Кинетика сложных электродных процессов 3. Электрохимические превращения органических веществ

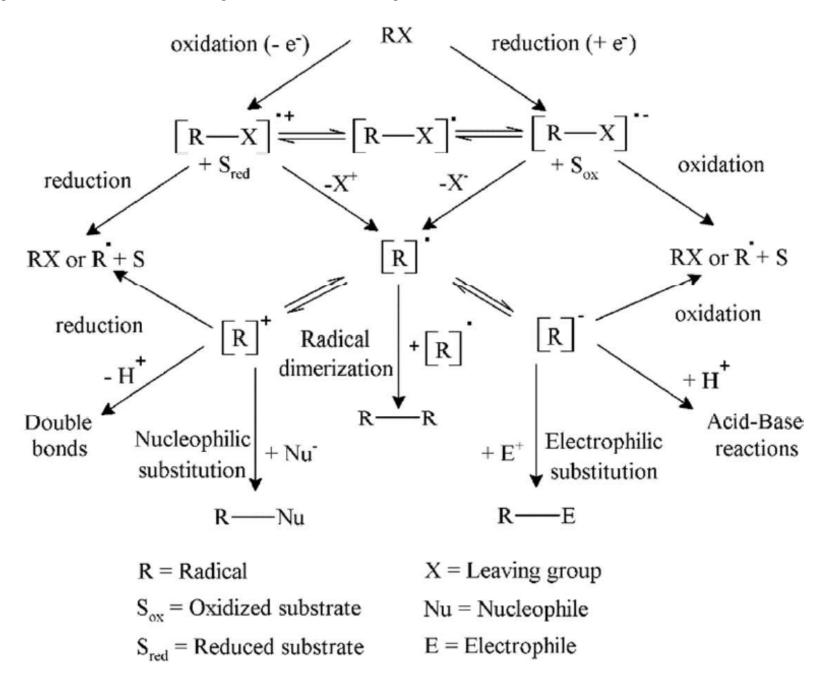
«Электрохимия органических соединений» — препаративный электролиз на инертных и «жертвенных» электродах

Электрокатализ:

- каталитическое гидрирование
- процессы окисления в топливных элементах
- бифункциональный электрокатализ
- самоингибирование

Литература

Электрохимия органических соединений / Под ред. М.Байзера. М.: Мир, 1976.


Томилов А.П., Фиошин М.Я., Смирнов В.А. Электрохимический синтез органических веществ. Л.: Химия, 1976.

Томилов А. П., Майрановский С. Г., Фиошин М. Я., Смирнов В. А. Электрохимия органических соединений: М.: Химия, 1968.

Дамаскин Б.Б., Петрий О.А., Батраков В.В. Адсорбция органических соединений на электродах. М.-Л.: Наука, 1968.

Электродные процессы в растворах органических соединений / Под ред. Б.Б.Дамаскина. М.: Изд-во МГУ, 1985.

Органический электросинтез в широком смысле слова

Промышленный органический электросинтез

Product	Raw Material	Company
Commercial processes		
Acetoin	Butanone	BASF
Acetylenedicarboxylic acid	1,4-Butynediol	BASF
Adipoin dimethyl acetal	Cyclohexanone	BASF
Adiponitrile	Acrylonitrile	BASF, Monsanto
4-Aminomethylpyridine	4-Cyanopyridine	Reilly Tar
Anthraquinone	Anthracene	L. B. Holliday, ECRC
Azobenzene	Nitrobenzene	Johnson Matthey Co.
Bleached montan wax	Raw montan wax	Clariant
Calcium gluconate	Glucose	Sandoz, India
Calcium lactobionate	Lactose	Sandoz, India
S-Carbomethoxymethylcysteine	Cysteine + chloroacetic acid	Spain
L-Cysteine	L-Cystine	Wacker Chemie AG
Diacetone-2-ketogulonic acid	Diacetone-L-sorbose	Hoffman-La Roche
Dialdehyde starch	Starch	CECRI
1,4-Dihydronaphthalene	Naphthalene	Clariant
2,5-Dimethoxy-2,5-dihydrofuran	Furan	BASF
2,5-Dimethoxy-2,5-dihydrofuryl-1-ethanol	Furfuryl-1-ethanol	Otsuka
Dimethylsebacate	Monomethyladipate	Asahi Chemical
Gluconic acid	Glucose	Sandoz, India
Hexafluoropropyleneoxide	Hexafluoropropylene	Clariant
m-Hydroxybenzyl alcohol	m-Hydroxybenzoic acid	Otsuka
p-Anisaldehyde	p-Methoxytoluene	BASF
Perfluorinated hydrocarbons	Alkyl substrates	3M, Bayer, Clariant
Polysilanes	Chlorosilanes	Osaka Gas
Salicylic aldehyde	o-Hydroxybenzoic acid	India
Succinic acid	Maleic acid	CERCI, India
3,4,5-Trimethoxybenzaldehyde	3,4,5-Trimethoxytoluene	Otsuka Chemical
3,4,5-Trimethoxytolyl alcohol	3,4,5-Trimethoxytoluene	Otsuka Chemical

