></td>
</tr>
<tr>
<td>bootstrap method</td>
<td>687f.</td>
</tr>
<tr>
<td>and chi-square</td>
<td>688f.</td>
</tr>
<tr>
<td>confidence region, confidence interval</td>
<td>687</td>
</tr>
<tr>
<td>on estimated model parameters</td>
<td>684ff.</td>
</tr>
<tr>
<td>by Monte Carlo simulation</td>
<td>684ff.</td>
</tr>
<tr>
<td>from singular value decomposition (SVD)</td>
<td>693f.</td>
</tr>
<tr>
<td>Confluent hypergeometric function</td>
<td>204, 239</td>
</tr>
<tr>
<td>Conformable arrays</td>
<td>942f., 1094</td>
</tr>
<tr>
<td>Conjugate directions</td>
<td>408f., 414ff., 1210</td>
</tr>
<tr>
<td>Conjugate gradient method</td>
<td></td>
</tr>
<tr>
<td>biconjugate</td>
<td>77, 1034</td>
</tr>
<tr>
<td>compared to variable metric method</td>
<td>418</td>
</tr>
<tr>
<td>elliptic partial differential equations</td>
<td>824</td>
</tr>
<tr>
<td>for minimization</td>
<td>390, 413ff., 804, 815, 1210, 1214</td>
</tr>
<tr>
<td>minimum residual method</td>
<td>78</td>
</tr>
<tr>
<td>preconditioner</td>
<td>78f., 1037</td>
</tr>
<tr>
<td>for sparse system</td>
<td>77ff., 599, 1034</td>
</tr>
<tr>
<td>and wavelets</td>
<td>599</td>
</tr>
<tr>
<td>Conservative differential equations</td>
<td>726, 1307</td>
</tr>
<tr>
<td>Constrained linear inversion method</td>
<td>799ff.</td>
</tr>
<tr>
<td>Constrained linear optimization</td>
<td>see Linear programming</td>
</tr>
<tr>
<td>Constrained optimization</td>
<td>387</td>
</tr>
<tr>
<td>Constraints, deterministic</td>
<td>804ff.</td>
</tr>
<tr>
<td>Constraints, linear</td>
<td>423</td>
</tr>
<tr>
<td>CONTAINS statement</td>
<td>954, 957, 1067, 1134, 1202</td>
</tr>
<tr>
<td>Contingency coefficient C</td>
<td>625, 1275</td>
</tr>
<tr>
<td>Contingency table</td>
<td>622ff., 638, 1275f.</td>
</tr>
<tr>
<td>statistics based on chi-square</td>
<td>623ff., 1275</td>
</tr>
<tr>
<td>statistics based on entropy</td>
<td>626ff., 1275f.</td>
</tr>
<tr>
<td>Continued fraction</td>
<td>163ff.</td>
</tr>
<tr>
<td>Bessel functions</td>
<td>234</td>
</tr>
<tr>
<td>convergence criterion</td>
<td>165</td>
</tr>
<tr>
<td>equivalence transformation</td>
<td>166</td>
</tr>
<tr>
<td>evaluation</td>
<td>163ff.</td>
</tr>
<tr>
<td>evaluation along with normalization condition</td>
<td>240</td>
</tr>
<tr>
<td>even and odd parts</td>
<td>166, 211, 216</td>
</tr>
<tr>
<td>even part</td>
<td>240, 251</td>
</tr>
<tr>
<td>exponential integral</td>
<td>216</td>
</tr>
<tr>
<td>Fresnel integral</td>
<td>248f.</td>
</tr>
<tr>
<td>incomplete beta function</td>
<td>219f., 1099f.</td>
</tr>
<tr>
<td>incomplete gamma function</td>
<td>211, 1092f.</td>
</tr>
<tr>
<td>Lentz's method</td>
<td>165, 212</td>
</tr>
<tr>
<td>modified Lentz's method</td>
<td>165</td>
</tr>
<tr>
<td>Pincherle's theorem</td>
<td>175</td>
</tr>
<tr>
<td>ratio of Bessel functions</td>
<td>239</td>
</tr>
<tr>
<td>rational function approximation</td>
<td>164, 211, 219f.</td>
</tr>
<tr>
<td>recurrence for evaluating</td>
<td>164f.</td>
</tr>
</tbody>
</table>
and recurrence relation 175
sine and cosine integrals 250ff.
Steed’s method 164f.
tangent function 164
typography for 163
Continuous variable (statistics) 623
Control structures 7ff., 2/xiv
bad 15
named 959, 1219, 1305
Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679, 759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409ff., 419, 906
rate 346f., 353, 356
recurrence relation 175
of Ridders’ method 351
series vs. continued fraction 163f.
and spectral radius 856ff., 862
Conversion intrinsic functions 946ff.
Convex sets, use in inverse problems 804
Convolution
denoted by asterisk 492
finite impulse response (FIR) 531
of functions 492, 503ff.
of large data sets 536ff.
for multiple precision arithmetic 909, 1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536ff.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorem, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533
Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.
Co-processor, floating point 886
Copyright rules 1/xx, 2/xix
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 658, 1276
linear related to least square fitting 630, 658
nonparametric or rank statistical 633ff., 1277
among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f., 1277
sum squared difference of ranks 634, 1277
Cosine function, recurrence 172
Cosine integral 248, 250ff., 1125f.
continued fraction 250
routine for 251f., 1125
series 250
Cosine transform see Fast Fourier transform (FFT); Fourier transform
Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836
multidimensional 846
Courant-Friedrichs-Lewy stability criterion see Courant condition
Covariance
a priori 700
in general linear least squares 667, 671, 1288ff.
matrix, by Cholesky decomposition 91, 667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD) 693f.
in straight line fitting 657
cpu_time() intrinsic function (Fortran 95) 961
CR method see Cyclic reduction (CR)
Cramer’s V 625, 1275
Crank-Nicholson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344ff.
CRC-12 890
CRC-16 polynomial 890
CRC-CCITT 890
CRC-C17T 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Crosstabulation analysis 623
see also Contingency table
Crout’s algorithm 36ff., 45, 1017
cshift() intrinsic function 950
communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f., see also Spline
cumprod() utility function 974, 988, 997, 1072, 1086
cumsum() utility function 974, 989, 997, 1280, 1305
Cumulant, of a polynomial 977, 999, 1071f., 1192
Cumulative binomial distribution 222f.
Cumulative Poisson function 214
related to incomplete gamma function 214
Curvature matrix see Hessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.
linear recurrences 974
tridiagonal systems 976, 1018
Cyclic redundancy check (CRC) 888f., 1344f.
Curvature matrix
see Hessian matrix
Cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.
linear recurrences 974
tridiagonal systems 976, 1018
Cyclic redundancy check (CRC) 888f., 1344f.
Cyclic tridiagonal systems 67, 1030

D.C. (direct current) 492
Danielson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/ii
Data
assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fraudulent 655
 glitches in 653
id (independent and identically distributed) 686
modeling 650ff., 1285ff.
serial port 892
smoothing 604, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574, 648f., 1258ff.
use of CRCs in manipulating 889
windowing 545ff., 1283f.
see also Statistical tests
Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896
Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156f.
Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959
for binary, octal, hexadecimal constants 959
repeat count feature 959
superseded by initialization expression 943, 959, 1127
Data type 18, 936
accuracy parameters 1362f.
character 1183
derived 2/xii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xx
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361
intrinsic 937
LGT (default logical type) 1361
nrtype.f90 1361f.
slowly passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346
DAUB4 584ff., 588, 590ff., 594, 1264f.
DAUB6 586
DAUB12 598
DAUB20 590ff., 1265
Daubechies wavelet coefficients 584ff., 588,
590f., 594, 598, 1264ff.
Davidon-Fletcher-Powell algorithm 390, 418ff.,
1215
Dawson's integral 252ff., 600, 1127f.
approximation for 252f.
routine for 253f., 1127
dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,
1293
Deallocation, of allocatable array 938, 953f.,
1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,
886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quaduple precision option 1362
VAX 4
Decomposition see Cholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)
Deconvolution 535, 540, 1253
see also Convolution; Fast Fourier transform (FFT);
Fourier transform
Defect, in multigrid method 863
Deferred approach to the limit see Richardson's deferred approach to the limit
Degeneracy of linear algebraic equations 22,
53, 57, 670
Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features
common block 2/xxi, 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330
dble() intrinsic function 947
EQUIVALENCE statement 2/xxi, 1161,
1286
statement function 1057, 1256
Derivatives
computation via Chebyshev approximation 183, 189, 1077f.
computation via Savitzky-Golay filters 183, 645
matrix of first partial see Jacobian determinant
matrix of second partial see Hessian matrix
Index to Volumes 1 and 2

Numerical computation 180ff., 379, 645, 732, 750, 771, 1075, 1197, 1309
of polynomial 167, 978, 1071f.
use in optimization 388ff., 399, 1205ff.
Derived data type see Data type, derived
DES see Data Encryption Standard
Descending transformation, elliptic integrals 256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.
see also Statistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, random see Random deviates
DFP algorithm see Davidon-Fletcher-Powell algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004, 1294
diagonal dominance 43, 679, 780, 856
Difference equations, finite see Finite difference equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.
accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719, 726, 731, 737, 742f., 1298ff., 1303ff., 1308f., 1311ff.
algebraically difficult sets 763
backward Euler’s method 729
Bader-Deuflhard method for stiff 730, 735, 1310f.
boundary conditions 701f., 745ff., 749, 751f., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706, 716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative equations 726, 1307
comparison of methods 702f., 739ff., 743 conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff., 1319ff.
embedded Runge-Kutta method 709f., 731, 1298, 1308
equivalence of multistep and multivalue methods 743
Euler’s method 702, 704, 728
Forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
imPLICIT differencing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716f., 719, 1302f.
multistep methods 740ff.
multivalue methods 740
order of method 704f., 719
path integration for function evaluation 201ff., 263, 1138
predictor-corrector methods 702, 730, 740ff.
reduction to first-order sets 701, 745
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff., 1319ff.
r.h.s. independent of x 729f.
Rosenbrock methods for stiff 730, 1308f.
Runge-Kutta method 702, 704ff., 708ff., 731, 740, 1297f., 1308
Runge-Kutta method, high-order 705, 1297
Runge-Kutta-Fehlberg method 709ff., 1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735f., 1311ff.
semi-implicit extrapolation method 730, 735f., 1311ff.
semi-implicit midpoint rule 735f., 1310f.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Volterra integral equations 786
singular points 718f., 751, 775ff., 1315f., 1323ff.
step doubling 708f.
stepsize control 703, 708ff., 719, 726, 731, 737, 742f., 1298, 1303ff., 1308f.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see also Partial differential equations; Two-point boundary value problems
Diffusion equation 818, 838ff., 855
Crank-Nicholson method 840, 844, 846
Forward Time Centered Space (FTCS) 839ff., 855
implicit differencing 840
multidimensional 846
Digamma function 216
Digital filtering see Filter
Dihedral group D_5 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct method see Periodogram
Direct methods for linear algebraic equations 26, 1014
Direct product see Outer product of matrices
Direction of largest decrease 410f.
Direction numbers, Sobol’s sequence 300
Dirichlet boundary conditions 820, 840, 850, 856, 858
Disclaimer of warranty 1/xx, 2/xvii
Discordant pair for Kendall’s tau 637, 1281
Discrete convolution theorem 531ff.
Discrete Fourier transform (DFT) 495ff., 1235ff.
 as approximate continuous transform 497
 see also Fast Fourier transform (FFT)
Discrete optimization 436ff., 1219ff.
Discriminant 178, 457
Diskettes
 are ANSI standard 3
 how to order 1/xxi, 2/xvii
Dispersion 831
DISPO
 see Savitzky-Golay filters
Dissipation, numerical 830
Divergent series 161
Divide and conquer algorithm 1226, 1229
Division
 complex 171
 multiple precision 910ff., 1356
 of polynomials 169, 362, 370, 1072
 dn function 261, 1137ff.
Do-list, implied 968, 971, 1127
Do-loop 2/xiv
Do-until iteration 14
Do-while iteration 13
Dogleg step methods 386
Domain of integration 155f.
Dominant solution of recurrence relation 174
Dot (denotes matrix multiplication) 23
 dot product() intrinsic function 945, 949, 969, 1216
 Double exponential error distribution 696
 Double precision
 converting to 1362
 as refuge of scoundrels 882
 use in iterative improvement 47, 1022
 Double root 341
 Downhill simplex method see Simplex, method of Nelder and Mead
DP, defined 937
Driver programs 3
Dual viewpoint, in multigrid method 875
Duplication theorem, elliptic integrals 256
DWT (discrete wavelet transform) see Wavelet transform
Dynamical allocation of storage 2/xiii, 869, 938, 941ff., 953ff., 1127, 1336
 garbage collection 956
 increasing 955, 1070, 1302

Earl, D.M. 338
EBCDIC 890
Economization of power series 192ff., 195, 1080
Eigensystems 449ff., 1225ff.
 balancing matrix 476ff., 1230ff.
 bounds on eigenvalues 50
 calculation of few eigenvalues 454, 488
 canned routines 454f.
 characteristic polynomial 449, 469
 completeness 450
 defective 450, 476, 489
 deflation 471
 degenerate eigenvalues 449ff.
 elimination method 453, 478, 1231
 factorization method 453
 fast Givens reduction 463
 generalized eigenproblem 455
 Givens reduction 462f.
 Hermitian matrix 475
 Hessenberg matrix 453, 470, 476ff., 488, 1232
 Householder transformation 453, 462ff., 469, 473, 475, 478, 1227ff., 1231
 ill-conditioned eigenvalues 477
 implicit shifts 472ff., 1228ff.
 and integral equations 779, 785
 invariance under similarity transform 452
 inverse iteration 455, 469, 476, 487ff., 1230
 Jacobi transformation 453, 456ff., 462, 475, 489, 1225ff.
 left eigenvalues 451
 list of tasks 454f.
 multiple eigenvalues 489
 nonlinear 455
 nonsymmetric matrix 476ff., 1230ff.
 operation count of balancing 476
 operation count of Givens reduction 463
 operation count of Householder reduction 467
 operation count of inverse iteration 488
 operation count of Jacobi method 460
 operation count of QL method 470, 473
 operation count of QR method for Hessenberg matrices 484
 operation count of reduction to Hessenberg form 479
 orthogonality 450
 parallel algorithms 1226, 1229
 polynomial roots and 368, 1193
 QL method 469ff., 475, 488f.
 QR method with implicit shifts 472ff., 1228ff.
 QR method 52, 453, 456, 469ff., 1228
 QR method for Hessenberg matrices 480ff., 1232ff.
 real, symmetric matrix 150, 467, 785, 1225, 1228
 reduction to Hessenberg form 478f., 1231
 right eigenvalues 451
 shifting eigenvalues 449, 470ff., 480
 special matrices 454
 termination criterion 484, 488
 tridiagonal matrix 453, 469ff., 488, 1228
 Eigenvalue and eigenvector, defined 449
 Eigenvalues and polynomial root finding 368, 1193
 EISPACK 454, 475
 Electromagnetic potential 519
 ELEMENTAL attribute (Fortran 95) 961, 1084
 Elemental functions 2/xiii, 2/xv, 940, 942, 946ff., 961, 986, 1015, 1083, 1097f.
 Elimination see Gaussian elimination
 Ellipse in confidence limit estimation 688
 Elliptic integrals 254ff., 906
 addition theorem 255

Elliptic partial differential equations 818
alternating-direction implicit method (ADI)
861f., 876
analyze/factorize/operate package 824
Jacobi’s method 824
matrix methods 824
multigrid method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848f., 852ff.
Fourier analysis and cyclic reduction (FACR)
848ff., 854
Gauss-Seidel method 855, 864ff., 876,
1338, 1341
incomplete Cholesky conjugate gradient method (ICCG) 824
Jacobi’s method 855f., 864
matrix methods 824
Legendre 254ff., 260f., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255

Error
checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 653, 690, 694ff.
nonnormal 653, 690, 694ff.
relative truncation 875
roundoff 180f., 881, 1362
series, advantage of an even 132f., 717,
1362
systematic vs. statistical 653, 1362
truncation 20f., 180, 399, 709, 881, 1362
varieties of, in PDEs 831ff.

see also
Roundoff error

Error function 213f., 601, 1094f.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
relation to Dawson’s integral 252, 1127
relation to Fresnel integrals 248
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635,
1277

Error handling in programs 2/xii, 2/xvi, 3,
994f., 1036, 1370f.

