[z

Object-Oriented Features
in Fortran 2003

Reinhold Bader

Leibniz Supercomputing Centre
Munich
December 2007

©2006-8 LRZ 1

Characterization of l \
object-oriented (OO) programming (1) w

Following the Wikipedia entry
http://en.wikipedia.org/wiki/Object-oriented _programming

the following properties are relevant:

1. Class: Unit of definition of data and behaviour (=methods) of some-kind-of-
thing; the basis of modularity and structure in an object oriented program.

Fortran 95 support:
® type definitions
® contained subroutines
® within a module (re-use)

Fortran 2003 support:
® by compatibility
® class keyword
= refers to inheritance/polymorphism

=g« improves abstraction

©2006-8 LRZ 2

http://en.wikipedia.org/wiki/Object-oriented_programming

Characterization of l ._
object-oriented programming (2) [5]-

2. Object: An instance of a class, an object is a run-time manifestation of an
exemplar of a class. Each object has its own (separate) data, which
characterize the state of the object
Fortran 95 support:

® type(...) :: object declaration
=g default initialization
® dynamically via pointer attribute

@® array support
= dynamic arrays via allocatable attribute

= infrinsics for array manipulation

@® structure constructor

Fortran 2003 support:
® by compatibility
® allocate is much more powerful

©2006-8 LRZ 3

Characterization of l ._
object-oriented programming (3) [5]-

3. Encapsulation: protection of the internal structure of objects against
manipulation, unless via the objects' exposed interface.

Fortran 95 support:
® module concept

=i module (not class) is unit of encapsulation

® impose access limits: public and private
attributes
=g« type definitions, fype components

e g\oba\ variables and contained subroutines

Fortran 2003 support:
® by compatibility
® more fine-grained
== required because of type extensibility

® new attribute protected
=& global objects only

©2006-8 LRZ

Characterization of l
object-oriented programming (4) [y

4. Message passing (Interfacing): the process by which an object sends
data to another object or asks the other object to invoke a method.

Fortran 95 support:
® not on type/object level

® indirectly via explicit and named (“generic”)
interfaces
=8 check object TKIZ

Fortran 2003 support:
® by compatibility
® type-bound procedures
=« Dind method fo a type definition

® procedure pointer components
=g bind subroutine call 1o an object

® abstract interfaces

©2006-8 LRZ

object-oriented programming (5)

Characterization of l x

5. Inheritance: mechanism for creating sub-classes, by specialization
(subtyping, extending) another class. All data and functions of the
superclass(es) are acquired, but data/methods may be added/changed. “Is-
a” relationship, as opposed to “has-a” relationship induced by composition.

Fortran 95 support:

® no
=g« emulate by combining composition, delegation and generic interfaces

Fortran 2003 support:

® type extension
=& inherit fype components (including procedure pointer components)

=g« inherit type bound procedures, or override them

® multiple inheritance is unsupported

©2006-8 LRZ

Characterization of l \
object-oriented programming (6) w

6. Abstraction: Ability of a program to ignore the details of an
objects' (sub)class and work at a more generic level when appropriate.

Fortran 95 support:
® derived data types, type composition
® operator overloading, self-defined operators
@® generic interfaces

Fortran 2003 support:
® by compatibility
® generic type-bound procedures

©2006-8 LRZ 7

Characterization of l ._
object-oriented programming (7) [5]-

7. Polymorphism: Behaviour of methods that varies depending on the class
membership of objects worked upon.

@ static polymorphism: all method calls are fixed at compilation time.

@ dynamic polymorphism: delay method calling determination to run-
time.

@ parametric polymorphism: parameterize functions and data structures
over arbitrary values.
Fortran 95 support:

® static polymorphism via generic interfaces
=g« (limited) emulation of dynamic polymorphism

Fortran 2003 support:
® dynamic polymorphism
=8 dynamic objects
=g subroutine interface
® parametric polymorphism
=&« very limited: kind and length parameters allowed

©2006-8 LRZ

Characterization of
object-oriented programming (8)

@ Problems with terminology
® terms and their meaning vary between languages

=g danger of misunderstandings

® will use Fortran-specific jargon
= but will also compare with C++ from time to time

@ Aims of OO paradigm:
® improvements in
= re-usability
=g abstraction
= moving from procedural to data-centric programming

=g reducing software development effort, improving productivity

® indiscriminate usage of OO however may be (very)
counterproductive

=g« identify abstract “software patterns” which have proven useful

©2006-8 LRZ

Scope of OO within Fortran l[&]_

@ Fortran 95 supports object-based programming
@ Fortran 2003 supports object-oriented programming
@ specific intentions of Fortran object model:

backward compatibility with Fortran 95
=g broken essentially only with respect fo semantic change in treatment of allocatable variables

allow extensive correctness and consistency checking by the
compiler

module remains the unit of encapsulation

design more reminiscent of Ada than C++

©2006-8 LRZ 10

part [[9_

Type Extension and Polymorphism

©2006-8 LRZ 11

Defining inheritance:
Type extension (1)

@ Type definitions
® date, datetime

\

lp=

¥ Fortran concept:

® type extension
=g single inheritance only

mod_date
date datetime
yr, mon, day —<}— hr, min, sec

2 /

® re-use date definition

=i« datetime a specialization (or
subclass) of date

=§= date more genera\ than
datetime

type :: date
private
integer ::
end type

yr, mon, day

type, extends(date) :: datetime
private
integer ::

end type

hr, min, sec

t: o dt

type(datetime)

@® instantiation of objects

=g« can be performed as with “standard”
derived types

=g« other possibilities discussed later

©2006-8 LRZ 12

Defining inheritance:
Type extension (2)

@ Accessing component data

® inherited components

o _dt3day, o dtimon, o dt3yr

® additional components

o dt%hr, o dt%min, o dt%sec

® parent component(s)
=8 object of parent type
= recursive references possible
== i5 itself inherited
o_dtsdate

@ Parent type can be empty
® will discuss abstract types

later

©2006-8 LRZ

lp=

Can have zero additional
components

® use only for type
differentiation

® or additional type bound
procedures not available
to parent type

Type parameters are also
inherited

Which types can be extended?
® must be derived type

® may not have the bind or
sequence attribute

13

Extending component accessibility l[;].

@ Fortran 2003 allows setting accessibility for each type
component individually

type :: date
private
integer :: yr, mon, day
character(len=5), public :: tag = 'none '
end type
type, extends(date) :: datetime
private
integer :: hr, min, sec
end type

@ all accessibility attributes are also inherited

® extended type in different module cannot access private
components of parent type

=& this is the same 25 in Fortran 95

= need accessor methods

©2006-8 LRZ 14

Polymorphism (1) 1[9_

@ Polymorphic objects: @ Example:

class(date), ... :: o poly dt

® declared type is date class(date), pointer :: p d
] type(date), target :: o d
® dynamic type may vary at |type(datetime), target :: o dt

run time -
<+ may be declared type and all its | P_d => o_dt

(known) extensions ceo T E
o pd=>o0d
=5 type compatibility ... = p dshr ! worse than illegal
® direct access only possible |--- = p_d%mon ! OK
to components of declared -
type P ® dynamic type changes at

run time
== compiler lacks knowledge

@ Data item can be

® pointer or allocatable
variable

® dummy data object

©2006-8 LRZ 15

Polymorphism (2):

Dynamic creation of polymorphic entities

@ Typed allocation

class(x), pointer :: p
class(x), allocatable
allocate(xx :: p, q)

® xx of type x or an
extension of x

@® note that allocatable

scalars are allowed in

q

lp=

I# Sourced allocation

class (xx) src

class(x), allocatable cCpy
! define src

allocate(cpy, source = src)

® xx of type x or an
extension of x

® produces a clone of src
=g« deep copy for allocatable components

=g shallow copy for pointer components

® usual difference between
pointer and allocatable

¥ For disassociated pointer/unallocated allocatable objects:
® dynamic type is equal to declared type

©2006-8 LRZ 16

Polymorphism (3):

Dynamic type/class resolution l‘ Ej:;

I select type construct ¥ Execution sequence:
® provides access to ® at most one block is
dynamic parts executed
@® executes alternative code ® selection of block:
depending on dynamic 1. find type guard exactly
type matching the dynamic type
class(date), ... :: dt 2. if none exists, select class
. guard which most closely
select type(dt) matches dynamic type and is
type is (date) still type compatible
3 = a1 most one exists
type is (datetime) 3. if none exists, execute block
. = dtzhr ! this is OK of class default (if it exists)
class is (...)
: I Access to components
TLEEE CELETLe ® in accordance with
VR resolved type (or class)

©2006-8 LRZ 17

Polymorphism (4): 1[9
Additional remarks on dynamic type resolution

@ Can introduce an associate I Recommendations:

name to abbreviate referencing: ® test each guard for each

select type(o => x3dt) new subclass separately
type is (date) ® use class default to

check for incompletely
covered inheritance DAG

type is (datetime)
. = o%hr

end select

is of class date

¥ Type selection allows both \

@ run time type identification
@ run time class identification

It is necessary to ensure type
safety in the Fortran object model

@ assumption: subobject dt of x \

©2006-8 LRZ 18

Polymorphism (5):

Type inquiry intrinsics

@ Compare dynamic types:

extends type of (a, mold)
same_type as(a,b)

® functions returning a logical value
® require extensible types as arguments
® arguments can be polymorphic or non-polymorphic

©2006-8 LRZ

19

Polymorphism (6):

Dummy arguments

@ Example:

@ Example continued:

subroutine inc_day(dt, inc)
class(date), intent(inout) :: dt
integer, intent(in) :: inc
! implementation omitted
end subroutine

® increment date object by
a given number of days

I Inheritance mechanism

® actual argument can be
== polymorphic or non-polymorphic, of
declared type of dummy or an
exfension
= type compatibility
® dynamic type of actual

argument is assumed by
dummy

subroutine inc sec(dt, inc)
class(datetime), &
intent (inout)
integer, intent(in) :: inc
! implementation omitted
end subroutine

s dt

® increment datetime object

by a given number of
seconds

=« cannot take objects of type date as

actual argument

©2006-8 LRZ

20

Polymorphism (7):

Unlimited polymorphic (UP) objects

@ An object capable of being
of any of

1. intrinsic
2. extensible
3. non-extensible
type is called unlimited
polymorphic
@ Example:

class(*), pointer :: poly pt

® no declared type

® type compatible with all
entities

@ An UP pointer can point to
anything:

o dt

type (datetime), target ::
real, pointer :: rval

poly pt => o dt
allocate(rval)
poly pt => rval

; rval = 3.0

¥ Properties:

@ type information is only
maintained for 1.+2.