Пилотные (2017) процессы органического электросинтеза

1-A cetovymanhthalene

Nitrobenzene

1-Acetoxynaphtnatene	Naphthalene	BASE
2-Aminobenzyl alcohol	Anthranilic acid	BASF
Anthraquinone	Naphthalene, butadiene	Hydro Quebec
Arabinose	Gluconate	Electrosynthesis Co.
1,2,3,4-Butanetetracarboxylic acid	Dimethyl maleate	Monsanto
Ceftibuten	Cephalosporin C	Electrosynthesis Co.
3,6-Dichloropicolinic acid	3,4,5,6-Tetrachloro-picolinic acid	Dow
Ditolyliodonium salts	p-Iodotoluene, toluene	Eastman Chemical
Ethylene glycol	Formaldehyde	Electrosynthesis Co.
Glyoxylic acid	Oxalic acid	Rhone Poulenc
Hydroxymethylbenzoic acid	Dimethyl terephthalate	Clariant
Monochloroacetic acid	Tri- and di-Chloroacetic acid	Clariant

Manhthalana

DACE

India, Monsanto

5-Nitronaphthoquinone 1-Nitronaphthalene Hydro Quebec
Partially fluorinated hydrocarbons Alkanes and alkenes Philips Petroleum
Pinacol Acetone Diamond Shamrock
Propiolic acid Propargyl alcohol BASF

p-Aminophenol

Propylene oxide Propylene Kellog, Shell Substituted benzaldehydes Substituted toluenes Hydro Quebec

Синтез металлорганических соединений: «жертвенный» катод

Pearent Электрод, раствор Продукт

$$RC_6H_4CH_2Br$$
 Hg, LiBr, CH_3OH Hg($CH_2C_6H_4R$) 2

 C_6H_5 C_6H_5 CH_3 Hg, $(CH_3)_4NBr$, CH_3CN HgR2

 C_2H_5Br Sn, $(C_2H_5)_4NBr$, CH_3CN Sn(C_2H_5) 4

 RX Sn, various, CH_3OH or SnR4

 C_2H_5Br Pb, $(C_2H_5)_4NBr$, Pb(C_2H_5) 4

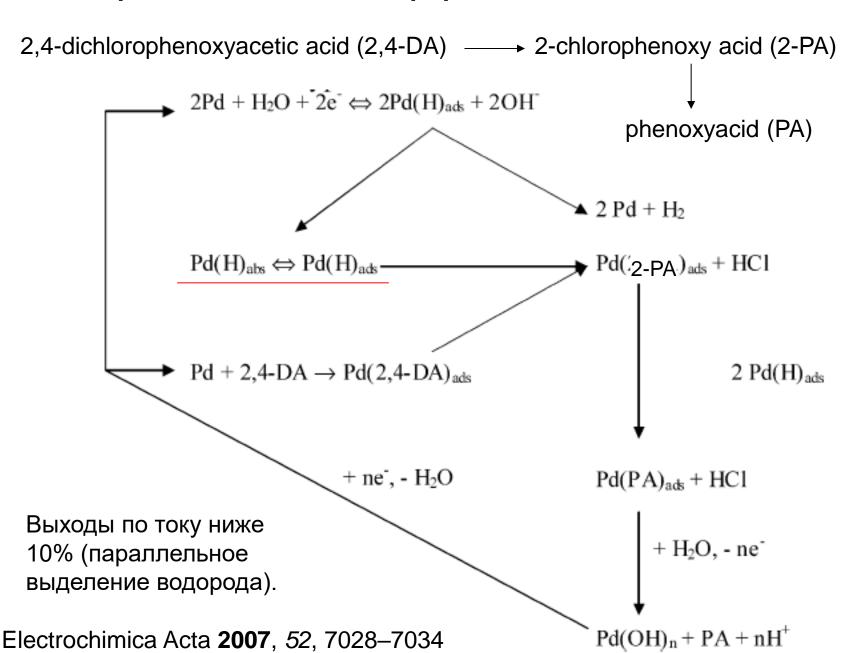
 C_2H_5Br Pb, various salts, Pb(C_2H_5) 4