Estimation of parameters see Fitting; Maximum likelihood estimate

Estimation of power spectrum 542ff., 565ff.,
1254ff., 1258

Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s constant for significance of correlation 631, 1276

Euler’s constant for sum squared difference of ranks 635,
1277
Euler’s method for differential equations 702,
704, 728f.

Euler's transformation 160f., 1070
generalized form 162f.

Evaluation of functions see Function

Even and odd parts, of continued fraction 166, 211, 216

Even parity 888

Exception handling in programs see Error handling in programs

Exterior (so-called) 574, 1261

Extreme value distribution 278, 1151f.

Exponential integral 215ff., 1096f.
asymptotic expansion 218
continued fraction 216
related to incomplete gamma function 215
series 216

Exponential probability distribution 570
Extended midpoint rule 124f., 129f., 135,
1054f.

Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff.,
135, 786, 1052ff., 1326
roundoff error 132

Extirpolation (so-called) 574, 1261

Related concepts

Encapsulation, in programs 7
Encryption 290, 1156
Index to Volumes 1 and 2

Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726, 1305ff.
differential equations 702
by linear prediction 557ff., 1256ff.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305ff.
rational function 718ff., 726, 1306ff.
relation to interpolation 101
for Romberg integration 134
see also Interpolation

Extremization see Minimization

F-distribution probability function 222
F-test for differences of variances 611, 613, 1271

FACR see Fourier analysis and cyclic reduction (FACR)

Factorial standard 901
Factorial
do double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207ff., 1086ff.
False position 347ff., 1185ff.

Family tree 338

FAS (full approximation storage algorithm) 874, 1339ff.

Fast Fourier transform (FFT) 498ff., 881, 981, 1235ff.
alternative algorithms 503ff.
as approximation to continuous transform 497
Bartlett window 547, 1254
bit reversal 499f., 525
and Clenshaw-Curtis quadrature 190
column-parallel algorithm 981, 1237ff.
communication bottleneck 969, 981, 1250
convolution 503ff., 523, 531ff., 909, 1253, 1354
convolution of large data sets 536ff.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239ff.
correlation 538ff., 1254
cosine transform 190, 511ff., 851, 1245ff.
cosine transform, second form 513, 852, 1246
Danielson-Lanczos lemma 498ff., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
endpoint corrections 578ff., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551ff.
FIR filter 553
four-step framework 983, 1239
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236ff., 1241, 1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909, 1354
number-theoretic transforms 503ff.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254ff.
for quadrature 124
of real data in 2D and 3D 519ff., 1248ff.
of real functions 504ff., 519ff., 1242ff., 1248ff.
related algorithms 503ff.
row-parallel algorithm 981, 1235ff.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
treatment of end effects in convolution 533
treatment of end effects in correlation 538ff.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544ff., 549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see also Discrete Fourier transform (DFT);
Fourier transform; Spectral density

Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424

Field, in data record 329
Figure-of-merit function 650

Filon’s method 583
Filter 551ff.
acausal 552
bilinear transformation method 554
causal 552, 644
characteristic polynomial 554
data smoothing 644ff., 1283f.
digital 551ff.
DISPO 644
by fast Fourier transform (FFT) 523, 551ff.
finite impulse response (FIR) 531, 552
homogeneous modes of 554
infinite impulse response (IIR) 552ff., 566
Kalman 700
linear 552ff.
low-pass for smoothing 644ff., 1283f.
nonrecursive 552
optimal (Wiener) 535, 539ff., 558, 644
quadrature mirror 585, 593
realizable 552, 554ff.
recursive 552ff., 566
Remes exchange algorithm 553
Savitzky-Golay 183, 644ff., 1283f.
stability of 554ff.
in the time domain 551ff.

Fine-to-coarse operator 864, 1337

Finite difference equations (FDEs) 753, 763, 1081ff.
alternating-direction implicit method (ADI) 847, 861f.
art not science 829
Cayley's form for unitary operator 844
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 844, 846
eigenmodes of 827f.
explicit vs. implicit schemes 827
forward Euler 826f.
Forward Time Centered Space (FTCS) 827ff., 839ff., 843, 855
implicit scheme 840
Lax method 828ff., 836
Lax method (multidimensional) 845f.
numerical derivatives 181
partial differential equations 821ff.
in relaxation methods 753ff.
staggered leapfrog method 833f.
upwind differencing 832f., 837
see also Partial differential equations

Finite element methods, partial differential equations 824

Finite impulse response (FIR) 531
Finkelstein, S. 1/xvi, 2/xi

FIR (finite impulse response) filter 552
Fisher's z-transformation 631f., 1276
Fitting 650ff., 1285ff.
basis functions 665
by Chebyshev approximation 185f., 1076
chi-square 653f., 1285f.
confidence levels related to chi-square values 691ff.
confidence levels from singular value decomposition (SVD) 693f.
confidence limits on fitted parameters 684ff.
covariance matrix not always meaningful 651, 690
degeneracy of parameters 674
an exponential 674
freezing parameters in 668, 700
Gaussians, a sum of 682, 1294
general linear least squares 665ff., 1288, 1290f.
Kalman filter 700
K–S test, caution regarding 621f.
least squares 651ff., 1285
Legendre polynomials 674, 1291f.
Levenberg-Marquardt method 678ff., 816, 1292f.
linear regression 655ff., 1285ff.
maximum likelihood estimation 652f., 694ff.
Monte Carlo simulation 622, 654, 684ff.
multidimensional 675
nonlinear models 675ff., 1292f.
nonlinear models, advanced methods 683
nonlinear problems that are linear 674
nonnormal errors 656, 690, 694ff.
polynomial 83, 114, 191, 665, 674, 1078, 1291
by rational Chebyshev approximation 197ff., 1081f.
robust methods 694ff., 1294
of sharp spectral features 566
standard (probable) errors on fitted parameters 657f., 661, 667, 671, 684ff., 1285f., 1288, 1290
straight line 655ff., 667f., 698, 1285ff., 1294ff.
straight line, errors in both coordinates 660ff., 1286ff.
see also Error; Least squares fitting; Maximum likelihood estimate; Robust estimation

Five-point difference star 867
Fixed point format 18
Fletcher-Powell algorithm see Davidon-Fletcher-Powell algorithm
Fletcher-Reeves algorithm 390, 414ff., 1214
Floating point co-processor 886
Floating point format 18ff., 882, 1343
care in numerical derivatives 181
IEEE 276, 882, 1343
floor() intrinsic function 948
Flux-conservative initial value problems 825ff.
FMG (full multigrid method) 863, 868, 1334ff.
FOR iteration 9f., 12
for all statement 2/xii, 2/xvi, 960, 964, 986
access to associated index 968
skew array sections 985, 1007
Formats of numbers 18ff., 882, 1343
Fortran 9
arithmetic-if statement 2/xi
COMMON block 2/xif., 953, 957
decprecated features 2/xif., 947, 1057, 1161, 1256, 1286
dynamical allocation of storage 869, 1336
EQUIVALENCE statement 2/xif., 1161, 1286
evolution of 2/xivff.
exception handling 2/xii, 2/xvi
filenames 935
Fortran 2000 (planned) 2/xvi
Index to Volumes 1 and 2

1459

Fortran 95 2/xv, 945, 947, 1084, 1100, 1364
HPF (High-Performance Fortran) 2/xvf, Numerical Recipes in 2/x, 2/xvii, 1 obsolescent features 2/xif.
side effects 960
see also Fortran 90
Fortran D 2/xv
Fortran 77 1/xix
bit manipulation functions 17
hexadecimal constants 17
Fortran 8x 2/xi, 2/xiii
Fortran 90 3
abstract data types 2/xiii, 1030
all() intrinsic function 945, 948
allocatable array 938, 941, 953ff., 1197, 1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953ff., 1197, 1266, 1293, 1306, 1336
allocated intrinsic function 938, 952ff., 1197, 1266, 1293
any() intrinsic function 945, 948
array allocation and deallocation 953
array of arrays 2/xii, 956, 1336
array constructor 2/xii, 968, 971, 1022, 1052, 1055, 1127
array constructor with implied do-list 968, 971
array extents 938, 949
array features 941ff., 953ff.
array of length 0 944
array of length 1 949
array manipulation functions 950
array parallel operations 964f.
array rank 938, 949
array reallocation 955
array section 2/xvif., 2/xiii, 939, 941ff., 960, 1078, 1284, 1286, 1333
array shape 938, 949
array size 938, 942
array transpose 981f.
array unary and binary functions 949
associated intrinsic function 952f.
associated pointer 953f.
assumed-shape array 942
automatic array 938, 954, 1197, 1212, 1336
backwards-compatibility 935, 946
bit manipulation functions 2/xii, 951
bit_size() intrinsic function 951
broadcasts 965f.
btest() intrinsic function 951
case construct 1010, 1036
case insensitive 937
ceiling() intrinsic function 947
character functions 952
character variables 1183
cmplx function 1125
communication bottlenecks 969, 981, 1250
compatibility with Fortran 77 935, 946
compilers 2/xii, 2/xv, 1364
compiling 936
conformable arrays 942f., 1094
CONTAINS statement 954, 957, 985, 1067, 1134, 1202
count() intrinsic function 946
counters 946
conversion elemental functions 946
cosh() intrinsic function 950, 969
cycle statement 959, 1219
data hiding 956f., 1209
data parallelism 964
DATA statement 959
data types 937, 1336, 1346, 1361
deallocate statement 938f., 953f., 1197, 1266, 1293
deallocating array 938, 953f., 1197, 1266, 1293
defined types 956
deprecated features 947, 1057, 1161, 1256, 1286
derived types 937, 955
dimensional expansion 965f.
do-loop 2/xiv
do_product() intrinsic function 945, 949, 969, 1216
dynamical allocation of storage 2/xiii, 938, 941ff., 953ff., 1327, 1336
elemental functions 940, 942, 946f., 951, 1015, 1083, 1364
everywhere construct 943
eoshift() intrinsic function 950, 969, 1019f., 9478
epsilon() intrinsic function 951, 1189
evolution 2/xivff., 959, 987f.
example 936
exit statement 959, 1219
exponent() intrinsic function 1107
floor() intrinsic function 948
Fortran tip icon 1009
garbage collection 956
gather-scatter operations 2/xiiif., 969, 981, 984, 1002, 1032, 1034, 1250
generic interface 2/xii, 1083
generic procedures 939, 1015, 1083, 1094, 1096, 1364
global variables 955, 957, 1210
history 2/xif.
huge() intrinsic function 951
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
ibset() intrinsic function 951
ieor() intrinsic function 951
IMPLIED NONE statement 2/xiv, 936
implied do-list 968, 971, 1127
index loss 967f.
initialization expression 943, 959, 1012, 1127
inquiry functions 948
integer model 1144, 1149, 1156
INTENT attribute 1072, 1092
interface 939, 942, 1067, 1084, 1384
internal subprogram 2/xii, 2/xiv, 957, 1057, 1067, 1202f., 1256, 1302
interprocessor communication 969, 981, 1250
intrinsic data types 937
intrinsic procedures 939, 945ff., 987, 1016
ior() intrinsic function 951
ishft() intrinsic function 951
ishftc() intrinsic function 951
keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144, 1192, 1254, 1261, 1284, 1361
language features 935ff.
lbound() intrinsic function 949
lexical comparison 952
linear algebra 969f., 1000ff., 1018f., 1026, 1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/viii, 1009
mask 948, 967f., 1006f., 1038, 1102, 1200, 1226, 1305, 1333f., 1368, 1378, 1382
matmul() intrinsic function 945, 949, 969, 1026, 1040, 1050, 1076, 1200, 1216, 1290, 1326
maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961, 992f., 1015
maxval() intrinsic function 945, 948, 961, 987ff.
memory leaks 953, 956, 1327
memory management 938, 953f., 957, 1067, 1070, 1266, 1302, 1327, 1336
module() intrinsic function 945, 948, 961, 1016, 1273
move() intrinsic function 937, 1361
name management 938, 953f., 957, 1067
merge() intrinsic function 945, 950, 1010, 1094f., 1099f.
Metcalfe and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992f.
missing language features 983ff., 987ff.
modification 956f.
MODULE facility 2/xiii, 936f., 939f., 953f., 957, 1067, 1298, 1320, 1322, 1324, 1330, 1346
MODULE subprograms 940
module() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953f., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiiif.
operator, user-defined 2/xii
optional argument 2/xiv, 947f., 1092, 1228, 1230, 1256, 1272, 1275, 1340
outer product 969f.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964, 969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981, 1002, 1003, 1006f., 1022, 1023, 1027
parallel programming 963ff.
PARAMETER attribute 1012
pointer 2/xiiif., 938f., 941, 944f., 952ff., 1067, 1070, 1197, 1210, 1212, 1266, 1302, 1327, 1336
pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 945, 949, 960, 969, 981, 1247
random number() intrinsic function 1141, 1143
random seed() intrinsic function 1141
real() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065, 1067, 1166
redirection 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953f., 958f., 1052, 1070, 1266, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function) 984
scope 956ff.
scoping units 939
select case statement 2/xiv, 1010, 1036
shape() intrinsic function 938, 949
size() intrinsic function 938, 942, 945, 948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff., 969, 1000, 1094, 1209f.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subscript triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960, 969, 981, 1247
ticks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939f., 954, 957, 1067, 1384
utility functions 987ff.
vector subscripts 2/xiv, 969, 981, 984, 1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
WG5 technical committee 2/xi, 2/xii, 2/xiv.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/xv, 2/xii, 2/xiv, 947, 959, 964, 968, 990
zero-length array 944
Index to Volumes 1 and 2