=« case 3 fypes with the same structure
are considered the same type

©2006-8 LRZ

@ Dereferencing is illegal

poly pt => o _dt
write(6, *) poly pts3yr
! will not compile

21

Polymorphism (8):

Dereferencing an unlimited polymorphic object

¥ Need to perform dynamic type

resolution

type(datetime), pointer :: pt

select type (poly pt)
type is (datetime)

write(6, *) poly ptsyr

pt => poly pt
type is (real)

write(6, '(£f12.5)') poly pt
class default

write(6, *) 'unknown type'
end select

@ Non-extensible target
® can de-reference

@® Use of intrinsic type guard
allowed in this situation

¥ Allocation of UP object:

@® must use typed or sourced
allocation

® and specify type parameters

if applicable

type, bind(c) :: cvec
real(c_float) :: x(3)
end type

type :: ivec

sequence ; integer :: 1i(3)
end type
type(cvec), target :: ov
type(cvec), pointer :: pv

type(ivec), pointer iv
ov = cvec((/1.1,2.2,3.3/))
poly pt => ov

pv => poly pt

iv => poly pt

@ but is not type-safe

® also allowed for lhs:
=g« (another) unlimited polymorphic
pointer

©2006-8 LRZ

Polymorphism (9)
UP object as subroutine argument

I UP dummy argument
y arg @ subroutine can be used to

subroutine upt(this, ...) =g« establish pointer association, or
class(*) :: this allocate pointer (depend on
: intent), or

end subroutine =g« (de)allocate allocatable entity
@® actual argument can be of =g« resolve dynamic type via select

any type type
¥ UP pointer or allocatable =g hand on fo another subroutine
dummy argument class(*), pointer :: pp

! client usage
call upt pt(pp, ...)

subroutine upt pt(this, ...)
class(*), pointer :: this

end subroutine

I Not allowed:

® type compatibility @ hand UP actual argument to
non-UP dummy argument

=g implies that the actual argument must
also be UP and have same attribute

©2006-8 LRZ 23

Types and Procedures

©2006-8 LRZ 24

Binding a subroutine to a type

Type bound procedures (1): 1[9-

@ added to type definition @ Properties:

type :: date ® name mapping

private =B+ 10 existing subroutine, or

1nt?ger 18 Visp Lildng By =g implement subroutine of given name
contains]

procedure :: inc => inc_day 2 paSSEd ObJeCt

procedure :: set date =g« fype compatible
end type =g first argument by default (this can be

and used by client as changed)
=8 must be scalar, non-pointer, non-

type(date) :: dt allocatable
call dt3set date(2006,12,12) @ Semantic intent for inc
call dt%inc(12) ! Christmas ® want smallest granularity

® private clause does not type(datetime) :: dtt

extend to TBPs call dtt%inc(120) ! by seconds?
=g unless separately specified in -
contains part of type definition ® works, but not as intended

©2006-8 LRZ 25

Diagrammatic representation l |
of type bound procedures [9'

Fortran 95 Fortran 2003
/ mod_date \ / mod_date \

date date

yr, mon, day yr, mon, day

inc_day() %inc() @

i
® implementation assumed ® “%” indicates TBP

accessible

® implementation may not
be accessible

©2006-8 LRZ 26

Type bound procedures (2):

Overriding TBPs in subclasses

type :: date i
! as before
contains
procedure :: inc => inc_day
procedure :: set date
end type

type datetime
! as before
contains
procedure ::
end type

@ With the overriding TBP

® code (previous slide) will
now work as intended

I Note:
@® uniform call mechanism

@® no name conflicts with
unrelated class

inc => inc sec

©2006-8 LRZ

lp=

Not every subclass needs
to define an override

® inheritance mechanism
goes upward in DAG until
a TBP is found

=« match is with dynamic type

=g« module procedure does not allow this
® uniquely defined

If an overriding TBP is
defined

@® each must have same
interface as the original

== even same argument keywords!

® except

=g« passed object dummy, which must be
declared class (extension)

27

Diagrammatic representation for

overriding TBPs

—

mod_date \

date

yr, mon, day

datetime

<

hr, min, sec

%set_date()
%inc() @

\

%inc() ®
|

/

@ non-overridden proced

ures.