 C_2H_5Br Pb, various salts, Pb(C_2H_5) 4

 C_2H_5Br Pb, $(C_2H_5)_4NBr$, Pb(C_2H_5) 4

 C_2H_5Br Pb, $(C_2H_5)_4NBr$, Pb(C_2H_5) 4

 C_2H_5Br Pb, LiBr, various Pb(C_2H_5) 4


 C_2H_5Br Pb, LiBr, various Pb(C_2H_5) 4

 C_2H_5Cl , I) CH₂CN

Синтез металлорганических соединений: «жертвенный» анод (радикал может генерироваться на катоде)

$$\begin{array}{c} \text{Zn}_{(+)} & \xrightarrow{\text{RX, } (C_4 \text{H}_9)_4 \text{NX}} \\ & \xrightarrow{\text{CH}_3 \text{CN}} & \text{[R = CH}_3 \\ & \text{X = I]} \\ \\ \text{Анод} & \xrightarrow{\text{Моны}} \\ \text{M}_{(+)} & \xrightarrow{\text{C}_6 \text{H}_5 \text{I}} \\ & \xrightarrow{\text{CH}_3 \text{CN} + \text{CH}_3 \text{OH} + \text{bipy}} & \text{(C}_6 \text{H}_5)_3 \text{MI} \\ & \text{[M = Ti, Zr]} \\ \\ \text{Al}_{(+)} & \xrightarrow{\text{CH}_2 \text{Cl}_2} & \text{Cl}_2 \text{AlCH}_2 \text{AlCl}_2 \\ \end{array}$$

Электрокаталитическое гидрирование

Гидрирование лигнина (биомассы)

Этанол:вода (75:25), M = Ni + Ni Ренея

$$2H_2O + 2e^- + M \rightarrow 2(H)M + 2OH^-$$

 $R + M \rightarrow (R)M$
 $(R)M + 2(H)M \rightarrow (RH_2)M$
 $(RH_2)M \rightarrow RH_2 + M$
 $(H)M + H_2O + e^- \rightarrow H_2 + M + OH^-$
 $(H)M + (H)M \rightarrow H_2 + M$

$$CH_2$$
 O

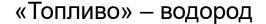
(и разные замещенные эфиры с аналогичными фрагментами)

Выход по току до 100%

J. Appl. Electrochem. **1997**, *27*, 605-611

Процессы на малоизнашиваемых анодах: Ванилин окисление лигнина

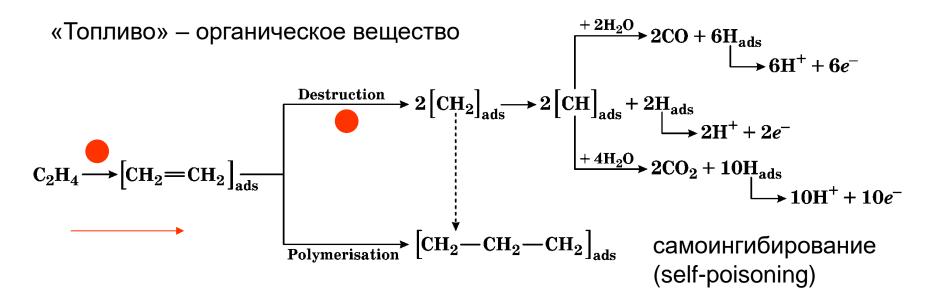
(выход до 2%)