1461

see also Intrinsic procedures
see also Fortran

Fortran 95 947, 959ff.
 allocatable variables 961
 blocks 960
 cpu(time) intrinsic function 961
elemental functions 2/xiii, 2/xv, 940, 961, 986, 1015, 1083f., 1097f.
forall statement 2/xii, 2/xv, 960, 964, 968, 986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960f., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see also Fortran

Fortran 2000 2/xvi
Forward deflation 363
Forward Euler differencing 826f.
Forward Time Centered Space see FTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR) 848f., 854
Fourier integrals
 attenuation factors 583, 1261
 endpoint corrections 578ff., 1261
 tail integration by parts 583
use of fast Fourier transform (FFT) 577ff., 1261ff.
Fourier transform 99, 490ff., 1235ff.
 aliasing 495, 569
 approximation of Dawson's integral 253
 autocorrelation 492
 basis functions compared 508f.
 contrasted with wavelet transform 584, 594
 convolution 492, 503ff., 531ff., 909, 1253, 1354
 correlation 492, 538f., 1254
 cosine transform 190, 511ff., 851, 1245f.
 cosine transform, second form 513, 852, 1246
 critical sampling 494, 543, 545
 definition 490
 discrete Fourier transform (DFT) 184, 495ff.
 Gaussian function 600
 image processing 803, 805
 infinite range 583
 inverse of discrete Fourier transform 497
 method for partial differential equations 848ff.
 missing data 569
 missing data, fast algorithm 574f., 1259
 Nyquist frequency 494ff., 520, 543, 545, 569, 571
 optimal (Wiener) filtering 539ff., 558
 Parseval's theorem 492, 498, 544

power spectral density (PSD) 492f.
 power spectrum estimation by FFT 542ff., 1254ff.
 power spectrum estimation by maximum entropy method 565ff., 1258
 properties of 491f.
 sampling theorem 495, 543, 545, 600
 scalings of 491
 significance of a peak in 570
 sine transform 508ff., 850, 1245
 symmetries of 491
 uneven sampling, fast algorithm 574f., 1259
 unevenly sampled data 569ff., 574, 1258
 and wavelets 592f.
 Wiener-Khinchin theorem 492, 558, 566f.
see also Fast Fourier transform (FFT);
 Spectral density
 Fractal region 360f.
 Fractional step methods 847f.
 Fredholm alternative 780
 Fredholm equations 779f.
 eigenvalue problems 780, 785
 error estimate in solution 784
 first kind 779
 Fredholm alternative 780
 homogeneous, second kind 785, 1325
 homogeneous vs. inhomogeneous 779f.
 ill-conditioned 780
 infinite range 789
 inverse problems 780, 795ff.
 kernel 779f.
 nonlinear 781
 Nystrom method 782ff., 789, 1325
 product Nystrom method 789, 1328ff.
 second kind 779f., 782ff., 1325, 1331
 with singularities 788, 1328ff.
 with singularities, worked example 792, 1328ff.
 subtraction of singularity 789
 symmetric kernel 785
see also Inverse problems

Frequency domain 490
Frequency spectrum see Fast Fourier transform (FFT)

Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.
 asymptotic form 249
 continued fraction 248f.
 routine for 249f., 1123
 series 248
Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff., 839ff., 843
 stability of 827f., 839ff., 855
Full approximation storage (FAS) algorithm 874, 1339ff.
Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares 683
Full pivoting 29, 1014
Full weighting 867
Function
 Airy 204, 243ff., 1121
approximation 99ff., 184ff., 1043, 1076ff.
associated Legendre polynomial 246ff.,
764, 1122ff., 1319
auto correlation of 492
Bessel 172, 204, 223ff., 234, 1101ff.,
1115ff.
beta 209, 1089
binomial coefficients 208f., 1087f.
branch cuts of 202ff.
chi-square probability 215, 798
complex 202
confluent hypergeometric 204, 239
correlation of 492
cosine integral 250f., 1123f.
Coulomb wave 204, 234
cumulative binomial probability 222f.
cumulative Poisson 209ff.
Dawson’s integral 252ff., 600, 1127ff.
digamma 216
elliptic integrals 254ff., 906, 1128ff.
error 213f., 248, 252, 601, 631, 635,
1094ff., 1127, 1276f.
evaluation 159ff., 1070ff.
evaluation by path integration 201ff., 263,
1138
exponential integral 172, 215ff., 250,
1096f.
F-distribution probability 222
Fresnel integral 248ff., 1123
gamma 206, 1085
hypergeometric 202ff., 263ff., 1138ff.
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657ff.,
1089ff., 1127, 1285
inverse hyperbolic 178, 255
inverse trigonometric 255
Jacobian elliptic 261, 1137f.
Kolmogorov-Smirnov probability 618f.,
640, 1274, 1281
Legendre polynomial 172, 246, 674, 1122,
1291
logarithm 255
modified Bessel 229ff., 1109ff.
modified Bessel, fractional order 239ff.,
1118ff.
overloading 1083
parallel evaluation 986, 1009, 1084, 1087,
1090, 1102, 1128, 1134
path integration to evaluate 201ff.
pathological 99f., 343
Poisson cumulant 214
representations of 490
routine for plotting a 342, 1182
sine and cosine integrals 248, 250ff.,
1125ff.
sn, dn, cn 261, 1137f.
spherical harmonics 246ff., 1122
spheroidal harmonic 764ff., 770ff., 1319ff.,
1323ff.
Student’s probability 221f.
variable number of arguments 1022
Weber 204
Weber integration 204
Gamma deviate 282f., 1153f.
Gamma function 206ff., 1085
incomplete 209ff., 615, 654, 657ff.,
1089ff., 1272, 1285
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657ff.,
1089ff., 1127, 1276f.
infinitely many 1083
integral equations 786, 1326
operation count 34, 39
solution of normal equations 667, 1288
storage requirements 30
Gauss-Kronrod quadrature 154
Gauss-Laguerre integration 144, 789
Gauss-Jacobi integration 144
Gauss-Legendre integration 145f., 1095
Gauss-Lobatto quadrature 154
Gauss-Seidel method (relaxation) 855, 857,
864ff., 1338
nonlinear 876, 1341
Gaussian (normal) distribution 267, 652, 798
central limit theorem 652f.
deviates from 279ff., 571, 1152
kurtosis of 606
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606
Gaussian elimination 33f., 51, 55, 1014f.
Gaussian (normal) distribution 267, 652, 798
central limit theorem 652f.
deviates from 279ff., 571, 1152
kurtosis of 606
multivariate 690
Gaussian (normal) distribution 267, 652, 798
central limit theorem 652f.
deviates from 279ff., 571, 1152
kurtosis of 606
multivariate 690
fill-in 45, 64
Gaussian function 600
integral equations 786, 1326
operation count 34
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
Gaussian function 600
exponential integral 172, 215ff., 250,
1096f.
nonclassical weight function 151ff., 788f., 1064f., 1328f.
and orthogonal polynomials 142, 1009, 1064
parallel calculation of formulas 1009, 1064
preassigned nodes 153f.
weight function log x 153
weight functions 140ff., 788f., 1059ff., 1328f.
parallel calculation of formulas 1009, 1061
preassigned nodes 153f.

Gray code 300, 881, 886ff., 1344
Greenbaum, A. 79
Gregorian calendar 13, 16, 1011, 1013

Half weighting 867, 1337
Halton’s quasi-random sequence 300
Hamming window 547
Hamming’s motto 341
Hann window 547

Harmonic analysis see Fourier transform
Hashing 293, 1144, 1148, 1156
for random number seeds 1147ff.
HDLC checksum 890
Heap (data structure) 327f., 336, 897, 1179
Heapsort 320, 327f., 336, 1171ff., 1179
Helmholtz equation 852
Hermite polynomials 144, 147
approximation of roots 1062
Hermitian matrix 450ff., 475
Hertz (unit of frequency) 490
Hessenberg matrix 94, 453, 470, 476ff., 488, 1231
see also Matrix
Hessian matrix 382, 408, 415f., 419f., 676ff., 803, 815
is inverse of covariance matrix 667, 679
second derivatives in 676
Hexadecimal constants 17f., 276, 293
initialization 959
Hierarchically band diagonal matrix 598
Hierarchy of program structure 6ff.
High-order not same as high-accuracy 100f., 124, 389, 399, 705, 709, 741
High-pass filter 551
High-Performance Fortran (HPF) 2/xvf., 964, 981, 984
scatter-with-add 1032
Hilbert matrix 83
Home page, Numerical Recipes 1/xx, 2/xvii
Homogeneous linear equations 53
Hook step methods 386
Hotelling’s method for matrix inverse 49, 598
Householder transformation 52, 453, 462ff., 469, 473, 475, 478, 481ff., 1227f.
operation count 467
in QR decomposition 92, 1039
HPF see High-Performance Fortran
Huffman coding 564, 881, 896ff., 902, 1346ff.
huge() intrinsic function 951
Hyperbolic functions, explicit formulas for
inverse 178
Hyperbolic partial differential equations 818
advective equation 826
flux-conservative initial value problems 825ff.
Hypergeometric function 202f., 263ff.
routine for 264f., 1138
Hypothesis, null 603
I4B, defined 937
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/xxiii, 2/xix
IBM checksum 894
ibset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient
method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ieor() intrinsic function 951
if statement, arithmetic 2/xi
if structure 12f.
ifirstloc() utility function 989, 993, 1041,
1346
IIR (infinite impulse response) filter 552ff.,
566
Ill-conditioned integral equations 780
Image processing 519, 803
fast Fourier transform (FFT) 519, 523,
803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.
imaxloc() utility function 989, 993, 1017
iminloc() utility function 989, 993, 1046,
1076
Implicit
function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.
Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308
IMPLICIT NONE statement 2/xiv, 936
Implied do-list 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL /Axxiii, 2/xx, 26, 64, 205, 364, 369,
454
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.
for F-test 613, 1271
routine for 220ff., 1097
for Student’s t 610, 613, 1269
Incomplete Cholesky conjugate gradient method
(ICCG) 824
Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657ff., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089
Increment of linear congruential generator
268
Indentation of blocks 9
Index 934ff., 1446ff.
this entry 1464
Index entry 967f., 1038
Index table 320, 329ff., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.
see also Differential equations;
Partial differential equations
Initialization of derived data type 2/vx
Initialization expression 284f., 312f., 1142
Injection operator 864, 1337
Instability see Stability
Integer model, in Fortran 90 1144, 1149,
1156
Integer programming 436
Integral equations 779ff.
adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-
tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779f., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example 792,
1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 786ff., 1326f.
wavelets 782
see also Inverse problems
Integral operator, wavelet approximation of
597, 782
Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see also Quadrature
Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067
for communication between program parts 957, 1209, 1293, 1296
explicit 939, 942, 1067, 1384
generic 2/xiii, 940, 1015, 1083, 1094, 1096
implicit 939
for Numerical Recipes 1384ff.
Interface block 939, 1084, 1384
Interface, in programs 2, 8
Intermediate value theorem 343
Internal subprogram (Fortran 90) 2/xiv, 954, 957, 1067, 1202f., 1226
nesting of 2/xii
resembles C macro 1302
supersedes statement function 1057, 1256
International Standards Organization (ISO) 2/xf., 2/xiii
Internet, availability of code over 1/xx, 2/xvii
Interpolation 99ff.
Aitken’s algorithm 102
avoid 2-stage method 100
avoid in Fourier analysis 569
bicubic 118f., 1049f.
bilinear 117
cautions on high-order 100
coefficients of polynomial 100, 113ff., 191, 575, 1047f., 1078
for computing Fourier integrals 578
error estimates for 100
of functions with poles 104ff., 1043f.
inverse quadratic 353, 395ff., 1204
multidimensional 101f., 116ff., 1049ff.
in multigrid method 866, 1337
Neville’s algorithm 102f., 182, 1043
Nystrom 783, 1326
offset arrays 104, 113
operation count for 100
operator 864, 1337
order of 100
and ordinary differential equations 101
oscillations of polynomial 100, 116, 389, 399
parabolic, for minimum finding 395, 1204
polynomial 99, 102ff., 182, 1043
rational Chebyshev approximation 197ff., 1081
rational function 99, 104ff., 194ff., 225,
718ff., 726, 1043f., 1080, 1306
reverse (extrapolation) 574, 1261
spline 100, 107ff., 120ff., 1044ff., 1050f.
truncation 946
view also Fitting
Interprocessor communication 969, 981
Interval variable (statistics) 623
Intrinsic correlation function (ICF) model 817
Intrinsic data types 937
Intrinsic procedures
array inquiry 938, 942, 948ff.
array manipulation 950
array reduction 948
array unary and binary functions 949
backwards-compatibility 946
bit manipulation 2/xiii, 951
character 952
cmpx 1254
cmplt 1254
conversion elemental 946
elemental 940, 942, 946ff., 951, 1083, 1364
generic 939, 1083f., 1364
lexical comparison 952
numeric inquiry 2/xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
view also Fortran 90
Inverse hyperbolic function 178, 255
Inverse iteration view also Eigensystems
Inverse problems 779, 795ff.
Backus-Gilbert method 806ff.
Bayesian approach 799, 810ff., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
in geophysics 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
and integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810, 815f.
MEM demystified 814
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method 809
two-dimensional regularization 803
use of conjugate gradient minimization 804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804
Inverse quadratic interpolation 353, 395ff., 1204
Inverse response kernel, in Backus-Gilbert method 807
Inverse trigonometric function 255
ior() intrinsic function 951
ISBN (International Standard Book Number) checksum 894
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization) 2/xf., 2/xiii
Iterated integrals 155
Iteration 9f.
functional 740f.
to improve solution of linear algebraic equations 47ff., 195, 1022
for linear algebraic equations 26
required for two-point boundary value problems 745
in root finding 340f.
iteration matrix 856, 795
ITPACK 71
Iverson, John 2/ix

Jacobi matrix, for Gaussian quadrature 150, 1064
Jacobi polynomials, approximation of roots 1064
Jacobi transformation (or rotation) 94, 453, 456ff., 462, 475, 489, 1041, 1225
Jacobian determinant 279, 774
Jacobian elliptic functions 261, 1137f.
Jacobian matrix 374, 376, 379, 382, 731, 1197f., 1309
singular in Newton’s rule 386
Jacobi’s method (relaxation) 855ff., 864
Jenkins-Traub method 369
Julian Day 1, 13, 16, 936, 1010ff.
Jump transposition errors 895

