Методы, основанные на использовании рентгеновского излучения, нейтронов, электронного пучка

- фазовый анализ твердых материалов
- особенности для частично разупорядоченных кристаллов и малых частиц
- возможности для исследования полимеров, растворов и гетерогенных жидкостей
- организация in situ эксперимента

 $2d\sin\theta = \lambda$

Межплоскостные расстояния d

Тип решетки, фазовый состав

0

Bismuth Selenide (Paraguanajuatite), Bi₂Se₃

CAS registry no. 12068-69-8

 $2d\sin\theta = \lambda +$

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

Color

Unground, gray metallic Ground, dark gray

Structure

Hexagonal, $R\bar{3}m$ (166), Z = 3, isostructural with tetradymite, Bi_2Te_2S . The structure of Bi_2Se_3 was refined by Nakajima [1963], following earlier work by Semiletov and Pinsker [1955].

Lattice constants of this sample $a = 4.1396(4) \mathring{A}$ c = 28.636(4)

c/a = 6.9176

Volume 424.97 Å³

Density

(calculated) 7.676 g/cm³

Figure of merit $F_{30} = 54.4(0.012,44)$

CuKa, $\lambda = 1.540598$ A; temp. 25±1 °C							
Internal standard Ag, $a = 4.08651$ Å							
d(Å)	Irel		hk	2	20(°)		
	$\sigma = \pm 1$						
9.56	7	0	0	3	9.24		
4.777	19	0	0	6	18.56		
3.559	16	1	0	1	25.00		
3.478	3	0	1	2	25.59		
3.205	7	1	0	4	27.81		
3 183	4	0	٥	٩	28 01		
3 040	100	ň	1	5	20.01		
2 698	100	ĩ	0	7	33 18		
2.534	2	ô	ĩ	Ŕ	35 39		
2.386	ĨL.	ŏ	ô	12	37.67		
2.300			Ť		57.07		
2.238	26	1	0	10	40.27		
2.106	9	0	1	11	42.92		
2.070	26	1	1	0	43.70		
1.9085	8	0	0	15	47.61		
1.8998	8	1	1	6	47.84		
		_			10.10		
1.8780	2	1	0	13	48.43		
1.7893	2	0	2	1	51.00		
1.7782	1L	2	0	2	51.34		
1.7392	2	0	2	4	52.58		
1.7349	2	1	1	9	52.72		

Тонкая пленка на подложке (электроосажденный оксид вольфрама)

Кристаллизация при старении

См. С.В.Цыбуля, С.В.Черепанова, Введение в структурный анализ нанокристаллов, НГУ, 2008

Sample	Average Crystallite size in Å	Average crystallite strain in %	Полимеры
CMC	18.8±0.3	(6.2±0.13)%	
HPMC	19.1±0.5	(7.1±0.32)%	
PVA	70.8±0.8	(6.5±0.27)%	

In situ дифракция

Solid State Ionics 178 (2007) 759-768

In situ XRD в газовой фазе: гелий – водород - гелий

Grazing-incidence

X-Ray Scattering and Diffraction

EXAFS, Pt/C (потенциалы по нас. к.э.)

Chem. Rev. 104 (2004) 4613-4635

XANES, Pt/Ru

Chem. Rev. 104 (2004) 4613-4635

Рентгеновская спектроскопия растворов

Journal of Electron Spectroscopy and Related Phenomena 177 (2010) 168–180

Нейтронная дифракция (легкие атомы)

Образование гидридов палладия (водород в октаэдрических позициях)

Нейтронное рассеяние - растворы полимеров

In situ просвечивающая электронная микроскопия (TEM)

Существующие модели позволяют извлекать число центров N₀ из транзиента тока.

При фиксированном пропущенном заряде от N₀ зависит размер растущего зародыша.

Ранее отклонение рассчитанных N₀ от реальных были известны по данным ех situ микроскопии для сильно разросшихся зародышей.

Nano Lett. 6 (2006) 238-242

In situ просвечивающая электронная микроскопия (TEM)

Дендриты при переосаждении лития

Small Struct. 2 (2021) 2100018

Обзоры по in situ и operando для электрохимических систем

ACS Catal. 11 (2021) 1136–1178 (*Operando* Methods in Electrocatalysis)

Chem. Soc. Rev. 50 (2021) 5832-5850 (Electrocatalysis - scanning tunnelling microscopy)

Ann. Rev. Analyt. Chem. 14 (2021) 87-107 (*In Situ* X-Ray Techniques for Electrochemical Interfaces)

Adv. Mater. Technol. 5 (2020) 2000555 (*In Situ/Operando* Optical Microscopy for Probing Electrochemical Energy Systems)

Current Opinion Electrochem. 15 (2019) 18-26 (*In situ* studies: electrochemistry and scattering)

J. Synchrotron. Rad. 25 (2018) 151-165 (*In situ* electrochemical synchrotron radiation for Li-ion batteries)

Nano Energy 11 (2015) 196–210 (Liquid cells for *in situ* TEM electrochemical investigation of lithium-ion battery)

ChemElectroChem 2 (2015) 1427-1445 (Probing *Operating* Electrochemical Interfaces by Photons and Neutrons)