Кинетика электродных процессов в условиях медленной стадии переноса электрона. 3.

Причины нелинейности поляризационных кривых в широком интервале перенапряжений

Безактивационный и безбарьерный разряд

Толщина реакционного слоя

Исправленные Маркусовские зависимости вместо Тафелевских

Нобелевская лекция Р.А.Маркуса:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1992/marcus-lecture.pdf

Обзор (Р.А.Маркус, Н.Сутин)

Biochimica et Biophysica Acta 811 (1985) 265-322

Что теория замедленного разряда не умеет объяснить в эксперименте

$$i = nFkc_o \exp\left(\frac{(\alpha n - z_o)F\psi_1}{RT}\right) \exp\left(-\frac{\alpha nFE}{RT}\right)$$

Как зависит скорость реакции
от природы электрода, реагента
и растворителя?
Фрумкинская поправка
учитывает только
электростатические
факторы

Возможные причины:

 процесс стадийный - слишком узок интервал потенциалов, в котором лимитирующей стадией является именно О + е = R – тогда это вне рамок применимости любой теории переноса электрона

 лимитирующей стадией является именно O + e = R – но в условиях эксперимента нарушаются приближения теории замедленного разряда

Принцип Франка-Кондона

Безызлучательный электронный перенос может осуществляться только при близких (или равных) уровнях энергии электрона в частицах донора и акцептора.

Время перехода электрона (порядка 10⁻¹⁵ с) существенно меньше времени, в течение которого ядра могут изменить свое положение (10⁻¹³ с).

Теория Маркуса (1956)

$$U_{\mu/\kappa}(Q) = \frac{1}{2}\hbar\omega(Q - Q_{\mu/\kappa})^2 + U^0_{\mu/\kappa}$$

Параболические термы начального/конечного состояний с одинаковой крутизной

$$\lambda = \frac{1}{2}\hbar\omega(Q_2 - Q_1)^2$$

Энергия реорганизации, Q_1 и Q_2 – координаты минимумов $U_{_{
m H}}$ и $U_{_{
m K}}$

 $\Delta G^{\neq} = \frac{1}{2} \hbar \omega (Q^* - Q_1)^2$ Энергия активации (Франк-кондоновский барьер)

$$\Delta G^{\neq} = \frac{(\Delta G_{n_3} + \lambda)^2}{4\lambda}$$
 Перенапряжение

$$\alpha = \frac{d(\Delta G^{\neq})}{d(\Delta G_{n_3})} = \frac{1}{2} + \frac{\Delta G_{n_3}}{2\lambda}$$
Работы
подвода
 $\downarrow \downarrow$
 $F | \eta| - W_{\mu} + W_{\kappa}$

Дополнение к слайду 4 (вывод соотношения для энергии активации)

$$\begin{split} \Delta G^{\neq} &= \frac{1}{2} \hbar \omega (Q^* - Q_1)^2 \\ Q^* &= \frac{\Delta G_{n_3}}{\hbar \omega (Q_2 - Q_1)} + \frac{1}{2} (Q_2 + Q_1) \\ \sqrt{\Delta G^{\neq}} &= \sqrt{\frac{1}{2} \hbar \omega} \left[\frac{\Delta G_{n_3}}{\hbar \omega (Q_2 - Q_1)} + \frac{1}{2} (Q_2 - Q_1) \right] = \\ &= \frac{\Delta G_{n_3}}{\sqrt{2 \hbar \omega} (Q_2 - Q_1)} + \frac{1}{2} \sqrt{\frac{1}{2} \hbar \omega} (Q_2 - Q_1) = \\ &= \frac{\Delta G_{n_3} + \frac{1}{2} \hbar \omega (Q_2 - Q_1)^2}{2\sqrt{\frac{1}{2}} \hbar \omega (Q_2 - Q_1)} = \frac{\Delta G_{n_3} + \lambda}{2\sqrt{\lambda}} \\ \end{split}$$

Предельные значения α : 0 и 1

9.8

Процессы в окрестности безактивационной области

Принципиальные проблемы

- Моделирование электронного перекрывания и расчет трансмиссионного коэффициента
- Моделирование адиабатических реакций с учетом реального диэлектрического спектра растворителя
- Моделирование реакционного слоя

Скорость реакции переноса электрона O + е = R : перевод на язык теории замедленного разряда

Толщина реакционного слоя δx

 x_{min} для реакции О + е = R

Факторы, зависящие от расстояния:

$$\frac{\int\limits_{x_{\min}}^{\infty} i(x)dx}{i(x_{\min})}$$

 $\kappa(x)$ всегда резко уменьшается
 i(x) снижается

 $\kappa \sim \exp(-\beta x)$ β около 1 Å⁻¹

 $\lambda_s(x)$ всегда медленно увеличивается
 i(x) снижается

 Специфическая адсорбция,
 i(x) снижается

 $W_o(x)$ и $W_R(x)$ электростатическое притяжение
 i(x) снижается

Электростатическое отталкивание i(x) растет

Исправленные маркусовские зависимости

$$i = \chi \exp\left(-\frac{\Delta G^{\neq}}{RT}\right)$$
 $\Delta G^{\neq} = w_{o} + \frac{\left(\lambda_{R} + \Delta G\right)^{2}}{4\lambda_{R}}$
 $\Delta G = F\eta + w_{r} - w_{o},$

$$\sqrt{2.3RT(\log(\chi) - \log(i)) - Fz_0\psi_1} = \frac{F(\eta - \psi_1)}{2\sqrt{\lambda_R}} + \frac{\sqrt{\lambda_R}}{2}$$