K-s test see Kolmogorov-Smirnov test
Kalman filter 700
Kanji 2/xii
Kaps-Rentrop method 730, 1308
Kendall’s tau 634, 637ff., 1279
Kennedy, Ken 2/xv
Kepler’s equation 1061
Kermit checksum 889
Kernel 779
averaging, in Backus-Gilbert method 807
degenerate 785
finite rank 785
inverse response 807
separable 785
singular 788f., 1328
symmetric 785
Keys used in sorting 329, 889
Keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 946, 1261, 1284
and cmplx() intrinsic function 1125, 1192, 1254
default 937
for Numerical Recipes 1361
for random numbers 1144
and real() intrinsic function 1125
Kolmogorov-Smirnov test 614, 617ff., 694, 1273f.
two-dimensional 640, 1281ff.
variants 620ff., 640, 1281
Kuiper’s statistic 621
Kurtosis 606, 608, 1269

L-estimate 694
Labels, statement 9
Lag 492, 538, 553
Lagged Fibonacci generator 1142, 1148ff.
Lagrange multiplier 795
Lagrange’s formula for polynomial interpolation 84, 102f., 575, 578
Laguerre polynomials, approximation of roots 1061
Laguerre’s method 341, 365f., 1191f.
Lanczos lemma 498f.
Lanczos method for gamma function 206, 1085
Landen transformation 256
LAPACK 26, 1230
Laplace’s equation 246, 818
see also Poisson equation
Las Vegas 625
Latin square or hypercube 305f.
Least squares filters see Savitzky-Golay filters
contrasted to general minimization problems 684ff.
degeneracies in 671f., 674
Fourier components 570
as M-estimate for normal errors 696
as maximum likelihood estimator 652
as method for smoothing data 645, 1283
Fourier components 1258
freezing parameters in 668, 700
general linear case 665ff., 1288, 1290f.
Levenberg-Marquardt method 678ff., 816, 1292f.
Lomb periodogram 570, 1258
multidimensional 675
nonlinear 386, 675ff., 816, 1292
nonlinear, advanced methods 683
normal equations 645, 666f., 800, 1288
normal equations often singular 670, 674
optimal (Wiener) filtering 540f.
QR method in 94, 668
for rational Chebyshev approximation 199f., 1081f.
relation to linear correlation 630, 658
Savitzky-Golay filter as 645, 1283
singular value decomposition (SVD) 25f., 51f., 199f., 670ff., 1081, 1290
skewed by outliers 653
for spectral analysis 570, 1258
standard (probable) errors on fitted parameters 667, 671
weighted 652
see also Fitting
L’Ecuyer’s long period random generator 271, 273
Least squares fitting
standard (probable) errors on fitted parameters 1288, 1290
weighted 1285
Left eigenvalues or eigenvectors 451
Legal matters 1/xx, 2/xvii
Legendre elliptic integral see Elliptic integrals
Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see also Associated Legendre polynomials; Spherical harmonics
Lehmer-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165, 212
Lepage, P. 309
Leptokurtic distribution 606
Levenberg-Marquardt algorithm 386, 678ff., 816, 1292
advanced implementation 683
Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimization see Minimization, along a ray
Line search see Minimization, along a ray
Linear algebra, intrinsic functions for parallelization 969f., 1026, 1040, 1200, 1326
Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.
Cholesky decomposition 89f., 423, 455, 668, 1038f.
complex 41
computing \(A^{-1} \cdot B\) 40
conjugate gradient method 77ff., 599, 1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f., 671, 1081, 1290
LU decomposition 34ff., 195, 386, 732, 783, 786, 801, 1016, 1022, 1325f.
nonsingular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f., 382, 386, 668, 1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff., 199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f., 1030
summary of tasks 25f.
Toeplitz 82, 85ff., 195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f., 462ff., 469ff., 488, 839f., 853, 861f., 1018f., 1227f.
Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see also Eigensystems
Linear congruential random number generator 267ff., 1142
choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency
constructing orthonormal basis 58, 94
of directions in \(N\)-dimensional space 409
in linear algebraic equations 22f.
Linear equations see Differential equations; Linear algebraic equations
Linear inversion method, constrained 799ff.
Linear prediction 557ff.
characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method 558
compared with regularization 801
contrasted to polynomial extrapolation 560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257
Linear predictive coding (LPC) 563ff.
Linear programming 387, 423ff., 1216ff.
artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426ff.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426
Index to Volumes 1 and 2

Linear recurrence see Recurrence relation
Linear regression 655ff., 660ff., 1285ff.
see also Fitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387f., 437
Localization of roots see Bracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis 569f., 1258ff.
fast algorithm 574f., 1259
Loops 9f.
Lorentzian probability distribution 282, 696f.
Low-pass filter 551, 644f., 1283f.
Lower subscript 944
lower() triangle() utility function 989, 1007, 1200
LP coefficients see Linear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47f., 51, 55, 64, 97, 374, 667, 732, 1016, 1022
for $A^{-1} \cdot B$ 40
backsubstitution 39, 1017
band diagonal matrix 43ff., 1020
complex equations 41f.
Croat’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325f.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386, 1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37ff., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40, 1017
solution of normal equations 667
for Toeplitz matrix 87
Lucifer 290

M&R (Metcalfe and Reid) 935
M-estimates 694ff.
how to compute 697f.
local 695ff.
see also Maximum likelihood estimate
Machine accuracy 19f., 881f., 1189, 1343
Macintosh, see Apple Macintosh
Maehly’s procedure 364, 371
Magic
in MEM image restoration 814
in Padé approximation 195
Mantissa in floating point format 19, 882, 909, 1343
Marginals 624
Marquardt method (least squares fitting) 678ff., 816, 1292f.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149
mask 1006f., 1102, 1200, 1226, 1305, 1355f., 1368, 1378, 1382
optional argument 948
optional argument, facilitates parallelism 967f., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathematical intrinsic functions 946, 951f.
matmul() intrinsic function 945, 949, 969, 1026, 1040, 1050, 1076, 1200, 1216, 1290, 1326
Matrix 23ff.
add vector to diagonal 1004, 1234, 1366, 1381
approximation of 58ff., 598f.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidirectional 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89f., 423, 455, 668, 1038f.
column augmented 28, 1014
column of complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
derivatives see Hessian matrix; Jacobian determinant
design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations 28f.
finite differencing of partial differential equations 821ff.
get diagonal 985, 1005, 1226f., 1366, 1381f.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessian see Hessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71f., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff., 1014, 1016f.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schur’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi transformation</td>
<td>453, 456ff., 462, 1225f.</td>
</tr>
<tr>
<td>Jacobian</td>
<td>731, 1309</td>
</tr>
<tr>
<td>logical dimension</td>
<td>24</td>
</tr>
<tr>
<td>lower triangular</td>
<td>34f., 89, 781, 1016</td>
</tr>
<tr>
<td>lower triangular mask</td>
<td>1007, 1200, 1382</td>
</tr>
<tr>
<td>multiplication denoted by dot</td>
<td>23</td>
</tr>
<tr>
<td>multiplication, intrinsic function</td>
<td>949, 969, 1026, 1040, 1050, 1200, 1326</td>
</tr>
<tr>
<td>norm</td>
<td>50</td>
</tr>
<tr>
<td>normal</td>
<td>450ff.</td>
</tr>
<tr>
<td>nullity</td>
<td>53</td>
</tr>
<tr>
<td>nullspace</td>
<td>25, 53f., 449, 795</td>
</tr>
<tr>
<td>orthogonal</td>
<td>91, 450, 463ff., 587</td>
</tr>
<tr>
<td>orthogonal transformation</td>
<td>452, 463ff., 469, 1227</td>
</tr>
<tr>
<td>orthonormal basis</td>
<td>58, 94</td>
</tr>
<tr>
<td>outer product denoted by cross</td>
<td>66, 420</td>
</tr>
<tr>
<td>partitioning for determinant</td>
<td>70</td>
</tr>
<tr>
<td>partitioning for inverse</td>
<td>70</td>
</tr>
<tr>
<td>pattern multiply of sparse</td>
<td>74</td>
</tr>
<tr>
<td>physical dimension</td>
<td>24</td>
</tr>
<tr>
<td>positive definite</td>
<td>26, 89f., 668, 1038</td>
</tr>
<tr>
<td>QR decomposition</td>
<td>91f., 382, 386, 668, 1039, 1199</td>
</tr>
<tr>
<td>range</td>
<td>53</td>
</tr>
<tr>
<td>rank</td>
<td>53</td>
</tr>
<tr>
<td>residual</td>
<td>49</td>
</tr>
<tr>
<td>row and column indices</td>
<td>23</td>
</tr>
<tr>
<td>row vs. column operations</td>
<td>31f.</td>
</tr>
<tr>
<td>set diagonal elements</td>
<td>1005, 1200, 1366, 1382</td>
</tr>
<tr>
<td>similarity transform</td>
<td>452ff., 456, 476, 478, 482</td>
</tr>
<tr>
<td>singular</td>
<td>53f., 58, 449</td>
</tr>
<tr>
<td>singular value decomposition</td>
<td>26, 51ff., 797</td>
</tr>
<tr>
<td>sparse</td>
<td>23, 63ff., 71, 598, 732, 754, 804, 1030ff.</td>
</tr>
<tr>
<td>special forms</td>
<td>26</td>
</tr>
<tr>
<td>splitting in relaxation method</td>
<td>856f.</td>
</tr>
<tr>
<td>spread</td>
<td>808</td>
</tr>
<tr>
<td>square root of</td>
<td>423, 455</td>
</tr>
<tr>
<td>symmetric</td>
<td>26, 89, 450, 454, 462ff., 668, 785, 1038, 1225, 1227</td>
</tr>
<tr>
<td>threshold multiply of sparse</td>
<td>74, 1031</td>
</tr>
<tr>
<td>Toeplitz</td>
<td>82, 85ff., 195, 1038</td>
</tr>
<tr>
<td>transpose() intrinsic function</td>
<td>950</td>
</tr>
<tr>
<td>transpose of sparse</td>
<td>73f., 1033</td>
</tr>
<tr>
<td>triangular</td>
<td>453</td>
</tr>
<tr>
<td>tridiagonal</td>
<td>26, 42f., 64, 109, 150, 453f., 462ff., 469ff., 488, 839f., 853, 861f., 1018f., 1227ff.</td>
</tr>
<tr>
<td>tridiagonal with fringes</td>
<td>822</td>
</tr>
<tr>
<td>unitary</td>
<td>450</td>
</tr>
<tr>
<td>updating</td>
<td>94, 382, 386, 1041, 1199</td>
</tr>
<tr>
<td>upper triangular</td>
<td>34f., 91, 1016</td>
</tr>
<tr>
<td>upper triangular mask</td>
<td>1006, 1226, 1305, 1382</td>
</tr>
<tr>
<td>Vandermonde</td>
<td>82ff., 114, 1037, 1047</td>
</tr>
<tr>
<td>Matrix equations</td>
<td>see also Linear algebraic equations</td>
</tr>
<tr>
<td>Matterhorn</td>
<td>606</td>
</tr>
<tr>
<td>maxexponent() intrinsic function</td>
<td>1107</td>
</tr>
<tr>
<td>Maximization</td>
<td>see Minimization</td>
</tr>
<tr>
<td>Maximum entropy method (MEM)</td>
<td>565ff., 1258</td>
</tr>
<tr>
<td>algorithms for image restoration</td>
<td>815f.</td>
</tr>
<tr>
<td>Bayesian</td>
<td>816f.</td>
</tr>
<tr>
<td>Cornwell-Evans algorithm</td>
<td>816</td>
</tr>
<tr>
<td>demystified</td>
<td>814</td>
</tr>
<tr>
<td>historic vs. Bayesian</td>
<td>816f.</td>
</tr>
<tr>
<td>image restoration</td>
<td>809ff.</td>
</tr>
<tr>
<td>intrinsic correlation function (ICF) model</td>
<td>817</td>
</tr>
<tr>
<td>for inverse problems</td>
<td>809ff.</td>
</tr>
<tr>
<td>operation count</td>
<td>567</td>
</tr>
<tr>
<td>Maximum likelihood estimate (M-estimates)</td>
<td>690, 694ff.</td>
</tr>
<tr>
<td>and Bayes' Theorem</td>
<td>811</td>
</tr>
<tr>
<td>chi-square test</td>
<td>690</td>
</tr>
<tr>
<td>defined</td>
<td>652</td>
</tr>
<tr>
<td>how to compute</td>
<td>697f.</td>
</tr>
<tr>
<td>mean absolute deviation</td>
<td>696, 698, 1294</td>
</tr>
<tr>
<td>relation to least squares</td>
<td>652</td>
</tr>
<tr>
<td>maxloc() intrinsic function</td>
<td>949, 992f., 1015</td>
</tr>
<tr>
<td>modified in Fortran</td>
<td>95, 961</td>
</tr>
<tr>
<td>maxval() intrinsic function</td>
<td>945, 948, 961, 1016, 1273</td>
</tr>
<tr>
<td>Mean(s)</td>
<td>see also Linear prediction</td>
</tr>
<tr>
<td>Mean of distribution</td>
<td>604ff., 608ff., 1269</td>
</tr>
<tr>
<td>statistical differences between two</td>
<td>609ff., 1269</td>
</tr>
<tr>
<td>Mean absolute deviation of distribution</td>
<td>605, 696, 1294</td>
</tr>
<tr>
<td>related to median</td>
<td>698</td>
</tr>
<tr>
<td>Measurement errors</td>
<td>650</td>
</tr>
<tr>
<td>Median</td>
<td>320</td>
</tr>
<tr>
<td>calculating</td>
<td>333</td>
</tr>
<tr>
<td>of distribution</td>
<td>605, 608f.</td>
</tr>
<tr>
<td>as L-estimate</td>
<td>694</td>
</tr>
<tr>
<td>role in robust straight line fitting</td>
<td>698</td>
</tr>
<tr>
<td>by selection</td>
<td>698, 1294</td>
</tr>
<tr>
<td>Median-of-three, in Quicksort</td>
<td>324</td>
</tr>
<tr>
<td>MEM see Maximum entropy method (MEM)</td>
<td>953, 956, 1071, 1327</td>
</tr>
<tr>
<td>Memory leak</td>
<td>953, 956, 1071, 1327</td>
</tr>
<tr>
<td>Memory management</td>
<td>938, 941ff., 953ff., 1327, 1336</td>
</tr>
<tr>
<td>Memory management, modified in Fortran</td>
<td>95, 961</td>
</tr>
<tr>
<td>merge construct</td>
<td>945, 950, 1099f.</td>
</tr>
<tr>
<td>for conditional scalar expression</td>
<td>1010, 1094f.</td>
</tr>
<tr>
<td>contrasted with where</td>
<td>1023</td>
</tr>
<tr>
<td>parallelization</td>
<td>1011</td>
</tr>
<tr>
<td>Merge-with-dummy-values idiom</td>
<td>1090</td>
</tr>
<tr>
<td>Merit function</td>
<td>650</td>
</tr>
<tr>
<td>in general linear least squares</td>
<td>665</td>
</tr>
<tr>
<td>for inverse problems</td>
<td>797</td>
</tr>
<tr>
<td>nonlinear models</td>
<td>675</td>
</tr>
<tr>
<td>for straight line fitting</td>
<td>656, 698</td>
</tr>
<tr>
<td>for straight line fitting, errors in both coordinates</td>
<td>660, 1286</td>
</tr>
<tr>
<td>Mesh-drift instability</td>
<td>834f.</td>
</tr>
<tr>
<td>Mesokurtic distribution</td>
<td>606</td>
</tr>
<tr>
<td>Metcalf, Michael</td>
<td>2/viii</td>
</tr>
<tr>
<td>Method of regularization</td>
<td>799ff.</td>
</tr>
</tbody>
</table>

