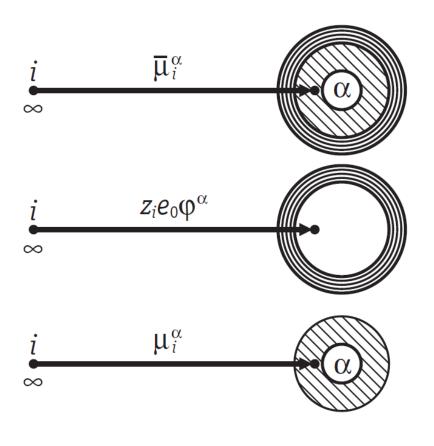
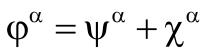
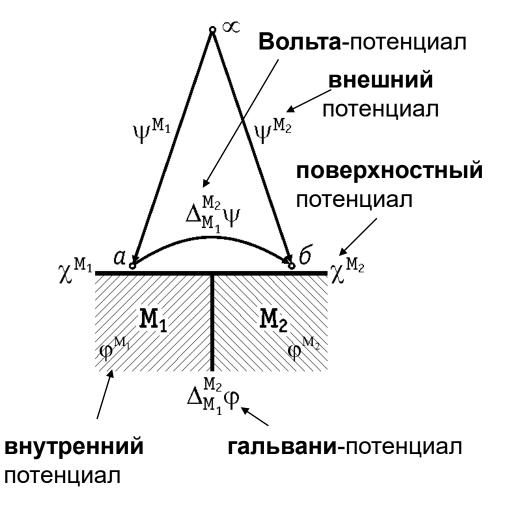
Лекция 4


Электрохимическая термодинамика


Равновесие на границе электрод/раствор


$$\mathrm{d}\bar{G} = -S\mathrm{d}T + V\mathrm{d}P + \sum_{i} \mu_{i} \mathrm{d}N_{i} + F \sum_{i} z_{i} \varphi \mathrm{d}N_{i}$$

$$\overline{\mu}_{i} = \left(\frac{\partial \overline{G}}{\partial N_{i}}\right)_{p,T,N_{j\neq i}} = \mu_{i} + z_{i}F\varphi$$

Равновесие на границе электрод/раствор

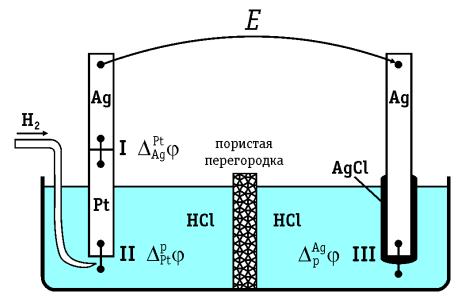
$$\overline{\mu}_i^{\beta} - \overline{\mu}_i^{\alpha} = (\mu_i^{\beta} - \mu_i^{\alpha}) + z_i F(\varphi^{\beta} - \varphi^{\alpha})$$

• Электрическую разность потенциалов можно измерить только между точками в одной фазе

Граница двух металлов:

$$e^{-}(M_{1}) \rightleftharpoons e^{-}(M_{2}) \qquad \qquad \overline{\mu}_{e}^{M_{1}} = \overline{\mu}_{e}^{M_{2}} \qquad \qquad \mu_{e}^{M_{1}} - F\varphi^{M_{1}} = \mu_{e}^{M_{2}} - F\varphi^{M_{2}}$$

$$\Delta_{M_{1}}^{M_{2}}\varphi = \varphi^{M_{2}} - \varphi^{M_{1}} = \frac{\mu_{e}^{M_{2}} - \mu_{e}^{M_{1}}}{F}$$


 \circ Граница металл/раствор: M^{z+} (металл) $\rightleftharpoons M^{z+}$ (раствор)

$$\overline{\mu}_{M^{Z+}}^{M} = \overline{\mu}_{M^{Z+}}^{p} \qquad \mu_{M^{Z+}}^{M} + z_{+}F\varphi^{M} = \mu_{M^{Z+}}^{p} + z_{+}F\varphi^{p}$$

$$\Delta_{p}^{M}\varphi = \varphi^{M} - \varphi^{p} = \frac{\mu_{M^{Z+}}^{p} - \mu_{M^{Z+}}^{M}}{z_{+}F} \qquad \mu_{M^{Z+}}^{p} = \mu_{M^{Z+}}^{0,p} + RT\ln a_{M^{Z+}}$$

$$\Delta_p^M \varphi = \mathrm{const} + \frac{RT}{z_+ F} \ln a_{M^{Z^+}}$$
 (Уравнение Нернста, 1889 г.)