® need not replicate since inherited

©2006-8 LRZ

lp=

28

Type bound procedures (3):
Enforcing base type inheritance

@ Passive (by client)

® invoke method on parent
type

® Implementation:

type(datetime) :: dtt

call dtt%date%inc(120) ! by days

@ Active (enforced by
compiler)
® set date as example:

type :: date
! as before
contains
procedure :: inc => inc_day
procedure, non overridable :: &
set date
end type

subroutine set date(this, &
yr, mon, day, hr, min, sec)
class(date), intent(out) :: &
this
integer(ik), intent(in) :: &
yr, mon, day
integer(ik), intent(in), &
optional :: hr, min, sec

select type(this)
type is (date)
¢ ! further type guards
end select
end subroutine

=g« already treats all cases

@® Other rationales are
possible

©2006-8 LRZ 29

Type bound procedures (4):

Variations on passed object dummy

1. Have (rss)method

subroutine old meth(a,b,..., &
this, ...)
class (xx) :: this
@® want to modernize:
type :: xx
! unchanged
contains
procedure, pass(this) :: &
m tbp => old meth
end type xx
® only 1 change to old meth

=g« unless additional component
references needed for extensions

@® need explicit interface
@® omit this on TBP call

2. Module procedure is bound to
multiple types

@ need to explicitly specify
non-default pass in at least
one of the type definitions

3. Method does not involve
object itself at all

@® possible reason:
manipulating module globals

type :: yy
! whatever
contains

procedure, nopass :: tbp

end type vy

©2006-8 LRZ 30

Type bound procedures (5):

Generic TBPs

@ Lift restriction of only
varying passed object

@ Example:
® add increment by date

type :: date
! as before
contains
private
procedure :: inc _day, inc date
generic, public :: inc =>
inc _day, inc _date

end type

® interface of inc date:

subroutine inc date(this, diffd)
class(date) :: this

type(date), intent(in) :: diffd

©2006-8 LRZ

lp=

® Only generic name
available in example

@ Resolution of generic TBP's
® For all non-passed dummy
arguments
=g« type incompatible
=g« TKR based on declared type ()

=g« number can vary

® passed object dummy
== 25 for TBP (deferred to run-time)

@ Standard generic resolution
@® requires type incompatibility
=g for af least one non-optional arg.
@® subclassing only cannot be
resolved

=g (non)generic TBPs are therefore
qualitatively different!
31

Type bound procedures (6):

Generic overriding and overloading

@ Subclasses may

® need to override a specific

to get correct semantics,
or

® need to add a specific

type :: datetime
: ! as before

contains
private
! override for granularity
procedure :: inc_day => inc_sec
! add new method to generic set
procedure :: inc_datetime
generic, public :: inc => &

inc_datetime

! beware TKR resolution

end type

Operator overloading:

@® operator, assignment, derived
type 1/0O specification

@® can be defined as unnamed
generic TBP

@® not blocked by use, only
@ usual resolution rules apply

type foo

contains
procedure :: plus 1
procedure :: plus 2
generic, operator(+) => &
plus 1, plus 2

end type

©2006-8 LRZ

@ specific TBP may not have the
nopass attribute

32

Diagrammatic representation l |
of generic TBPs [9'
/ mod_foo \

foo

operator(+):

%plus_1() @

%plus 201 @
ro

==

@ use italics to indicate generic-ness
® provide list of specific TBPs as usual

® overriding in subclasses can then be indicated as previously
shown

©2006-8 LRZ 33

Type-bound procedures (7):

Finalization (aka Destruction) l‘ E

@ Have a class or object associated with additional state
® open files
® unfinished non-blocking network (MPI) calls
® allocated pointer components
@ Imagine object goes out of scope
@ unrecoverable I/O unit
@ communication breakdown
@ memory leak
> Solution: auto-destruct

4 provide type with a method which is called as soon as object
of type goes out of scope,

is deallocated,
is passed to an intent (out) dummy argument, or

is the left hand side of an intrinsic assignment

©2006-8 LRZ 34

Type-bound procedures (8): l |
Defining a final TBP [9.

8 Type definition @ Differences to “normal” TPBs:

® not normally invoked by user

type tp =B automatically executed as described on
real, pointer :: r(:) previous slide
contains]
T TR pr— ® must have a single dummy
6 e argument

- - - - = of fype to be finalized
@ Finalizer implementation 1pe 1o B et
=8 non-polymorphic

subroutine cleanup(this) =g« non-pointer, non-allocatable
type(tp) :: this

,) , =g all length type parameters assumed
if (associated(this%r)) then

| assume target was ® generic set of finalizers is
! dynamically allocated possible:
deallocate(this) =B rank
end if

_ = Kind parameter values
end subroutine

=g multiple execution order processor-

dependent

©2006-8 LRZ 35

Diagrammatic representation of Finalizers 1[5]_

Layering of finalizers

/ mod _tp \ / mod_tp \
tp tp contd
<—Pt !
~tp() @ ~tp() @ ~contd() @
i | |
I I 1
NE== Y N = R c=n

@ Finalizer is not inherited @ If an object of type tp goes out

by extensions of scope
® reflected in @® first cleanup() is called
nonpolymorphic ® then destroy()
argument | o .
=g« unless contd is a pointer component, which

exact type match needs to be accounted for in cleanup ()