See also: Eigensystems, M&R, Linear prediction, Eigensystems.
Index to Volumes 1 and 2

Metropolis algorithm 437f., 1219
Microsoft 1/xxii, 2/xix
Microsoft Fortran PowerStation 2/viii
Midpoint method see Modified midpoint method; Semi-implicit midpoint rule
Mikado, or Town of Titipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.
along a ray 77, 376f., 389, 406ff., 412f., 415f., 418, 1109f., 1211, 1213
bracketing of minimum 390ff., 402, 1201f.
Brent’s method 389, 395ff., 399, 660f., 1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algorithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388f.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff., 804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390, 418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402f., 444, 697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff., 1214
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418, 1215
golden section search 390ff., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff., 1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418ff., 1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77f.
using derivatives 389f., 390ff., 1205ff.
variable metric methods 390, 418ff., 1215
see also Linear programming
Minimum residual method, for sparse system 78
minloc() intrinsic function 949, 992f.
improved in Fortran 95 961
MINPACK 683
minval() intrinsic function 948, 961
MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines 965ff., 974, 981, 984, 1016ff., 1021, 1045, 1226ff., 1250
Mode of distribution 605, 609
Modeling of data see Fitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functions see Bessel functions
Modified Lentz’s method, for continued fractions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269, 271, 275
Modular programming 2/xiii, 7f., 956ff., 1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957, 1067, 1298, 1320, 1322, 1324, 1330, 1346
initializing random number generator 1144ff.
in nr.f90 936, 936f., 1362, 1384ff.
in ntype.f90 936f., 1361f.
in nrutil.f 936, 936, 1070, 1362, 1364f.
spare matrix 1031
undefined variables on exit 953, 1266
Module subprogram 940
module() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments
of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608
Monic polynomial 142f.
Monotonicity constraint, in upwind differencing 837
Monte Carlo 155ff., 267
adaptive 306ff., 1101f.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff., 1161
integration, recursive 314ff., 1164f.
integration, using Sobol’ sequence 304
integration, VEGAS algorithm 309ff., 1161
and Kolmogorov-Smirnov statistic 622, 640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306ff., 1161, 1164f.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164
Moon, calculate phases of 1f., 14f., 936, 1010ff.
Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xxii, 2/xix
Muller’s method 364, 372
Multidimensional
confidence levels of fitting 688ff.
data, use of binning 623
Fourier transform 515ff., 1241, 1246, 1251
Fourier transform, real data 519ff., 1248ff.
initial value problems 844ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff., 1214f., 1222ff.
Monte Carlo integration 295ff., 306ff., 1161ff.
normal (Gaussian) distribution 690
optimization 388ff.
partial differential equations 844ff.
search using quasi-random sequence 300
secant method 373, 382f., 1199f.
wavelet transform 595, 1267ff.
Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868ff.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864ff.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm 874, 1339ff.
full multigrid method (FMG) 863, 868, 1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339f.
nonlinear Gauss-Seidel relaxation 876, 1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1099, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337
speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866ff.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866
Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909, 1353ff.
Multiplier of linear congruential generator 268
Multistep and multivalue methods (ODEs) 740ff.
see also Differential Equations; Predictor-corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