ЭДС электрохимической цепи

 $e^{-}(Ag) \leftrightarrow e^{-}(Pt)$

 $1/2H_2 \leftrightarrow H_{aдc} \leftrightarrow e^-(Pt) + H^+$

 $AgCI + e^{-}(Ag) \leftrightarrow Ag + CI^{-}$

Равновесная э/х цепь: электрохимическое равновесие наблюдается на каждой фазовой границе, а разность потенциалов на концах цепи **E** скомпенсирована разностью потенциалов от внешнего источника тока

Электродвижущая сила (E) — разность потенциалов на концах равновесной электрохимической цепи

$$E = E_{\rm np} - E_{\rm np}$$

$$\phi = rac{\mu_e^{Pt} - \mu_e^{Ag}}{F}$$

$$\Delta_{Ag}^{Pt} \varphi = \frac{\mu_e^{Pt} - \mu_e^{Ag}}{F}$$

$$\Delta_{Pt}^{p} \varphi = \frac{1}{F} \left(\frac{1}{2} \mu_{H_2} - \mu_e^{Pt} - \mu_{H^+}^{p} \right)$$

$$\Delta_p^{Ag} \varphi = \frac{1}{F} (\mu_{AgCl} + \mu_e^{Ag} - \mu_{Cl^-}^p - \mu_{Ag})$$

$$\mathsf{AgCI} + \mathsf{1/2H_2} \leftrightarrow \mathsf{Ag} + \mathsf{HCI} \qquad E = \frac{1}{F} \left(\frac{1}{2} \mu_{H_2} + \mu_{AgCl} - \mu_{HCl} - \mu_{Ag} \right) = \frac{-\Delta G}{F}$$

 Уравнение Нернста для ЭДС электрохимической цепи:

$$E = E^{0} + \frac{RT}{nF} \ln \left(\frac{\prod a_{i}^{\nu_{i}}}{\prod a_{j}^{\nu_{j}}} \right)$$

• Температурный коэффициент ЭДС:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\Delta S}{nF}$$

