Основы химии высоких энергий и свойства гидратированного электрона

Семинар 30.03.2022

feldman@rc.chem.msu.ru

Что надо знать о химии высоких энергий: качественные аспекты

- Высокая степень неравновесности
- Локальный характер передачи энергии \rightarrow энергетическая и пространственная неоднородность
- Энергетическая схема «сверху вниз»
- Нетермическая активация → неаррениусова кинетика (в пределе независимость скорости от температуры)
- Специфические «правила отбора»
- Энергия, переданная в элементарном акте, может различаться на порядки величины (энергии > 20 эВ не имеют прямого химического смысла)

Количественные аспекты химии высоких энергий: энергетический выход

$$G^{0}(X) = \left\lceil \frac{dC_{m}(X)}{dD} \right\rceil_{D=0} \qquad G_{eff}(X) = \frac{C_{m}(X)}{D}$$

$$G^{0}(-M) = -\left[\frac{dC_{m}(M)}{dD}\right]_{D=0} \qquad G_{eff}(-M) = \frac{\Delta C_{m}(M)}{D}$$

G выражается в моль/Дж (СИ) или молек./100 эВ

Связь между обобщенным энергетическим и квантовым выходом

$$G_i' = \frac{\varphi_i}{h \nu}$$

Энергетический выход – «КПД» использования энергии излучения для химических процессов • Для нецепных процессов: $\varphi_{max} = 1$, $G_{max} \approx 10$ молек./100 эВ

«Термодинамический» радиус сольватированного электрона

Сольватированный электрон – «анион с нежесткими стенками»

$$r = -\frac{z_i^2 e_0^2 N_A (1 - \varepsilon^{-1})}{8\pi \varepsilon_0 \Delta G_S}$$

«Завышен» или «занижен» ? Какой смысл диэлектрической проницаемости в этой формуле ?

Диффузионно-контролируемые реакции и «кинетический» радиус е-аq

Диффузионно-контролируемые реакции A + B: $\mathbf{k} \approx \mathbf{k}_{dif}$

(реакция происходит при каждом столкновении)

$$k_{dif} = \frac{4\pi r D N_A}{1000} (t \to \infty)$$

$$r = R_A + R_B$$
; $D = D_A + D_B$

(для реакций с нейтральными молекулами; внимание: размерности!)

$$k_{dif} = \frac{4\pi r_{eff} DN_A}{1000}$$
 $r_{eff} = \left[\int_{r}^{\infty} \frac{\exp(U/kT)}{x^2} dx\right]^{-1}$

(для реакций с заряженными частицами, с учетом потенциала взаимодействия)

В случае реакций гидратированного электрона $\mathbf{k}_{\mathrm{dif}} \sim 10^{10} \, \mathrm{M}^{-1} \mathrm{c}^{-1}$

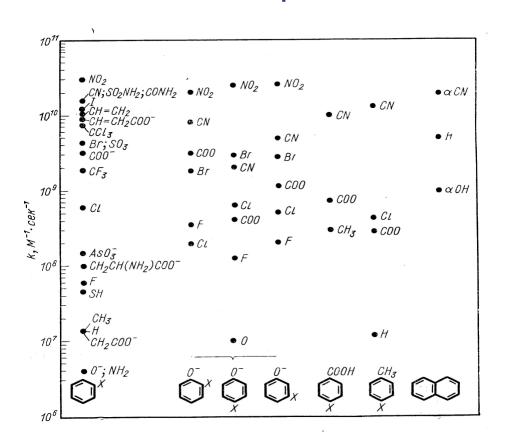
Большинство реакций е-_{аq} лимитируются диффузией «Кинетический» радиус е-_{аq} (из ур-ния Смолуховского-Дебая)

 $R_e \sim 0.25 \text{ HM}$

Коэффициент диффузии **е**-_{аq} нельзя считать по формуле Стокса-Эйнштейна!

Кинетика реакций е аq

• Измерено > 1500 констант скорости *различных* бимолекулярных реакций е-_{aq} (с ионами, молекулами, макромолекулами, биомолекулами...)