©2006-8 LRZ 36

Type-bound procedures (9):
Finalization of type extensions

/

mod_tp

~

tp

base

— >

~tp() @

~base() ®

[Gsto] /

lp=

@ If tpis a subclass of base, and an object of type tp goes

out of scope

® first cleanup() is called

® then destroy()

@ this applies recursively in the case of more than one

inheritance level

©2006-8 LRZ

37

Pointers to procedures

@ Up to(es):

@ pointer can only point at
data object with target
attribute

@ New in(o):

@ associate pointer with a
procedure

® explicit or implicit
interface

® target may be a function
or subroutine

® association with target
=g« analogous fo dummy procedure

= N0 generic or elemental interface
possible

lp=

@ Procedure pointer variables:

interface

subroutine subr(x)

real, intent(inout) :: x

end subroutine
end interface subr
procedure (subr), pointer :: pr
! implicit interface pointers:
procedure(), pointer :: pr 2
external, pointer :: pr 3 => null()
real :: y

| client use:
pr => subr; call pr(y)

@® target is a procedure known by
explicit interface

@® or implicit interface
= avoid if possible

® implementation of subr() only
needed if dereferenced (?)

©2006-8 LRZ 38

Procedure pointers as type components:
object-bound procedures

lp=

type xx

procedure(foo), pointer :: &

P => null()
contains
! TBPs come here!
end type

subroutine foo(this, ...)
class(xx) :: this
! must be polymorphic

end subroutine

@ Properties as for variables

@® for explicit interface,
component can point to any
procedure with the same
interface

@ Important difference:

@® by default, the calling object
is passed as 1°*' argument

@ need to have interface like
(see foo above right)

® or alternatively use [no]pass
attribute in type definition

@® nopass must be specified if
interface is implicit

@ Client use in this example:

type(xx) :: o_xx
procedure (foo) :: bar

O_xx%p => bar
call o xx3p(...)

©2006-8 LRZ 39

Part IlI

Interfaces

©2006-8 LRZ

40

Dummy argument association
for (non-) polymorphic objects

Lp=

Dummy argument
Actual | (), &
argument ciass {...),
J type (...) S (eod) [pointer | allocatable]
Fortran 95 Actual argument
type (... type matchin must have same No
P) yrpules applyg declared type as
dummy or be
an extension
(type compatibility) Actual argument
must h same
Actual argument [passed object: ust have
must have same auto-selects declared type +
class(...) u attribute as
declared type as suitable TBP dummy
t ti ;
dummy atrun time] [passed object
dummy: No]

©2006-8 LRZ

41

Function results and polymorphism 1[9

@ Remember - polymorphic object must be
® ecither a dummy argument

= not the case for a function result

@ or have the pointer or allocatable attributes

@ Hence, a function result can only be polymorphic if it
additionally has either the pointer or allocatable

attributes

@ However, default assignment of function result to a
polymorphic object not allowed

¥ Hence,

® assignment must occur to a hon-polymorphic object, with
respect to which the function results' declared type is the
same or an extension, or

® sourced allocation must be used to transfer the result to a
polymorphic object

©2006-8 LRZ 42

Extensions to the interface concept (1):

The import statement

¥ Interfaces in module
specification section

@ For this was fixed:

module mod_foo
type :: foo

end type
interface
subroutine m foo(this, ...)
type(foo) :: this
: ! illegal in
end subroutine
end interface
end module

@ access to host entities is not
possible from interfaces

@® need to specify interface in
separate module

= access by use association

= break encapsulation

module mod foo
type :: foo
end type
interface
subroutine m foo(this, ...)
import :: foo
type(foo) ::

end subroutine
end interface
end module

this ! OK

@® can import any module entity
=g no argument: all enfities available

@ also applicable to interfaces for
dummy procedure arguments

= 0of contained subroutines

©2006-8 LRZ 43

Extensions to the interface concept (2):

Abstract interfaces

¥ Scenario:

@® subroutines with same
function as dummy argument

subroutine foo 23(x, £, y)

real, intent(in) :: x
real, intent(out) :: y
interface

real function f(x)
real, intent(in) :: x
end function
end interface

end subroutine foo 23
subroutine foo 24(a, b, f, res)

@ requires replication of
interface

©2006-8 LRZ

@ Solution:

@ provide an explicit interface
® for which no actual
implementation must exist

module mod interf
abstract interface
real function fun(x)
real, intent(in)
end function
end interface

e X

end module

subroutine foo 23(x, £, y)
use mod interf

procedure(fun) :: £

end subroutine foo 23

44

Interface classes

Extensions to the interface concept (3): l !