NAG 1/xxiii, 2/xx, 26, 64, 205, 454
Fortran 90 compiler 2/ixii, 2/xiv
Named constant 940
initialization 1012
for Numerical Recipes 1361
Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii, 1/xix, 2/ix
Natural cubic spline 109, 1044ff.
Navier-Stokes equation 830ff.
Nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 373, 382f., 1199f.
Nelder-Mead minimization method 389, 402, 1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851, 858
Neutrino 640
Neville’s algorithm 125ff., 140
Newton-Cotes formulas 125ff., 140
Newton-Raphson method see Newton’s rule
Newton’s rule 143ff., 180, 341, 355ff., 362, 364, 469, 1059, 1189
with backtracking 376, 1196
careful use of numerical derivatives 356ff.
fractal domain of convergence 360ff.
globally convergent multidimensional 373, 376ff., 382, 749f., 752, 1196, 1199, 1314ff.
for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f., 752, 754, 1194ff., 1314ff.
in nonlinear multigrid 874, 876, 1339, 1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381
singular Jacobian 386
solving stiff ODEs 740
for square root of number 912, 1356
Niederreiter sequence 300
NL2SOL 683
Noise
bursy 889
effect on maximum entropy method 567
equivalent bandwidth 548
fitting data which contains 647ff., 650
model, for optimal filtering 541
Nominal variable (statistics) 623
Non-interfering directions see Conjugate directions
Nonlinear eigenvalue problems 455
Nonlinear elliptic equations, multigrid method 874ff., 1339ff.
Nonlinear equations, in MEM inverse problems 813
Nonlinear equations, roots of 340ff.
Nonlinear instability 831
Nonlinear integral equations 781, 787
Nonlinear programming 436
Nonnegativity constraints 423
Nonparametric statistics 633ff., 1277ff.
Nonpolynomial complete (NP-complete) 438
Norm, of matrix 50
Normal (Gaussian) distribution 267, 652, 682, 798, 1294
central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 607
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
variance of skewness of 606
Normal equations (fitting) 26, 645, 666ff., 795, 800, 1288
often are singular 670
Normalization
of Bessel functions 175
of floating-point representation 19, 882, 1343
of functions 142, 765
of modified Bessel functions 232
not() intrinsic function 951
Notch filter 551, 555f.
NP-complete problem 438
nr.f90 (module file) 936, 1362, 1384ff.
nerror() utility function 989, 995
nrttype.f90 (module file) 936f.
named constants 1361
nrutil.f90 (module file) 936, 1070, 1362, 1364ff.
table of contents 1364
Null hypothesis 603
nullify statement 953f., 1070, 1302
Nullity 53
Nullspace 25, 53f., 449, 795
Number-theoretic transforms 503f.
Numeric inquiry functions 2/xiv, 1107, 1231, 1343
Numerical derivatives 180ff., 645, 1075
Numerical integration see Quadrature
Numerical intrinsic functions 946, 951f.
Numerical Recipes
compatibility with First Edition 4
Example Book 3
Fortran 90 types 936f., 1361
how to get programs 1/xx, 2/xvii
how to report bugs 1/iv, 2/fv
interface blocks (Fortran 90) 937, 941f., 1084, 1384f.
no warrant on 1/xx, 2/xvii
plan of two-volume edition 1/xiii
table of dependencies 921ff., 1434ff.
as trademark 1/xiii, 2/xx
utility functions (Fortran 90) 936f., 945, 968, 970, 972f., 977, 984, 987ff., 1015, 1071f., 1361f.
address and fax number 1/iv, 1/xii, 2/fv, 2/xx
Web home page 1/xx, 2/xvii
Nyquist frequency 494ff., 520, 543, 545, 569ff.
Nystrom method 782f., 789, 1325
product version 789, 1331
Object extensibility 8
Objective function 424
Object-oriented programming 2/xvi, 2, 8
Oblateness parameter 764
Obsolete features see Fortran, Obsolescent features
Octal constant, initialization 959
Odd-even ordering
allows parallelization 1333
in Gauss-Seidel relaxation 866, 869, 1338
in successive over-relaxation (SOR) 859, 1332
Odd parity 888
OEM information 1/xii
One-sided power spectral density 492
ONLY option, for USE statement 941, 957, 1067
Operation count
balancing 476
Bessel function evaluation 228
bisection method 346
Cholesky decomposition 90
coefficients of interpolating polynomial 114f.
complex multiplication 97
cubic spline interpolation 109
evaluating polynomial 168
fast Fourier transform (FFT) 498
Gauss-Jordan elimination 34, 39
Gaussian elimination 34
Givens reduction 463
Householder reduction 467
interpolation 100
inverse iteration 488
iterative improvement 48
Jacobi transformation 460
Kendall’s tau 637
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear congruential generator</td>
<td>268</td>
</tr>
<tr>
<td>LU decomposition</td>
<td>36, 39</td>
</tr>
<tr>
<td>matrix inversion</td>
<td>97</td>
</tr>
<tr>
<td>matrix multiplication</td>
<td>96</td>
</tr>
<tr>
<td>maximum entropy method</td>
<td>567</td>
</tr>
<tr>
<td>multidimensional minimization</td>
<td>413f.</td>
</tr>
<tr>
<td>multigrid method</td>
<td>862</td>
</tr>
<tr>
<td>multiplication</td>
<td>909</td>
</tr>
<tr>
<td>polynomial evaluation</td>
<td>97f., 168</td>
</tr>
<tr>
<td>QL method</td>
<td>470, 473</td>
</tr>
<tr>
<td>QR decomposition</td>
<td>92</td>
</tr>
<tr>
<td>QR method for Hessenberg matrices</td>
<td>484</td>
</tr>
<tr>
<td>reduction to Hessenberg form</td>
<td>479</td>
</tr>
<tr>
<td>selection by partitioning</td>
<td>333</td>
</tr>
<tr>
<td>sorting</td>
<td>320ff.</td>
</tr>
<tr>
<td>Spearman rank-order coefficient</td>
<td>638</td>
</tr>
<tr>
<td>Toeplitz matrix</td>
<td>83</td>
</tr>
<tr>
<td>Vandermonde matrix</td>
<td>83</td>
</tr>
<tr>
<td>Operator overloading</td>
<td>2/xiif., 7</td>
</tr>
<tr>
<td>Operator splitting</td>
<td>823, 847f., 861</td>
</tr>
<tr>
<td>Operator, user-defined</td>
<td>2/xii</td>
</tr>
<tr>
<td>Optimal feasible vector</td>
<td>424</td>
</tr>
<tr>
<td>Optimal (Wiener) filtering</td>
<td>535, 539ff., 558, 644</td>
</tr>
<tr>
<td>compared with regularization</td>
<td>801</td>
</tr>
<tr>
<td>Optimization</td>
<td>2/xiii</td>
</tr>
<tr>
<td>Optimization of code</td>
<td>2/xiii</td>
</tr>
<tr>
<td>Optional argument</td>
<td>2/xiv, 947f., 1092, 1228, 1230, 1256, 1272, 1275, 1340</td>
</tr>
<tr>
<td>dim</td>
<td>948</td>
</tr>
<tr>
<td>mask</td>
<td>948, 968, 1038</td>
</tr>
<tr>
<td>testing for</td>
<td>952</td>
</tr>
<tr>
<td>Ordering Numerical Recipes</td>
<td>1/xxf., 2/xviif.</td>
</tr>
<tr>
<td>Ordinal variable (statistics)</td>
<td>623</td>
</tr>
<tr>
<td>Ordinary differential equations</td>
<td>see Differential equations</td>
</tr>
<tr>
<td>Orthogonal</td>
<td>see Orthonormal functions; Orthonormal polynomials</td>
</tr>
<tr>
<td>Orthogonal transformation</td>
<td>452, 463ff., 469, 584, 1227</td>
</tr>
<tr>
<td>Orthonormal basis, constructing</td>
<td>58, 94, 1039</td>
</tr>
<tr>
<td>Orthonormal functions</td>
<td>142, 246</td>
</tr>
<tr>
<td>Orthonormal polynomials</td>
<td></td>
</tr>
<tr>
<td>Chebyshev</td>
<td>144, 184ff., 1076ff.</td>
</tr>
<tr>
<td>construct for arbitrary weight</td>
<td>151ff., 1064</td>
</tr>
<tr>
<td>in Gauss-Hermite integration</td>
<td>147, 1062</td>
</tr>
<tr>
<td>and Gaussian quadrature</td>
<td>142, 1009, 1061</td>
</tr>
<tr>
<td>Gaussian weights from recurrence</td>
<td>150, 1064</td>
</tr>
<tr>
<td>Hermite</td>
<td>144, 1062</td>
</tr>
<tr>
<td>Jacobi</td>
<td>144, 1063</td>
</tr>
<tr>
<td>Laguerre</td>
<td>144, 1060</td>
</tr>
<tr>
<td>Legendre</td>
<td>144, 1059</td>
</tr>
<tr>
<td>weight function log x</td>
<td>153</td>
</tr>
<tr>
<td>Orthonormality</td>
<td>51, 142, 463</td>
</tr>
<tr>
<td>Outer product</td>
<td>1017</td>
</tr>
<tr>
<td>Gaussian elimination</td>
<td>1017</td>
</tr>
<tr>
<td>Outer product of matrices (denoted</td>
<td>66, 420, 949, 969f., 989, 1000ff., 1017, 1026, 1040, 1076, 1200, 1216, 1275</td>
</tr>
<tr>
<td>outerrand() utility function</td>
<td>989, 1002, 1015</td>
</tr>
<tr>
<td>outerdiff() utility function</td>
<td>989, 1001</td>
</tr>
<tr>
<td>outerdiv() utility function</td>
<td>989, 1001</td>
</tr>
<tr>
<td>outerprod() utility function</td>
<td>970, 989, 1000, 1017, 1026, 1040, 1076, 1200, 1216, 1275</td>
</tr>
<tr>
<td>outersum() utility function</td>
<td>989, 1001</td>
</tr>
<tr>
<td>Outgoing wave boundary conditions</td>
<td>820</td>
</tr>
<tr>
<td>Outlier</td>
<td>605, 653, 656, 694, 697</td>
</tr>
<tr>
<td>see also Robust estimation</td>
<td></td>
</tr>
<tr>
<td>Overcorrection</td>
<td>857</td>
</tr>
<tr>
<td>Overflow</td>
<td>882, 1343</td>
</tr>
<tr>
<td>how to avoid in modulo multiplication</td>
<td>269</td>
</tr>
<tr>
<td>in complex arithmetic</td>
<td>171</td>
</tr>
<tr>
<td>Overlap-add and overlap-save methods</td>
<td>536f.</td>
</tr>
<tr>
<td>Overloading</td>
<td></td>
</tr>
<tr>
<td>operator</td>
<td>2/xiif.</td>
</tr>
<tr>
<td>procedures</td>
<td>940, 1015, 1083, 1094, 1096</td>
</tr>
<tr>
<td>Overrelaxation parameter</td>
<td>857, 1332</td>
</tr>
<tr>
<td>choice of</td>
<td>858</td>
</tr>
<tr>
<td>Pack() intrinsic function</td>
<td>945, 950, 964, 991, 1031</td>
</tr>
<tr>
<td>communication bottleneck</td>
<td>969</td>
</tr>
<tr>
<td>for index table</td>
<td>1176</td>
</tr>
<tr>
<td>for partition-exchange</td>
<td>1170</td>
</tr>
<tr>
<td>for selection</td>
<td>1178</td>
</tr>
<tr>
<td>for selective evaluation</td>
<td>1087</td>
</tr>
<tr>
<td>Pack-unpack idiom</td>
<td>1087, 1134, 1153</td>
</tr>
<tr>
<td>Padé approximant</td>
<td>194ff., 1080f.</td>
</tr>
<tr>
<td>Padé approximation</td>
<td>105</td>
</tr>
<tr>
<td>Parabolic interpolation</td>
<td>395, 1204</td>
</tr>
<tr>
<td>Parabolic partial differential equations</td>
<td>818, 838ff.</td>
</tr>
<tr>
<td>Parallel axis theorem</td>
<td>308</td>
</tr>
<tr>
<td>Parallel programming</td>
<td>2/xv, 941, 958ff., 962ff., 965f., 968f., 987</td>
</tr>
<tr>
<td>array operations</td>
<td>964f.</td>
</tr>
<tr>
<td>array ranking</td>
<td>1278f.</td>
</tr>
<tr>
<td>band diagonal linear equations</td>
<td>1021</td>
</tr>
<tr>
<td>Bessel functions</td>
<td>1107ff.</td>
</tr>
<tr>
<td>broadcasts</td>
<td>965ff.</td>
</tr>
<tr>
<td>C and C++</td>
<td>2/viii</td>
</tr>
<tr>
<td>communication costs</td>
<td>969, 981, 1250</td>
</tr>
<tr>
<td>counting do-loops</td>
<td>1015</td>
</tr>
<tr>
<td>cyclic reduction</td>
<td>974</td>
</tr>
<tr>
<td>deflation</td>
<td>977ff.</td>
</tr>
<tr>
<td>design matrix</td>
<td>1082</td>
</tr>
<tr>
<td>dimensional expansion</td>
<td>965ff.</td>
</tr>
<tr>
<td>eigensystems</td>
<td>1226, 1229f.</td>
</tr>
<tr>
<td>fast Fourier transform (FFT)</td>
<td>981, 1235ff., 1250</td>
</tr>
<tr>
<td>in Fortran</td>
<td>90, 963ff.</td>
</tr>
<tr>
<td>Fortran tricks</td>
<td>1009, 1274, 1278, 1280</td>
</tr>
<tr>
<td>function evaluation</td>
<td>986, 1009, 1084f., 1087, 1090, 1102, 1128, 1134</td>
</tr>
<tr>
<td>Gaussian quadrature</td>
<td>1009, 1061</td>
</tr>
<tr>
<td>geometric progressions</td>
<td>972</td>
</tr>
<tr>
<td>index loss</td>
<td>967f., 1038</td>
</tr>
<tr>
<td>index table</td>
<td>1176f.</td>
</tr>
<tr>
<td>interprocessor communication</td>
<td>981</td>
</tr>
<tr>
<td>Kendall’s tau</td>
<td>1280</td>
</tr>
<tr>
<td>linear algebra</td>
<td>969f., 1000ff., 1018f., 1026, 1040, 1200, 1326</td>
</tr>
<tr>
<td>linear recurrence</td>
<td>973f., 1073ff.</td>
</tr>
<tr>
<td>logo</td>
<td>2/vii</td>
</tr>
<tr>
<td>masks</td>
<td>967f., 1006f., 1038, 1102, 1200, 1226, 1305, 1333ff., 1368, 1378, 1382</td>
</tr>
<tr>
<td>merge statement</td>
<td>1010</td>
</tr>
</tbody>
</table>
MIMD (multiple instruction, multiple data) 964, 985f., 1084
MMP (massively multiprocessor) machines 965ff., 974, 984, 1016ff., 1226ff., 1250
nrutil.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982f.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178f.
polynomial coefficients from roots 980
polynomial evaluation 972f., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973f., 976f., 979, 988, 999, 1071ff.
scatter-with-combine 984, 1002f., 1032f.
second order recurrence 974f., 1074
SIMD (Single Instruction Multiple Data) 964, 985f., 1009, 1084ff.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176f.
special functions 1009
SSP (small-scale parallel) machines 965ff., 984, 1010ff., 1016ff., 1059f., 1226ff., 1250
subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2/viii, 962
SVD algorithm 1026
synthetic division 977ff., 999, 1048, 1071f., 1079, 1192
tridiagonal systems 975f., 1018, 1229f.
utilities 1364ff.
vector reduction 972f., 977, 998
vs. serial programming 965, 987
PARAMETER attribute 1012
Parameters in fitting function 651, 684ff.
Parity bit 888
Park and Miller minimal standard random generator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544
discrete form 498
Partial differential equations 818ff., 1332ff.
adveective equation 826
alternating-direction implicit method (ADI) 847, 861f.
amplification factor 828, 834
analyze/-factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818f.
cautions on high-order methods 844f.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859f., 1332
classification of 818f.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 842, 844, 846
cyclic reduction (CR) method 848ff., 852f.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820, 840, 850, 856, 858
eLLiptic, defined 818
error, varieties of 831f.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finite element methods 824
flux-conservative initial value problems 835ff.
forward Euler differencing 826f.
Forward Time Centered Space (FTCS) 827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR) 848ff., 854
Gauss-Seidel method (relaxation) 855, 864ff., 876, 1338, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825f.
imPLICIT differencing 840
incomplete Cholesky conjugate gradient method (ICC) 824
inhomogeneous boundary conditions 850f.
initial value problems 818f.
initial value problems, recommendations on 838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplace’s equation 818
Lax method 828ff., 836, 845f.
Lax method (multidimensional) 845f.
matrix methods 824
mesh-drift instability 834f.
Monte Carlo methods 824
multidimensional initial value problems 844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820, 840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847ff., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 508ff., 824, 848ff.
relaxation methods 823, 854ff., 1332f.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs. accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833f.
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff., 862, 866, 1332f.
time splitting 847f., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis 827f., 830, 833ff., 840
wave equation 818, 825ff.
see also Elliptic partial differential equations; Finite difference equations (FDEs)
Partial pivoting 29
Partition-exchange 323, 333
and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff., 263, 1138
Pattern multiply of sparse matrices 74
PCGPACK 71
PDEs see Partial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.
Lomb’s normalized 569f., 574f., 1258ff.
variance of 544f.
Perl (programming language) 1/xvi
Perfection, for convergence of recurrence relations 174ff.
Perturbation methods for matrix inversion 65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Pi, computation of 906ff., 1352ff., 1357f.
Piecewise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757
in linear programming 428f.
Pivoting 27, 29ff., 46, 66, 90, 1014
full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37f., 1017
partial 29, 33, 37f., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43
Pixel 519, 596, 803, 811
PL/I 2/x
Planck’s constant 842
Plane rotation see Givens reduction; Jacobi transformation (or rotation)
Platykurtic distribution 606
Plotting of functions 342, 1182f.
POCS (projection onto convex sets) 805
Poetry 5f.
Pointer (Fortran 90) 2/xiiif., 938f., 944f., 953ff., 1197, 1212, 1266
as alias 939, 944f., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938f., 944f., 952f., 1197
in Fortran 95 961
to function, forbidden 1067, 1210
initialization to null 2/xv, 961
returning array of unknown size 955f., 1184, 1259, 1261, 1327
undefined status 952f., 961, 1070, 1266, 1302
Poisson equation 519, 818, 852
Poisson probability function
cumulative 214
devotes from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653
Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
Poles see Complex plane, poles in
Polishing of roots 356, 363ff., 370ff., 1193
poly() utility function 973, 977, 989, 998, 1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomial interpolation 99, 102ff., 1043
Airy’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficinents for 113ff., 1047f.
Lagrange’s formula 84, 102f.
multidimensional 116ff., 1049ff.
Neville’s algorithm 102f., 105, 134, 182, 1043
pathology in determining coefficients for 116
in predictor-corrector method 740
smoothing filters 645
see also Interpolation
Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials 1062
approximate roots of Jacobi polynomials 1064
approximate roots of Laguerre polynomials 1061
approximating modified Bessel functions 230
approximation from Chebyshev coefficients 191, 1078f.
AUTODIN-II 890
CCITT 889f.
characteristic 368, 1193
for digital filters 554, 559, 1257
characteristic, for eigenvalues of matrix 449, 469
Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071f., 1192, 1365, 1378f.
deflation 362ff., 370f., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 167, 972, 977, 998f., 1071, 1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method 724, 726, 1305f.
evaluation in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1071f., 1291
generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
minimax 186, 198, 1076
monic 142f.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998f., 1071f., 1192
primitive modulo 2 287ff., 301f., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192f., 978, 1079
stopping criterion in root finding 366
polym() intrinsic function 974, 977, 989, 999, 1071f., 1192
Port, serial data 892
Portability 3, 963
Portable random number generator see Random number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xxiii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492f.
Power series 159ff., 167, 195
economization of 192f., 1061, 1080
Pade approximant of 194ff., 1080ff.
Power spectral density see Fourier transform; Spectral density
Power spectrum estimation see Fourier transform; Spectral density
PowerStation, Microsoft Fortran 2/xix
PPM (piecewise parabolic method) 837
Precision
converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362
Preconditioned biconjugate gradient method (PBCG) 78f.
Preconditioning, in conjugate gradient methods 824
Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744
compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalue compared with multistep 742ff.
starting and stopping 742, 744
stepsize control 742f.
present() intrinsic function 952
Prime numbers 915
Principal polynomials modulo 2 287ff., 301f., 889
Principal directions 408f., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prize, $1000 offered 272, 1141, 1150f.
Probability see Random number generator;
Statistical tests
Probability density, change of variables in 278f.
Procedure see Program(s); Subprogram
Process loss 548
Product intrinsic function 948
Product Nystrom method 789, 1331
Program(s)
as black boxes 1/xv, 6, 26, 52, 205, 341, 406
dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.
Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density) see Fourier transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PURE attribute 2/xv, 960f., 964, 986
put() intrinsic function 985, 990, 1005, 1200
Pyramidal algorithm 586, 1264
Pythagoreans 392
interpolation 353, 364
programming 436
Quadrature 123ff., 1052ff.
 adaptive 123, 190, 788
 alternative extended Simpson’s rule 128
 arbitrary weight function 151ff., 789,
 1064, 1328
 automatic 154
 Bode’s rule 126
 change of variable in 137ff., 788, 1056ff.
 by Chebyshev fitting 124, 189, 1078
 classical formulas for 124ff.
 Clenshaw-Curtis 124, 190, 512f.
 closed formulas 125, 127f.
 and computer science 881
 by cubic splines 124
 error estimate in solution 784
 extended midpoint rule 129f., 135, 1054f.
 extended rules 127ff., 134f., 786, 788ff.,
 1326, 1328
 extended Simpson’s rule 128
 Fourier integrals 577ff., 1261ff.
 Fourier integrals, infinite range 583
 Gauss-Chebyshev 144, 512f.
 Gauss-Hermite 144, 789, 1062
 Gauss-Jacobi 144, 1063
 Gauss-Kronrod 154
 Gauss-Laguerre 144, 789, 1060
 Gauss-Legendre 144, 783, 789, 1059,
 1325
 Gauss-Lobatto 154, 190, 512
 Gauss-Radau 154
 Gaussian integration 127, 140ff., 781,
 783, 788f., 1009, 1059f., 1325, 1328f.
 Gaussian integration, nonclassical weight
 function 151ff., 788f., 1064f., 1328f.
 for improper integrals 135ff., 789, 1055,
 1328
 for integral equations 781f., 786, 1325ff.
 Monte Carlo 124, 155ff., 295ff., 306ff.,
 1161ff.
 multidimensional 124, 155ff., 1052, 1065f.
 multidimensional, by recursion 1052, 1065
 Newton-Cotes formulas 125ff., 140
 open formulas 125ff., 129ff., 135
 related to differential equations 123
 related to predictor-corrector methods 740
 Romberg integration 124, 134f., 137, 182,
 717, 788, 1054f., 1065, 1067
 semi-open formulas 130
 Simpson’s rule 126, 133, 136f., 583, 782,
 788ff., 1053
 Simpson’s three-eighths rule 126, 789f.
 singularity removal 137ff., 788, 1057ff.,
 1328ff.
 singularity removal, worked example 792,
 1328ff.
 trapezoidal rule 125, 127, 130f., 134f.,
 579, 583, 782, 786, 1052ff., 1326f.
 using FFTs 124
 weight function log x 153
 see also Integration of functions
Quadrature mirror filter 585, 593
Quantum mechanics, Uncertainty Principle
 600
Quartile value 320
Quasi-Newton methods for minimization 390,
 418ff., 1215
Quasi-random sequence 299ff., 318, 881, 888
 Halton’s 300
 for Monte Carlo integration 304, 309, 318
 Sobol’s 300ff., 1160
 see also Random number generator
Quicksort 320, 323ff., 330, 333, 1169ff.
Quotient-difference algorithm 164
R-estimates 694
Radioactive decay 278
Radix base for floating point arithmetic 476,
 882, 907, 913, 1231, 1343, 1357
Radix conversion 902, 906, 913, 1357
radix() intrinsic function 1231
Radix sort 1172
Ramanujan’s identity for π 915
Random bits, generation of 287ff., 1159f.
Random deviations 266ff., 1141ff.
 binomial 285f., 1155
 exponential 278, 1151f.
 gamma distribution 282f., 1153
 Gaussian 267, 279ff., 571, 798, 1152f.
 normal 267, 279ff., 571, 1152f.
 Poisson 283ff., 571, 1154f.
 quasi-random sequences 299ff., 881, 888,
 1160f.
 uniform 267ff., 1158f., 1166
 uniform integer 270, 274ff.
Random number generator 266ff., 1141ff.
 bitwise operations 287
 Box-Muller algorithm 279, 1152
 Data Encryption Standard 290ff., 1144,
 1156ff.
 good choices for modulus, multiplier and
 increment 274ff.
 initializing 1144ff.
 for integer-valued probability distribution
 283f., 1154
 integer vs. real implementation 273
 L’Ecuyer’s long period 271f.
 lagged Fibonacci generator 1142, 1148ff.
 linear congruential generator 267ff., 1142
 machine language 269
 Marsaglia shift register 1142, 1148ff.
 Minimal Standard, Park and Miller’s 269,
 1142
 nonrandomness of low-order bits 268ff.
 parallel 1009
 perfect 272, 1141, 1150f.
 planes, numbers lie on 268
 portable 269ff., 1142
 primitive polynomials modulo 2 287ff.
 pseudo-DES 291, 1144, 1156ff.
 quasi-random sequences 299ff., 881, 888,
 1160f.
 quick and dirty 274
 quicker and dirtier 275
 in Quicksort 324
 random access to n’th number 293
random bits 287ff., 1159f.
recommendations 276ff.
rejection method 281ff.
serial 1141f.
shuffling procedure 270, 272
in simulated annealing method 438
spectral test 274
state space 1143f.
state space exhaustion 1141
subtractive method 273, 1143
system-supplied 267f.
timings 276f., 1151
transformation method 277ff.
trick for trigonometric functions 280