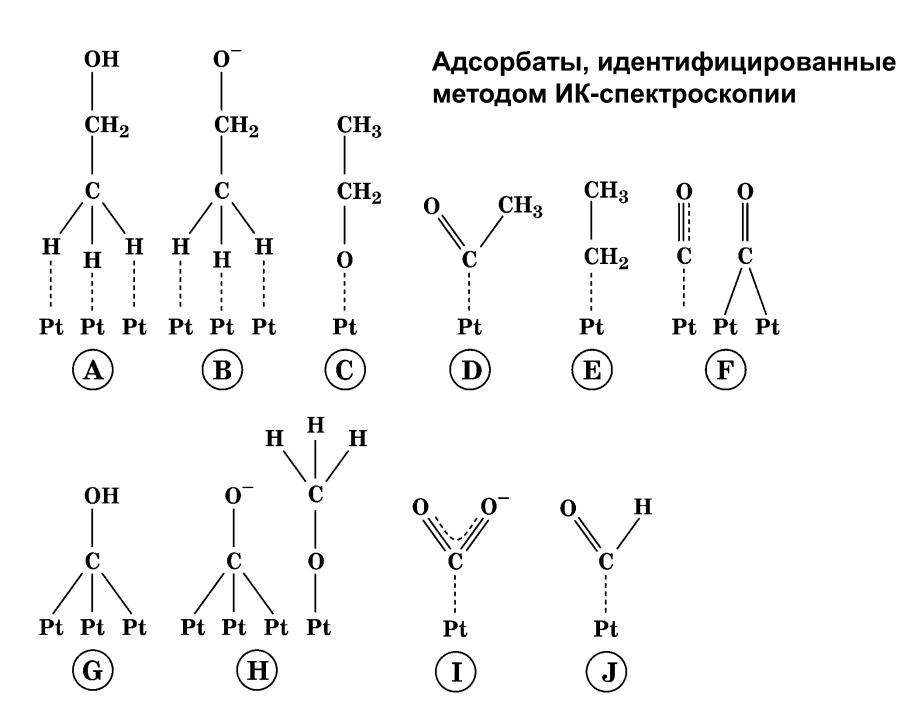

Beilstein J. Org. Chem. **2015**, *11*, 473–480

Процессы анодной очистки воды от органических примесей

Электроды из допированного алмаза.

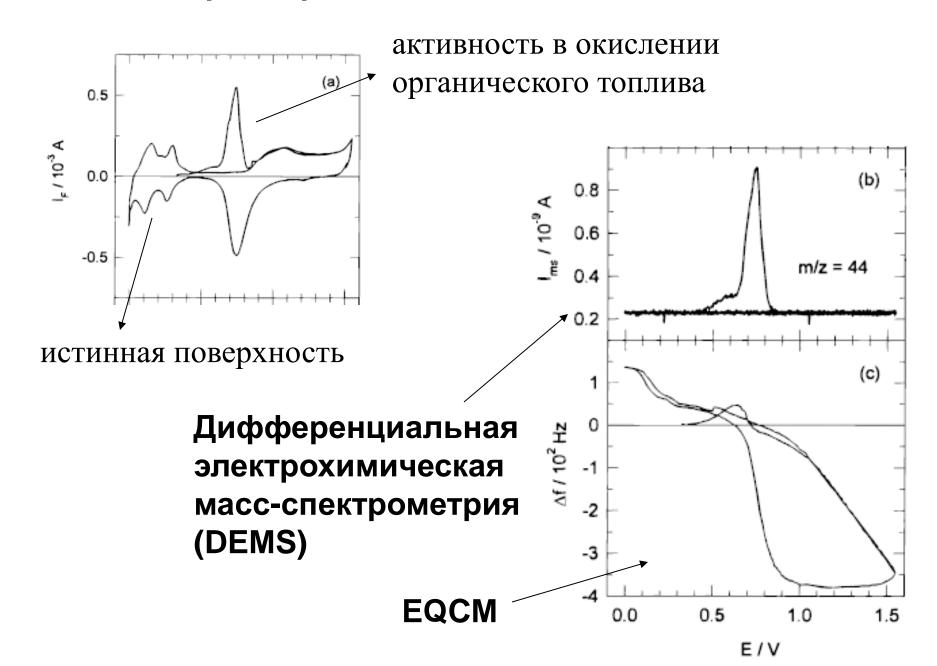
Электрокатализ – окисление продуктов диссоциативной адсорбции