@ Abstract type

@® no object of such a type can
exist

@® can have components or not

@® can have TBPs

=« may enforce client override in
subclass

< typically specified via an abstract
interface if no implementation
available

abstract interface
subroutine open handle(this,...)
import :: handle
class(handle) :: this

end subroutine
end interface

type, abstract :: handle

contains
procedure (open handle), &
deferred :: open

end type handle

@ Declaration fixes interface
@ Polymorphic variable can

have abstract type as
declared type

@® but not as dynamic type

@ deferred attribute only

allowed in abstract types

45

©2006-8 LRZ

Extensions to the interface concept (4):
Subclassing an interface class

module mystuff
use mod handle

type, extends(handle) :: &
fhandle
contains
procedure :: open => fopen

! will not compile without above
end type fhandle

contains
subroutine fopen(this, ...)
class(fhandle) :: this

¢ ! further details omitted
end subroutine
end module mystuff

program client
use mystuff, only : fhandle

! nothing else is needed
implicit none
type (fhandle)

call my fhandle%open(...)
! object is passed as 1°* dummy

end program client

:: my fhandle

Extension module

Client usage

©2006-8 LRZ 46

Diagrammatic representation l \
of an interface class and its realization w

/ mod_handle \ / mystuff \

<5
\
handle fhandle
/
%open() ™ %open() o
%foo() @ I

- / - /

@ Will typically use (at least) two separate modules
® e.g., binary version of abstract type vendor-provided

@ abstract class and abstract interface indicated by italics

® non-overridable part — “invariant method”

©2006-8 LRZ 47

Extensions to the interface concept (5): l
Generalizing generic interface blocks

interface foo generic
module procedure foo 1
module procedure foo 2
end interface

can be replaced by

interface foo generic
procedure foo 1
procedure foo 2

end interface

with generalized functionality:

referenced procedures can be
® external procedures
® dummy procedures
® procedure pointers

@ Example:

interface foo gen
! provide explicit interface
! for external procedure
subroutine foo(x,n)
real, intent(out) :: x
integer, intent(in) :: n
end subroutine foo
end interface
interface bar gen
procedure foo
end interface

@® islegalin
® isillegal if
module procedure

is used

48

©2006-8 LRZ

Extensions to the interface concept (6):

Submodules - TR 19767

lp=

@ Problems with modules @ Solution:

® tendency towards monster
modules for large projects

=g« fype component privatization also
prevents being able to break up
modules

® recompilation cascade
effect

=g changes to module procedures would
not actually require recompilation

=fis workarounds are available, but
somewhat clunky

Note: no compiler support today (Feb 2008)

©2006-8 LRZ

split off implementations
(module procedures) into
separate files

these files are called
submodules
=8 need only fo recompile these and their

descendants for chang% 10 an
implementation

need to reference parent
modules in submodule
=g access to module specifications is by

host association

need to spell out explicit
interface in module
specification section

49

Extensions to the interface

Submodules (cont'd)

@ Example
@® first, the module:

concept (7):

@® next, the submodule:

module mod date
type :: date
: ! as previously
end type
interface
module subroutine &
inc_day(dt, inc)
import :: date
class(date), &
intent (inout) :: dt
integer, intent(in) :: inc
end subroutine
end interface
end module

submodule (mod date) date methods
: ! specification part
contains
module procedure inc_day
! interface taken from mod date
: ! implementation
end procedure inc_day
end submodule date_methods

@® note keyword indicating
separate module procedure

® default public attribute

@ can omit interface or specify
exactly identical to module

@® specifications in submodule
specification section

=g only accessible within submodule or its
children

= access contents via pointers / TBPs

@® similar for “normal” subroutines
within submodule

©2006-8 LRZ 50

Diagrammatic representation l ‘
of submodules [5)‘

/ mod_date \
date
inc_day()

{
date methods
1

| e]

(for “implementation”) within circle indicates
that a submodule is referred to

\ 4

4)

©2006-8 LRZ 51

Final remarks on submodules:
handling use dependencies

direct or indirect use association of

t 1 _I>_ t 2
o -
foo t1() @ foo t2()
|
\ N Y
I
I I //'/
: ()
L\
4 sub15\ RY 4 sub 2)
1
\—m/ _ %

sub 2)

parent module is disallowed
(pure F95 apart submodule use)

©2006-8 LRZ

;’/ofOO()

class(at 1), &

pointer ...

o

.

J

independent use access is OK
(Use e.g., polymorphism to satisfy
type dependencies)

52

Part IV @

Generic Programming

©2006-8 LRZ 53

Generic container classes 1[5]_

@ Example: linked list @ Container in general:
. ® abstract data type

type :: list containing collections of

type(<anything>) :: stuff other objects

type(list), pointer :: &]

next => null() ® methods provided to

contains manage the object

procedure :: add item substructure

procedure :: delete list @ Further classification:
end type)

® value containers

=g store copies of objects

® would like to put anything

into a list ® reference containers
wiis f. C+r class template =g store references to objects
® per-list constraints might =g« objects externally managed
be needed =g« must be persistent during lifetime of

container
® the above code fragment |

is not Fortran

©2006-8 LRZ >4

Exploiting the renaming feature (1)

¥ Write container methods once ¥ Type definitions
® here: within a single module

type :: list

type (dummy) :: stuff module all_types
type(list), pointer :: & type :: tl
next => null() :
end type end type
interface add_item type :: t2
module procedure insert :
end interface end type
. contains
contains .
subroutine insert(this, stuff) end module all types

type(list) :: this
type(dummy), intent(in) :: &
stuff

end subroutine

{\\\\ file list.inc

©2006-8 LRZ 55

Exploiting the renaming feature (2)