Таблицы электродных потенциалов

Handbook of Chemistry and Physics / Electrochemical series

Электродный потенциал

Pt, H_2 , p = 1 атм | HA, $a_{\pm} = 1 :: MA | M | Pt$

Reaction	<i>E</i> °/ <i>V</i>	Reaction	<i>E</i> °/ V
$Ac^{3+} + 3e \implies Ac$	-2.20	$Al(OH)_4^- + 3 e \implies Al + 4 OH^-$	-2.328
$Ag^+ + e \iff Ag$	0.7996	$H_2AIO_3^- + H_2O + 3 e \implies AI + 4 OH^-$	-2.33
$Ag^{2+} + e \implies Ag^{+}$	1.980	$AlF_6^{3-} + 3e \implies Al + 6F^{-}$	-2.069
$Ag(ac) + e \iff Ag + (ac)^{-}$	0.643	$Am^{4+} + e \implies Am^{3+}$	2.60
$AgBr + e \iff Ag + Br$	0.07133	$Am^{2+} + 2e \implies Am$	-1.9
$AgBrO_3 + e \implies Ag + BrO_3^-$	0.546	$Am^{3+} + 3e \implies Am$	-2.048
$Ag_2C_2O_4 + 2e \implies 2Ag + C_2O_4^{2-}$	0.4647	$Am^{3+} + e \implies Am^{2+}$	-2.3
$AgCl + e \iff Ag + Cl^-$	0.22233	$As + 3 H^+ + 3 e \implies AsH_3$	-0.608
$AgCN + e \implies Ag + CN^{-}$	-0.017	$As_2O_3 + 6 H^+ + 6 e \implies 2 As + 3 H_2O$	0.234
$Ag_2CO_3 + 2e \implies 2Ag + CO_3^{2-}$	0.47	$HAsO_2 + 3 H^+ + 3 e \implies As + 2 H_2O$	0.248
$Ag_2CrO_4 + 2e \implies 2Ag + CrO_4^{2-}$	0.4470	$AsO_2^- + 2 H_2O + 3 e \implies As + 4 OH^-$	-0.68
$AgF + e \implies Ag + F^-$	0.779	$H_3AsO_4 + 2H^+ + 2e^- \implies HAsO_2 + 2H_2O$	0.560
$Ag_4[Fe(CN)_6] + 4e \implies 4Ag + [Fe(CN)_6]^{4-}$	0.1478	$AsO_4^{3-} + 2 H_2O + 2 e \implies AsO_2^{-} + 4 OH^{-}$	-0.71
$AgI + e \implies Ag + I^-$	-0.15224	$At_2 + 2e \implies 2At^-$	0.3
$AgIO_3 + e \implies Ag + IO_3^-$	0.354	$Au^+ + e \iff Au$	1.692
$Ag_2MoO_4 + 2 e \implies 2 Ag + MoO_4^{2-}$	0.4573	$Au^{3+} + 2e \implies Au^+$	1.401
$AgNO_2 + e \implies Ag + 2NO_2^-$	0.564	$Au^{3+} + 3e \implies Au$	1.498
$Ag_2O + H_2O + 2e \implies 2Ag + 2OH^-$	0.342	$Au^{2+} + e^{-} \Longrightarrow Au^{+}$	1.8
$Ag_2O_3 + H_2O + 2 e \implies 2 AgO + 2 OH^-$	0.739	$AuOH^{2+} + H^+ + 2e \implies Au^+ + H_2O$	1.32
$Ag^{3+} + 2e \iff Ag^+$	1.9	$AuBr_2^- + e \implies Au + 2 Br^-$	0.959
$Ag^{3+} + e \implies Ag^{2+}$	1.8	$AuBr_4^- + 3e \implies Au + 4Br^-$	0.854
$Ag_2O_2 + 4 H^+ + e \implies 2 Ag + 2 H_2O$	1.802	$AuCl_4^- + 3e \implies Au + 4Cl^-$	1.002
$2 \text{ AgO} + \text{H}_2\text{O} + 2 \text{ e} \implies \text{Ag}_2\text{O} + 2 \text{ OH}^-$	0.607	$Au(OH)_3 + 3 H^+ + 3 e \implies Au + 3 H_2O$	1.45
$AgOCN + e \implies Ag + OCN^-$	0.41	$H_2BO_3^- + 5 H_2O + 8 e \implies BH_4^- + 8 OH^-$	-1.24
$Ag_2S + 2e \implies 2Ag + S^{2-}$	-0.691	$H_2BO_3^- + H_2O + 3 e \implies B + 4 OH^-$	-1.79
$Ag_2S + 2H^+ + 2e \implies 2Ag + H_2S$	-0.0366	$H_3BO_3 + 3 H^+ + 3 e \implies B + 3 H_2O$	-0.8698
$AgSCN + e \implies Ag + SCN^-$	0.08951	$B(OH)_3 + 7 H^+ + 8 e \implies BH_4^- + 3 H_2O$	-0.481
$Ag_2SeO_3 + 2e \implies 2Ag + SeO_4^{2-}$	0.3629	$Ba^{2+} + 2e \implies Ba$	-2.912

$$0x_1 + Red_2 = Red_1 + 0x_2$$
 E_3
1: $0x_1 + e^- = Red_1$

2:
$$0x_2 + e^- = Red_2$$

$$Pt, H_2 | HCl ∷ раствор (I) | M_1 | Pt \\ Pt, H_2 | HCl ∷ раствор (I) | M_2 | Pt$$

$$E_1$$
: $Ox_1 + \frac{1}{2} H_2 = Red_1 + H^+$
 E_2 : $Ox_2 + \frac{1}{2} H_2 = Red_2 + H^+$

Стандартные электродные потенциалы (p = 1 атм, t = 25 °C, a = 1 моль/л)