Классификация реакций:

- быстрые (диффузионноконтролируемые)
- - «сверхбыстрые»
- - медленные

Молекула или ион	k, M ⁻¹ c ^{-1*}
Cd(II)	5.1·10 ¹⁰
Ag (I)	$3.9 \cdot 10^{10}$
Cu(II)	3.5·10 ¹⁰
MnO ₄ -	3.3·10 ¹⁰
Хлороформ	3·10 ¹⁰
02	$1.9 \cdot 10^{10}$
N ₂ O	9.1·109
CO ₂	7.7·10 ⁹
Ацетон	6.6·109
Бензол	1.2·10 ⁷ (pH=11- 13)
Метанол	< 10 ³

^{*}рН = 7, если не оговорено особо

Кинетика реакций е-_{аq}: попытка обобщения

Кинетика реакций е с ароматическими соединениям

Величина k коррелирует с газофазным сродством акцептора к электрону и электрофильными свойствами заместителя («соотношение свободных энергий»)

(Э. Харт, М.Анбар. Гидратированный электрон, М: Атомиздат, 1973)

От кинетики к механизму: предварительный анализ

Однако… измеренные значения E_a практически одинаковы для сверхбыстрых, быстрых и медленных реакций:

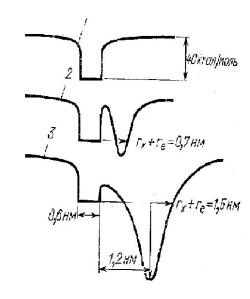
$$E_a = (15 \pm 5) \ кДж/моль$$

- $E_a << -\Delta G_s^0$ (157 кДж/ моль)
- Величины E_a близки для реакций с катионами и анионами
- Константы скорости почти одинаковы для реакций e-_{aq} и e-_s в спиртах
 - Нет корреляции с энергией реорганизации
 - Е_а нельзя приписать смысл энергетического барьера реакции
 - Сольватированный электрон ведет себя ... как электрон
 - E_a «энергия активации диффузии» ?
 - Природа различий величин к?

Общие признаки и характеристики туннельных реакций

Наличие <u>низкотемпературного квантового предела</u>: $E_a \rightarrow 0$ при понижении температуры (скорость реакции перестает зависеть от температуры)

Очень большой кинетический изотопный эффект для туннелирования «тяжелых» частиц $(k_H/k_D \sim 10^3 - 10^4)$


Вероятность туннелирования электрона в единицу времени (c⁻¹): $W(R) = v_e \exp(-2R/a_e)$

Радиус туннелирования («ступеначтая аппроксимация»): $R_t = \frac{a_e}{2} \ln \nu_e t$

 $a_{\rm e}$ – эффективный "параметр затухания", $v_{\rm e}$ -эффективный частотный фактор

Характерные расстояния туннелирования электрона в лабораторном масштабе времени (от секунд до десятков часов) – 1 – 10 нм; для «тяжелых» частиц ≤ 0.1 нм

Схема туннелирования электрона из ловушки в реакциях с акцепторами

Анализ кинетики туннелирования электрона в реакциях е_{tr} в стеклообразных матрицах

Низкотемпературный квантовый предел в реакциях е⁻_{tr} : E_a = 0 при T < 50 - 70 К

Случайное распределение реагентов при условии N >> n (N – концентрация акцептора, n – концентрация \mathbf{e}_{tr}):

$$n(t)/n(0) = \exp(-\frac{4}{3}\pi R_t^3 N) = \exp(-\frac{\pi a_e^3}{6}N\ln^3 v_e t)$$

С учетом возможного захвата электронов акцептором до стабилизации:

$$n(t)/n'(0) = \exp(-\alpha N - \frac{4}{3}\pi R_t^3 N) = \exp(-\alpha N - \frac{\pi a_e^3}{6}\ln^3 v_e t)$$

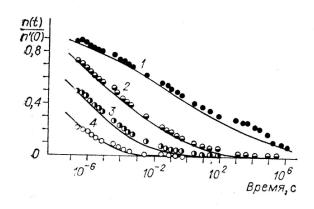


Рис. 5.18. Кинетика гибели [88] $e_{\rm tr}^-$ по реакции с Cu (en) $_2^{2+}$ в замороженных водных растворах 10 M NaOH (77 K) при разных концентрациях Cu (en) $_2^{2+}$.

 $1-10^{-2}$ М, $2-2.5\cdot10^{-2}$, $3-5\cdot10^{-2}$, $4-10^{-1}$ М. $t < 10^2$ с — импульсный радиолиз, $t>10^2$ с — γ -радиолиз (время облучения $3\cdot10^2$ с, доза $6\cdot10^{18}$ зВ/см³). Точки — экспериментально наблюдаемые значения, линии — расчет по уравнениям (4.7) с значениями параметров $v_e=10^{15}, ^2$ с t=1.83 Å и t=1.5 мt=1.5 мt=1.5

Реакционная способность e_{aq} (жидкость) по отношению к различным акцепторам коррелирует с реакционной способностью e_{tr} (стекла)

К.И. Замараев, Р.Ф. Хайрутдинов, В.П. Жданов. «Туннелирование электрона в химии. Химические реакции на больших расстояниях», Новосибирск, Наука, 1985.