¥ Create full set of generics:

module mod_l_tl

use all types, dummy => t1l
include 'list.inc'

end module

module mod 1 t2
use all types, dummy => t2

include 'list.inc'

end module

use all types

use mod 1 tl1, 1 t1 => list
use mod 1 t2, 1 t2 => list
type(l _tl) :: mylist t1l
type(l _t2) :: mylist t2

call add item(mylist t1, o tl)
call add item(mylist t2, o t2)

@® script-generated from full

list of required types

I Client use:

@® also requires use of
renaming feature

@® otherwise type definition of
list is non-unique within

client

©2006-8 LRZ

Issues:
® while only one implemen-

tation, somewhat clunky to use
= generic only on implementation level, not

on usage\eve\

® for globals in implementation
rename also needed

® some compilers have problems

with generic resolution (bugs)
56

Alternative 1: fpp/cpp Preprocessing:

not standard-conforming, but simple

module list GENTYPE @ Executing preprocessor

use mod GENTYPE ® usually automatic for *.F
type :: list GENTYPE files
type (GENTYPE) :: stuff ® specify option otherwise
type(list GENTYPE), &]
e 88 e 5 i) ® example Intel Fortran:
(.and type . ifort -c mod typel.f90
interface add item ifort -c -fpp -DGENTYPE=typel \
module procedure insert -0 list typel.o list.£90
end interface .
contains @ Apart from not needing
subroutine insert(this, stuff) explicit type renaming -
type(list) :: this]
type (GENTYPE), & ® no substantial
intent (in) :: stuff Improvement over
: previous method
end subroutine @® still cannot perform

end module generic naming on client

©2006-8 LRZ 57

Alternative 2:

Using fully polymorphic objects

module mod list
type :: list

class(*), pointer :: stuff
type(list), pointer :: &
next => null()
contains
procedure :: add item
end type

contains
subroutine add item(this, stuff)
class(list) :: this
class(*), intent(in), &
target :: stuff

if (same_type as(stuff,...)) &
then
this%stuff => stuff
! reference container
allocate(this%next)
else ; ... ; endif
end subroutine
end module

I Features
@® one implementation
@® one module

= name space pressure reduced on
client

® enforce type constraint

@® can also implement value
container:

allocate(this%stuff, &
source=stuff)

== use allocatable component, omit target
attribute

I Issues:

@® dereferencing contained
objects

=§= requires select type
= (partial) offload to client?

©2006-8 LRZ >8

Parametrization of types (1) l&

¥ Recall character(len=20,kind=c_char) :: line

Generalize this concept

@ Flavours allowed for . .
arameters: @ with exception of
P . character only kind type
® length type parameter parameters are allowed

= actual value need not be known at @ allows variable length
compile time (“deferred”) strings (finally!)

¥ Intrinsic types:

= must be determined at run fime

® Kkind type parameter

character(len=: ointer ::
=« must De known at compile fime ()1 P P

character(len=:), allocatable :: v2
=8 however need not necessarily always | character (len=122), target :: vl
refer to kind numbers :
p => vl ! p has now len 122
allocate(v2(len=64))

Note: no compiler support today (Feb 2008)

©2006-8 LRZ 59

Parametrization of types (2)

Derived types

@ Exactly analogous to

lp=

@ Type parameters are

intrinsic types inherited
_ type, extends(matrix) :: mv(l
type :: matrix(rk, n, m) ygn;eger 1e; cs 1 ‘)
. , .. , L)
%nteger, kind :: rk real (rk) :: vector(l)
integer, len :: n, m end type
real(rk) :: entry(n, m) . ¥P

end type

® declaration of an object

integer, parameter :: dk = &
selected real kind(15)

type(matrix(dk, 20, 30)) :: om

type(matrix(dk, :, :), &
allocatable :: am

allocate(am(n=15,m=20))
! by order or keyword

type(mv(dk, :, :, :)), &
allocatable :: o mv

allocate(o mv(n=15,m=20,1=20))

® can also omit entry in
keyword list if default
values for length/kind
type parameters are
specified

©2006-8 LRZ 60

Parametrization of types (3)

@ Assumed type parameters

® can be used for
=« dummy argument object, or
== select type selector, or

=+ allocate statement

® only length type

derived types

lp=

@ Type parameter enquiry
® applies to intrinsic and

@ inquiry by type parameter

name

parameters
subroutine foo(xm, ...)

type(matrix(dk, *, *)) :: xm

type(matrix(...)) o m

print *, o m%rk
print *, o m%n

print *, o m%m

® values from actual

arguments are taken over

at subroutine call

@ Methods/Subroutines:

® must still implement
separately for each kind

® also works for assumed

type parameters

@® can be used for scalars
and arrays in same

manner

©2006-8 LRZ

61

Conclusion 1[9

@ Support for generic programming in Fortran
® is weak for Fortran 90/95

® only slightly improved for Fortran 2003:
=g fully polymorphic objects / interface classes help
=g+ but do not get you all the way there (dereferencing)

=g analogue o template metaprogramming not available
® no further improvements planned for Fortran 2008

@ The hope is that more features will be offered in the
post-2008 iteration of the standard

©2006-8 LRZ 62

Part V

Enhancements
of 1/0 functionality

©2006-8 LRZ

63

/O for derived data types

I Non-trivial derived data type

type :: list
character(len=:), &
allocatable
integer :: age
type(list), pointer ::
end type

: ¢ name

next

re.