Random numbers see Monte Carlo; Random
deviates
Random walk 20
random_number() intrinsic function 1141, 1143
random_seed() intrinsic function 1141
RANDU, infamous routine 268
Range 53f.
Rank (matrix) 53
kernel of finite 785
Rank (statistics) 633ff., 694f., 1277
Kendall’s tau 637ff., 1279
Spearman correlation coefficient 634f., 1277ff.
squared differences of 634, 1277
Ratio variable (statistics) 623
Rational Chebyshev approximation 197ff., 1081f.
Rational function 99, 167ff., 194ff., 1080f.
approximation for Bessel functions 225
approximation for continued fraction 164, 211, 219ff.
Chebyshev approximation 197ff., 1081f.
evaluation of 170, 1072f.
extrapolation in Bulirsch-Stoer method 718ff., 726, 1306f.
interpolation and extrapolation using 99, 104ff., 194ff., 718ff., 726
as power spectrum estimate 566
interpolation and extrapolation using 1043ff., 1080ff., 1306
minimax 198
Re-entrant procedure 1052
real() intrinsic function, ambiguity of 947
Reallocable (causal) 552, 554ff.
reallocate() utility function 955, 990, 992, 1070, 1302
Rearranging see Sorting
Reciprocal, multiple precision 910f., 1355f.
Record, in data file 329
Recurrence relation 172ff., 971ff.
associated Legendre polynomials 247
Bessel function 172, 224, 227ff., 234
binomial coefficients 209
Bulirsch-Stoer 105f.
characteristic polynomial of tridiagonal matrix 469
Chebyshev’s recurrence formula 176f.
and continued fraction evaluation 164f.
continued fraction evaluation 164f.
convergence 175
cosine function 172, 500
cyclic reduction 974
dominant solution 174
exponential integrals 172
gamma function 206
generation of random bits 287ff.
geometric progression 972, 996
Golden Mean 21
Legendre polynomials 172
modified Bessel function 232
Neville’s 103, 182
orthonormal polynomials 142
Perron’s theorems 174f.
Pincherle’s theorem 175
for polynomial cumulants 977, 999, 1071f.
polynomial interpolation 103, 183
primitives polynomials modulo 2 287f.
random number generator 268
rational function interpolation 105f., 1043
recursive doubling 973, 977, 988, 999,
1071ff., 1073
second order 974f., 1074
sequence of trig functions 173
sine function 172, 500
spherical harmonics 247
stability of 21, 173ff., 177, 224f., 227ff.,
232, 247, 975
trig functions 572
weight of Gaussian quadrature 144f.
Recursion
in Fortran 90 958
in multigrid method 865, 1009, 1336
Recursive doubling 973f., 979
cumulants of polynomial 977, 999, 1071f.
linear recurrences 973, 988, 1073
tridiagonal systems 976
RECURSIVE keyword 958, 1065, 1067
Recursive Monte Carlo integration 306ff., 1161
Recursive procedure 2/xiv, 958, 1065, 1067,
1166
as parallelization tool 958
base case 958
for multigrid method 1009, 1336
re-entrant 1052
Recursive stratified sampling 314ff., 1164ff.
Red-black see Odd-even ordering
Reduction functions 948ff.
Reduction of variance in Monte Carlo integra-
tion 299, 306ff.
References (explanation) 4f.
References (general bibliography) 916f.,
1359f.
Reflection formula for gamma function 206
Regula falsi (false position) 347ff., 1185f.
Regularity condition 775
Regularization
compared with optimal filtering 801
constrained linear inversion method 799ff.
constrained linear inversion method of inverse problems 796f.
linear 799ff.
nonlinear 813
Index to Volumes 1 and 2

1479

objective criterion 802
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zroth order 797
see also Inverse problems
Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number generator 281ff.
Relaxation method
for algebraically difficult sets 763
automated allocation of mesh points 774ff., 777
computation of spheroidal harmonics 764ff., 1319ff.
for differential equations 746ff., 753ff., 1316ff.
elliptic partial differential equations 823, 854ff., 1332ff.
example 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876, 1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855f., 864
successive over-relaxation (SOR) 857ff., 862, 866, 1332f.
see also Multigrid method
Remes algorithms
exchange algorithm 553
for minimax rational function 199
reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246
Residual 49, 54, 78
in multigrid method 863, 1338
Resolution function, in Backus-Gilbert method 807
Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward, $1000 offered 272, 1141, 1150ff.
Richardson’s deferred approach to the limit 134, 137, 182, 702, 718ff., 726, 788, 869
see also Bulirsch-Stoer method
Richtmeyer artificial viscosity 837
Ridders’ method, for numerical derivatives 182, 1075
Ridders’ method, root finding 341, 349, 351, 1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548ff.
Robust estimation 653, 694ff., 700, 1294
Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696f.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697
use of a priori covariances 700
see also Statistical tests
Romberg integration 124, 134ff., 137, 182, 717, 788, 1054ff., 1065
Root finding 143, 340ff., 1009, 1059
advanced implementations of Newton’s rule 386
Bairstow’s method 364, 370, 1193
bisection 343, 346ff., 352ff., 359, 390, 469, 698, 1184f.
Brent’s method 341, 349, 660ff., 1188ff., 1286
Broyden’s method 373, 382ff., 386, 1199
compared with multidimensional minimization 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
deflation of polynomials 362ff., 370ff., 1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185ff.
Jenkins-Traub method 369
Laguerre’s method 341, 366ff., 1191f.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191f.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 341, 366ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399, 1186f.
in shooting method 746, 749ff., 1314f.
singular Jacobian in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see also Roots
Root polishing 356, 363ff., 369ff., 1193
Roots
Chebyshev polynomials 184
complex nth root of unity 999ff., 1379
cubic equations 179ff.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191f.
quadratic equations 178
reflection in unit circle 560, 1257
square, multiple precision 912, 1356
see also Root finding
Rosenbrock method 730, 1308
compared with semi-implicit extrapolation 739
steps in size control 731, 1308f.
Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476, 479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
goodness 47, 1022
Householder reduction 466
IEEE standard 882f., 1343
iterations 100
least squares fitting 658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47, 56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 458, 467, 470, 473, 476, 479, 483
multiple roots 362
numerical derivatives 180f.
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607
Row degeneracy 22
Row-indexed sparse storage 71f., 1030
transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transitive) 338
Runge-Kutta method 702, 704ff., 731, 740, 1297ff., 1308
Cash-Karp parameters 710, 1299f.
embedded 709ff., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.
Run-length encoding 901
Runge-Kutta method
high-order 1297
stepsize control 1298f.
Rybicki, G.B. 84ff., 114, 145, 252, 522, 574, 600
S-box for Data Encryption Standard 1148
Sampling
importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
even or irregular 569, 648ff., 1258
Sampling theorem 495, 543
for numerical approximation 600ff.
Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070, 1266, 1293
redundant use of 958f.
SAVE statements 3
Savitzky-Golay filters
for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645
scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f., 1032, 1366, 1380f.
scatter_add() utility function 984, 990, 1002, 1032
scatter_max() utility function 984, 990, 1003
Schoenfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching
with correlated values 111, 1046f.
an ordered table 110f., 1045f.
selection 333, 1177f.
Secant method 341, 347ff., 358, 364, 399, 1186f.
Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382f., 1199
Second Euler-Maclaurin summation formula 135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.
find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange 333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609
Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730, 735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.
Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing
convergence of quadrature 1060
random numbers 1141
sorting 1167
Serial data port 892
Series 159ff.
 accelerating convergence of 159ff.
 alternating 160f., 1070
 asymptotic 161
 Bessel function $K_
u$ 241
 Bessel function $Y_
u$ 235
 Bessel functions 160, 223
 cosine integral 250
 divergent 161
 economization 192f., 195, 1080
 Euler's transformation 160f., 1070
 exponential integral 216, 218
 divergent 161
 Euler's transformation 160f., 1070
 Fresnel integral 250
 hypergeometric 202, 263, 1138
 incomplete beta function 219
 incomplete gamma function 210, 1090f.
 Laurent 566
 relation to continued fractions 163f.
 roundoff error in 164f.
 sine and cosine integrals 250
 sine function 160
 Taylor 355f., 408, 702, 709, 754, 759
 transformation of 160ff., 1070
 van Wijngaarden's algorithm 161, 1070
 Shaft encoder 886
 Shakespeare 9
 Shampine's Rosenbrock parameters 732, 1308
 shape() intrinsic function 938, 949
 Shell algorithm (Shell's sort) 321ff., 1168
 Sherman-Morrison formula 65ff., 83, 382
 Shifting of eigenvalues 449, 470f., 480
 Shifting to improve random number generator 270, 272
 Side effects
 prevented by data hiding 957, 1209, 1293, 1296
 and PURE subprograms 960
 Sidelobe fall-off 548
 Sidelobe level 548
 sign() intrinsic function, modified in Fortran 95 961
 Sign of data limited 495
 Significance (numerical) 19
 Significance (statistical) 609f.
 one- vs. two-sided 632
 peak in Lomb periodogram 570
 of 2-d K-S test 640, 1281
 two-tailed 613
 SIMD machines (Single Instruction Multiple Data) 964, 985f., 1009, 1084f.
 Similarity transform 452ff., 456, 476, 478, 482
 Simplex
 defined 402
 use in simulated annealing 444, 1222ff.
 Simpson's rule 124ff., 128, 133, 136f., 583, 782, 788f., 1053f.
 Simpson's three-eighths rule 126, 789f.
 Simulated annealing see Annealing, method of simulated
 Simulation see Monte Carlo
 Sine
 function evaluated from $\tan(\theta/2)$ 173
 recurrence 172
 series 160
 Sine integral 248, 250ff., 1123, 1125f.
 continued fraction 250
 series 250
 Sine transform see Fast Fourier transform (FFT); Fourier transform
 Singleton's algorithm for FFT 525
 Singular value decomposition (SVD) 23, 25, 51ff., 1022
 approximation of matrices 58f.
 backsubstitution 56, 1022f.
 and bases for nullspace and range 53
 confidence levels from 693f.
 covariance matrix 693f.
 fewer equations than unknowns 57
 for inverse problems 797
 and least squares 54ff., 199f., 668, 670ff., 1081, 1290f.
 in minimization 410
 more equations than unknowns 57f.
 parallel algorithms 1026
 and rational Chebyshev approximation 199f., 1081f.
 of square matrix 53ff., 1023
 use for ill-conditioned matrices 56, 58, 449
 use for orthonormal basis 58, 94
 Singularities
 of hypergeometric function 203, 263
 in integral equations 788ff., 1328
 in integral equations, worked example 792, 1282ff.
 in integrands 135ff., 788, 1055, 1328ff.
 removal in numerical integration 137ff., 788, 1057ff., 1328ff.
 Singularity, subtraction of the 789
 SIPSOL 824
 Six-step framework, for FFT 983, 1240
 size() intrinsic function 938, 942, 945, 948
 Skew array section 2xii, 945, 960, 985, 1284
 Skewness of distribution 606, 608, 1269
 Smoothing
 of data 114, 644ff., 1283f.
 of data in integral equations 781
 importance in multigrid method 865
 sn function 261, 1137f.
 Snyder, N.L. 1/xvi
 Sobol's quasi-random sequence 300ff., 1160f.
 Sonata 9
 Sonnet 9
 Sorting 320ff., 1167ff.
 bubble sort 1168
Index to Volumes 1 and 2

bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461f., 1227
Heapsort 320, 327f., 336, 1171f., 1179
index table 320, 329f., 1170, 1173ff., 1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171f., 1176
Quicksort 320, 323ff., 330, 333, 1169f.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell’s method 321ff., 1168
straight insertion 321f., 461f., 1167, 1227
SP, defined 937
SPARC or SPARCstation 1/xxii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030
band diagonal 43, 1019ff.
biconjugate gradient method 77, 599, 1034
data type for 1030
indexed storage 71ff., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value problems 754, 1316
row-indexed storage 71ff., 1030
wavelet transform 584, 598
see also Matrix
Spearman rank-order coefficient 634f., 694f., 1277
Special functions see Function
Spectral analysis see Fourier transform; Periodogram
Spectral density 541
and data windowing 545ff.
figures of merit for data windows 548f.
normalization conventions 542f.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff., 1254ff.
power spectrum estimation by MEM 565ff., 1258
two-sided PSD 493
variance reduction in spectral estimation 545
Spectral lines, how to smooth 644
Spectral methods for partial differential equations 825
Spectral radius 856ff., 862
Spectral test for random number generator 274
Spectrum see Fourier transform
Spherical Bessel functions 234
routine for 245, 1121
Spherical harmonics 246ff.
orthogonality 246
routine for 247f., 1122
stable recurrence for 247
table of 246
see also Associated Legendre polynomials
Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.
Spline 100
cubic 107ff., 1044f.
gives tridiagonal system 109
natural 109, 1044f.
operation count 109
two-dimensional (bicubic) 120f., 1050f.
spread(/) intrinsic function 945, 950, 969, 1000, 1094, 1290f.
and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision 912, 1356f.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff., 972, 974, 984, 1011, 1016ff., 1021, 1059f., 1226ff., 1250
Stability 20ff.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-drift in PDEs 834f.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation 787f.
of recurrence relations 173ff., 177, 224f., 227f., 232, 247
and stiff differential equations 728ff.
von Neumann analysis for PDEs 827f., 830, 833f., 840
see also Accuracy
Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833f.
Standard (probable) errors 1288, 1290
Standard deviation
of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635, 1277
Standard (probable) errors 610, 656, 661, 667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal subprogram 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1260ff.
Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686f.
chi-square 614f., 623ff., 1272, 1275f.
contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff., 1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631f., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640, 694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603ff., 608ff., 1269f.
measures of association 604, 622ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. for spread 620f.
significance 609f., 1269f.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f., 694f., 1277
standard deviation 605, 1269
strength vs. significance 609f., 622
Student’s t 610, 631, 1269
Student’s t, for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coefficient 634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635, 1277
Tukey’s trimean 694
two-dimensional 640, 1281ff.
variance 603ff., 607ff., 612ff., 1269ff.
Wilcoxon 694
see also Error; Robust estimation
Steak, without sizzle 809
Steed’s method
Bessel functions 234, 239
continued fractions 164f.
Steepest descent method 414
in inverse problems 804
Step
doubling 130, 708f., 1052
tripling 136, 1055
Stieljes, procedure of 151
Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
r.h.s. independent of x 729f.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730, 1310f.
semi-implicit midpoint rule 735f., 1310f.
Stiff functions 100, 399
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multigrid method 875f.
Stopping criterion, in polynomial root finding 366
Storage
band diagonal matrix 44, 1019
sparse matrices 71f., 1030
Storage association 2/xiv
straight injection 867
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944
communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structured programming 5ff.
Student’s probability distribution 221f.
Student’s t-test
for correlation 631
for difference of means 610, 1269
for difference of means (paired samples) 612, 1271
for difference of means (unequal variances) 611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634, 1277
Sturmian sequence 469
Sub-random sequences see Quasi-random sequence
Subprogram 938
for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961, 1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision 907, 1353
Subtractive method for random number generator 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862, 1332f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333
sum intrinsic function 945, 948, 966
Sum squared difference of ranks 634, 1277
Sum see Series
Sun 1/xxii, 2/xix, 886
Supernova 1987A 640
SVD see Singular value decomposition (SVD)
Symbol, of operator 866f.
Synthetic division 84, 167, 362, 370
Taylor series 180, 355f., 408, 702, 709, 742, 754, 759
Test programs 3
Thermodynamics, analogy for simulated annealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74, 1031
Tides 560ff.
Tikhonov-Miller regularization 799ff.
Time domain 490
Time splitting 847f., 861
Toepitz matrix 82, 85ff., 195, 1038
Transformation
Gauss 256
Landen 256
method for random number generator 277ff.
Transformational functions 948ff.
Transforms, number theoretic 503ff.
Transport error 831ff.
transpose() intrinsic function 950, 960, 969, 981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134f., 579, 583, 782, 786, 1052, 1326f.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488, 839f., 1018f.
in alternating-direction implicit method (ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
reduction of symmetric matrix to 462ff., 470, 1227f.
serial algorithm 1018f.
see also Matrix
Trigonometric functions, linear sequences 173
functions, recurrence relation 172, 572
functions, tan(θ/2) as minimal 173
interpolation 99
solution of cubic equation 179f.
Truncation error 20ff., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180
Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensional see Multidimensional
Two-dimensional K–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702, 745ff., 1314ff.
automated allocation of mesh points 774f., 777
boundary conditions 745ff., 749, 751f., 771, 1314ff.
difficult cases 753, 1315f.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774f., 777
internal boundary conditions 775ff.
internal singular points 775ff.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff., 1319
shooting to a fitting point 751ff., 1315f., 1323ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f., 1319ff.
see also Elliptic partial differential equations
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-step Lax-Wendroff method 835ff.
Two-volume edition, plan of 1/xxiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2
U-bound() intrinsic function 949
ULTRIX 1/xxiii, 2/xix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f., 961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviates see Random deviates, uniform
Index to Volumes 1 and 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unitary (function)</td>
<td>843f.</td>
</tr>
<tr>
<td>Unitary (matrix)</td>
<td>see Matrix</td>
</tr>
<tr>
<td>unit() utility function</td>
<td>985, 990, 1006, 1216, 1226, 1325</td>
</tr>
<tr>
<td>UNIX</td>
<td>1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293, 886</td>
</tr>
<tr>
<td>Upper Hessenberg matrix</td>
<td>see Hessenberg matrix</td>
</tr>
<tr>
<td>U.S. Postal Service barcode</td>
<td>894</td>
</tr>
<tr>
<td>unpack() intrinsic function</td>
<td>950, 964</td>
</tr>
<tr>
<td>communication bottleneck</td>
<td>969</td>
</tr>
<tr>
<td>Upper subscript</td>
<td>944</td>
</tr>
<tr>
<td>upper() utility function</td>
<td>990, 1006, 1226, 1305</td>
</tr>
<tr>
<td>Upwind differencing</td>
<td>832f., 837</td>
</tr>
<tr>
<td>USE statement</td>
<td>936, 939f., 954, 957, 1067, 1384</td>
</tr>
<tr>
<td>USES keyword in program listings</td>
<td>2</td>
</tr>
<tr>
<td>Utility functions</td>
<td>987ff., 1364ff.</td>
</tr>
<tr>
<td>add vector to matrix diagonal</td>
<td>1004, 1234, 1366, 1381</td>
</tr>
<tr>
<td>alphabetical listing</td>
<td>988ff.</td>
</tr>
<tr>
<td>argument checking</td>
<td>994f., 1370f.</td>
</tr>
<tr>
<td>arithmetic progression</td>
<td>996, 1072, 1127, 1365, 1371f.</td>
</tr>
<tr>
<td>array reallocation</td>
<td>992, 1070f., 1365, 1368f.</td>
</tr>
<tr>
<td>assertion of numerical equality</td>
<td>995, 1022, 1365, 1370f.</td>
</tr>
<tr>
<td>compared to intrinsics</td>
<td>990ff.</td>
</tr>
<tr>
<td>complex nth root of unity</td>
<td>999f., 1379</td>
</tr>
<tr>
<td>copying arrays</td>
<td>991, 1034, 1327f., 1365f.</td>
</tr>
<tr>
<td>create unit matrix</td>
<td>1006, 1382</td>
</tr>
<tr>
<td>cumulative product of an array</td>
<td>997f., 1072, 1086, 1375</td>
</tr>
<tr>
<td>cumulative sum of an array</td>
<td>997, 1280f., 1365, 1375</td>
</tr>
<tr>
<td>data types</td>
<td>1361</td>
</tr>
<tr>
<td>elemental functions</td>
<td>1364</td>
</tr>
<tr>
<td>error handling</td>
<td>994f., 1036, 1370f.</td>
</tr>
<tr>
<td>generic functions</td>
<td>1364</td>
</tr>
<tr>
<td>geometric progression</td>
<td>996f., 1365, 1372ff.</td>
</tr>
<tr>
<td>get diagonal of matrix</td>
<td>1005, 1226f., 1366, 1381f.</td>
</tr>
<tr>
<td>length of a vector</td>
<td>1008, 1383</td>
</tr>
<tr>
<td>linear recurrence</td>
<td>996</td>
</tr>
<tr>
<td>location in an array</td>
<td>992ff., 1015, 1017ff.</td>
</tr>
<tr>
<td>location of first logical “true”</td>
<td>993, 1041, 1369</td>
</tr>
<tr>
<td>location of maximum array value</td>
<td>993, 1015, 1017, 1365, 1369</td>
</tr>
<tr>
<td>location of minimum array value</td>
<td>993, 1369f.</td>
</tr>
<tr>
<td>logical assertion</td>
<td>994, 1086, 1090, 1092, 1365, 1370</td>
</tr>
<tr>
<td>lower triangular mask</td>
<td>1007, 1200, 1382</td>
</tr>
<tr>
<td>masked polynomial evaluation</td>
<td>1378</td>
</tr>
<tr>
<td>masked swap of elements in two arrays</td>
<td>1368</td>
</tr>
<tr>
<td>moving data</td>
<td>990ff., 1015</td>
</tr>
<tr>
<td>multiply vector into matrix diagonal</td>
<td>1004f., 1366, 1381</td>
</tr>
<tr>
<td>nrutil.f90 (module file)</td>
<td>1364ff.</td>
</tr>
<tr>
<td>outer difference of vectors</td>
<td>1001, 1366, 1380</td>
</tr>
<tr>
<td>outer logical and of vectors</td>
<td>1002</td>
</tr>
<tr>
<td>outer operations on vectors</td>
<td>1000ff., 1379f.</td>
</tr>
<tr>
<td>outer product of vectors</td>
<td>1000f., 1076, 1365f., 1379</td>
</tr>
<tr>
<td>outer quotient of vectors</td>
<td>1001, 1379</td>
</tr>
<tr>
<td>outer sum of vectors</td>
<td>1001, 1379f.</td>
</tr>
<tr>
<td>overloading</td>
<td>1364</td>
</tr>
<tr>
<td>partial cumulants of a polynomial</td>
<td>999, 1071, 1192f., 1365, 1378f.</td>
</tr>
<tr>
<td>polynomial evaluation</td>
<td>996, 998f., 1258, 1365, 1376f.</td>
</tr>
<tr>
<td>scatter-with-add</td>
<td>1002f., 1032f., 1366, 1380f.</td>
</tr>
<tr>
<td>scatter-with-combine</td>
<td>1002f., 1380f.</td>
</tr>
<tr>
<td>scatter-with-max</td>
<td>1003f., 1366, 1381</td>
</tr>
<tr>
<td>set diagonal elements of matrix</td>
<td>1005, 1200, 1366, 1382</td>
</tr>
<tr>
<td>skew operation on matrices</td>
<td>1004ff., 1381ff.</td>
</tr>
<tr>
<td>swap elements of two arrays</td>
<td>991, 1015, 1365ff.</td>
</tr>
<tr>
<td>upper triangular mask</td>
<td>1006, 1226, 1305, 1382</td>
</tr>
</tbody>
</table>

V-cycle
- 865, 1336

VABS
- utility function 990, 1008, 1290

Validation of Numerical Recipes procedures
- 3f.

Valley, long or narrow
- 403, 407, 410

Van Cittert’s method
- 804

Van Wijngaarden-Dekker-Brent method
- see Brent’s method

Vandermonde matrix
- 82ff., 114, 1037, 1047

Variable length code
- 896, 1346ff.

Variable metric method
- 390, 418ff., 1215

compared to conjugate gradient method
- 418

Variable step-size integration
- 123, 135, 703, 707ff., 720, 726, 731, 737, 742ff., 1298ff., 1303, 1308f., 1311ff.

Variance(s)
- correlation 605
- of distribution 603ff., 608, 611, 613, 1269
- pooled 610
- reduction of (in Monte Carlo) 299, 306ff.
- statistical differences between two 609, 1271
- two-pass algorithm for computing 607, 1269

Variational methods, partial differential equations
- 824

VAX
- 275, 293

Vector(s)
- length 1008, 1383
- norms 1306
- outer difference 1001, 1366, 1380
- outer operations 1000f., 1379f.
- outer product 1000f., 1076, 1365f., 1379f.
- Vector reduction 972, 977, 998
- Vector subscripts 2/xii, 984, 1002, 1032, 1034
- communication bottleneck 969, 981, 1250
- VEGAS algorithm for Monte Carlo 309ff., 1161
- Verhoeff’s algorithm for checksums 894f., 1345
Index to Volumes 1 and 2

Viète’s formulas for cubic roots 179
Vienna Fortran 2/xv
Viscosity
artificial 831, 837
numerical 830f., 837
Visibility 956ff., 1209, 1293, 1296
VMS 1/xii, 2/xix
Volterra equations 780f., 1326
 adaptive stepsize control 788
 analogy with ODEs 786
 block-by-block method 788
 first kind 781, 786
 nonlinear 781, 787
 second kind 781, 786ff., 1326f.
 unstable quadrature 787f.
von Neumann, John 963, 965
von Neumann-Richtmyer artificial viscosity 837
von Neumann stability analysis for PDEs 827f.,
 830, 833f., 840f.
Vowelish (coding example) 896f., 902
W
 cycle 865, 1336
 Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.
 approximation of wavelets 590ff.
 approximation condition of order p 585
 coefficient values 586, 589, 1265
 contrasted with Fourier transform 584, 594
 Daubechies wavelet filter coefficients 584ff.,
 588, 590ff., 594, 598, 1264ff.
 detail information 585
 discrete wavelet transform (DWT) 586f.,
 1264
 DWT (discrete wavelet transform) 586f.,
 1264ff.
 eliminating wrap-around 587
 fast solution of linear equations 597ff.
 filters 592f.
 and Fourier domain 592f.
 image processing 596f.
 for integral equations 782
 in inverse 587
 Lemarie’s wavelet 593
 of linear operator 597ff.
 mother-function coefficient 587
 mother functions 584
 multidimensional 595, 1267f.
 nonsmoothness of wavelets 591
 pyramidal algorithm 586, 1264
 quadrature mirror filter 585
 smooth information 585
 truncation 594f.
 wavelet filter coefficient 584, 587
 wavelets 584, 590ff.
Wavelets see Wavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fitting see Least squares fitting
Weighting, full vs. half in multigrid 867
Weights for Gaussian quadrature 140ff., 788f.,
 1059ff., 1328f.
 nonclassical weight function 151ff., 788f.,
 1064f., 1328f.
 Welch window 547, 1254ff.
 WG5 (ISO/IEC JTC1/SC22/WG5 Committee) 2/xiff.
 where construct 943, 1291
 contrasted with merge 1023
 for iteration of a vector 1060
 nested 2/xv, 943, 960, 1100
 not MIMD 985
While iteration 13
Wiener filtering 535, 539ff., 558, 644
 compared to regularization 801
Wiener-Khinchin theorem 492, 558, 566f.
Wilcoxon test 694
Window function
 Bartlett 547, 1254ff.
 flat-topped 549
 Hamming 547
 Hann 547
 Parzen 547
 square 544, 546, 1254ff.
 Welch 547, 1254ff.
Windowing for spectral estimation 1255f.
 Windows 95 2/xix
 Windows NT 2/xix
Winograd Fourier transform algorithms 503
Woodbury formula 68ff., 83
Wordlength 18
 Workspace, reallocation in Fortran 90 1070f.
 World Wide Web, Numerical Recipes site 1/xx, 2/xvii
Wraparound
 in integer arithmetic 1146, 1148
 order for storing spectrum 501
 problem in convolution 533
Wronskian, of Bessel functions 234, 239
X
 .25 protocol 890
 X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 959,
 964, 968, 990
 XMODEM checksum 889
 X-ray diffraction pattern, processing of 805
Y
 ale Sparse Matrix Package 64, 71
Z
 -transform 554, 559, 565
 Z-transformation, Fisher’s 631ff., 1276
 Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroth-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots(unity()) utility function 974, 990, 999