@® enables binding a subroutine
to an edit descriptor

@® can perform I/0O using

suitable module procedures
or TBPs

I Disadvantages:
@ recursive I/0 disallowed

@® 1/0 transfer not easily
integrable into an I/O stream

=8 defined by edit descriptor for intrinsic
types and arrays

= or sequence of binary I/0 statement

type(list) :: o list

: | set up o list

write(unit, fmt='(dt
o list

ce)', eel) &

® example shows formatted
output

=8 bound subroutine called automatically
when dt encountered

@ other variants are enabled by
using generic TBPs or
generic interfaces

@ can use recursion for
hierarchical types

©2006-8 LRZ 64

Binding 1/O subroutines to derived types l[;]_

@ Interface of subroutines is fixed
® with exception of the passed object dummy

@ Define as special generic type bound procedure

type :: foo

contains
generic :: read(formatted) => rfl, rf2
generic :: read(unformatted) => rul, ru2
generic :: write(formatted) => wfl, wf2
generic :: write(unformatted) => wul, wu2

end type

® generic-ness refers to rank, kind parameters of passed object
@ Define via interface block

interface read(formatted)
module procedure rfl, rf2
end interface

©2006-8 LRZ 65

(dummy parameter list determined)

DTIO module procedure interface 1[9-

subroutine rfl(dtv,unit,iotype,v list,iostat,iomsg)

subroutine wul(dtv,unit, iostat,iomsqg)
@ dtv: ¥ v list (formatted only):

@ scalar of derived type ® integer, intent(in) -

@® may be polymorphic assumed shape array

@ suitable intent @® see dt edit descriptor

@ unit: @ iostat:

@® integer, intent(in) - @® integer, intent(out) -
describes 1/0 unit or negative scalar, describes error
for internal 1/0 condition

@ iotype (formatted only): ® iostat_end/ iostat_eor
® character, intent(in) ® zero if all OK

® 'LISTDIRECTED', 'NAMELIST' @ iomsg:
or 'DT'//string @® character(*) - explanation

® see dt edit descriptor if iostat nonzero

©2006-8 LRZ 66

Limitations for DTIO subroutines 1[51_

@ 1/0 transfers to other units @ File positioning:

than unit are disallowed ® entry is left tab limit
® 1/0 direction also fixed @® no record termination on
@® internal I/0O is OK (and return
commonly needed) ® positioning with
@ Use of the statements =g rec=... (direct access) or
® open, close, rewind <§ pos=... (stream access)
® backspace, endfile is disallowed

is disallowed

©2006-8 LRZ 67

Writing formatted output: l -
DT edit descriptor [9-

@ Example:

type(mydt) :: o mydt ! formatted writing bound to mydt

write(20, '(dt 'MyDT' (2, 10))') o mydt

Available in iotype Available inv_1list
Empty string if omitted Empty array if omitted

@ both iotype and v_1list are available to the programmer
of the 1/0 subroutine

® determine further parameters of 1/O as programmer sees fit

©2006-8 LRZ 68

Example: Formatted DTIO on a linked list

recursive subroutine wl(&

. this,unit,iotype, &
module mod list i) i
—. vlist,iostat,iomsq)
type :: list
) class(list), intent(in) :: this
integer :: age
integer, intent(in) :: unit
character(20) :: name IS (in)
)) integer, intent(in) :: vlist(:)
type(list), pointer :: next
. character (len=*), &
contains
intent(in) :: iotype
generic :: & (1n) —
integer, intent(out) :: iostat
write (formatted) => wl ger, ()
) character(len=*) :: iomsg
end type list

) .. locals
contains
character(len=12) :: pfmt

continued next slide

©2006-8 LRZ 69

Example (cont'd): l)
DTIO subroutine implementation i @'

! cont'd from previous slide
if (iotype != 'DTList') return
if (size(vlist) < 2) return
! perform internal IO to generate format descriptor
write(pfmt, '(a,i0,a,i0)') &
'(i',vlist(1),',a',vlist(2),"')"
write(unit, fmt=pfmt, iostat=iostat) this%age,this%name
if (iostat /= 0) return
if (associated(this%next)) then
! recursive call
call wl(this%next,unit,iotype(3:),vlist,iostat,iomsg)
end if
end subroutine

end module

©2006-8 LRZ /70

Example (cont'd):

Client use l[éh

type(list), pointer :: mylist
! set up mylist
! open formatted file to unit
write(unit, fmt='(dt 'List' (4,20))', iostat=is) mylist
! close unit and destroy list

@ Final remarks: Unformatted DTIO
® bound subroutine with shorter argument list
@® is automatically invoked upon execution of write statement

type(mydt) :: o mydt ! unformatted writing (also) bound to mydt
: ! open unformatted file to unit 21
write(21[, rec=...]) o mydt

® additional parameters (e.g. record number) only specifiable in
parent data transfer statement

©2006-8 LRZ /1