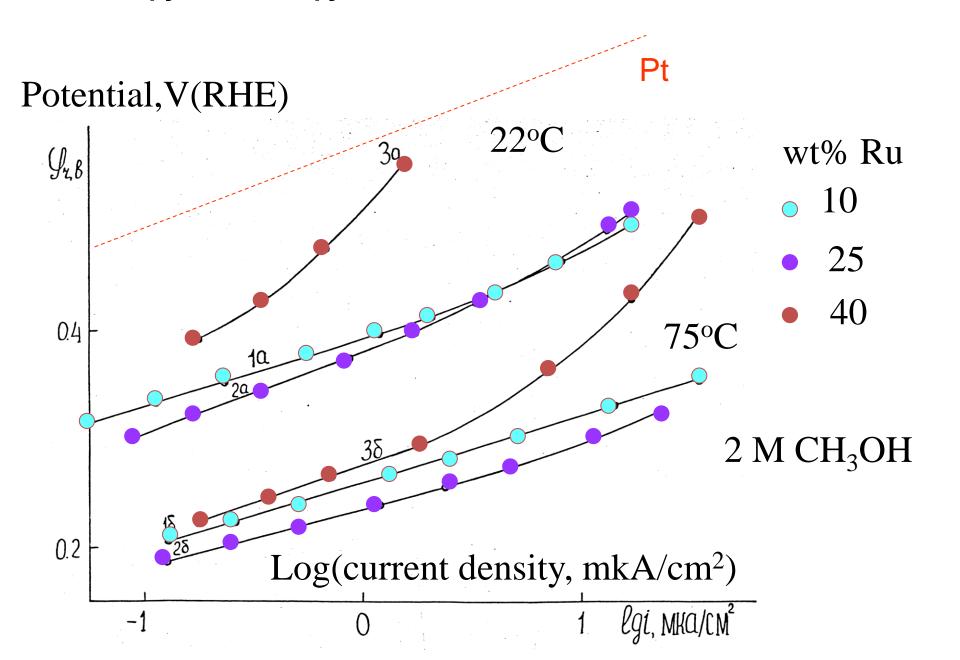

на примере процессов в топливных элементах

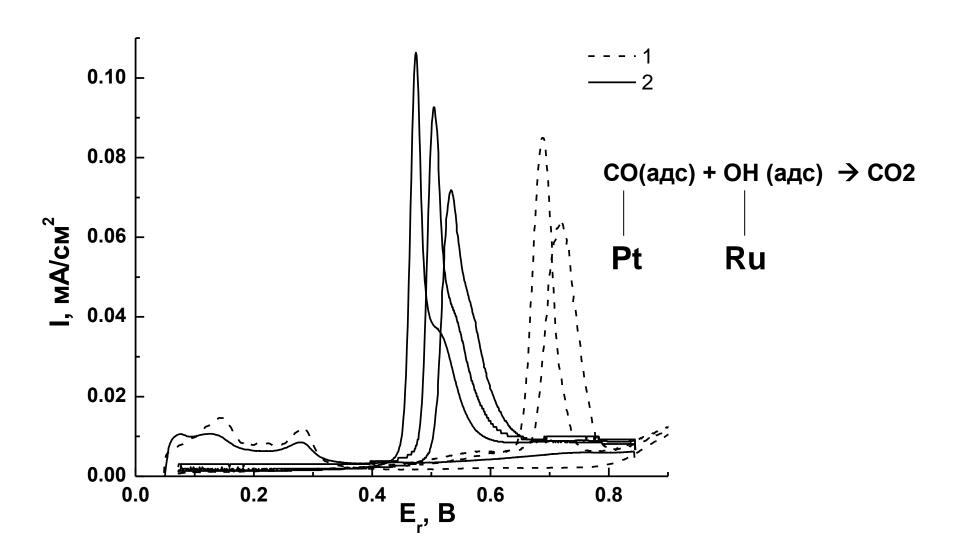

$$H_3O^+ + e^- \rightarrow H_{agc} + H_2O$$

 $2H_{agc} \rightleftharpoons H_2$

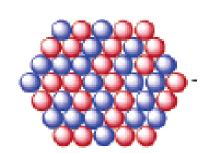
Окислитель - кислород


$$O_2 \rightarrow 2O_{agc};$$
 $O_{agc} + 2H^+ + 2e^- \rightarrow H_2O;$
 $O_{agc} + H_2O + 2e^- \rightarrow 2OH^-$


Катализатор – материал, на поверхности которого с не слишком низкой скоростью протекает диссоциативная адсорбция


Вольтамперометрия: тесты

Платина-рутений: бифункциональный катализ окисления метанола



Бифункциональный катализ: Pt-Ru и аналоги

КАТАЛИЗАТОРЫ – центральное направление исследований

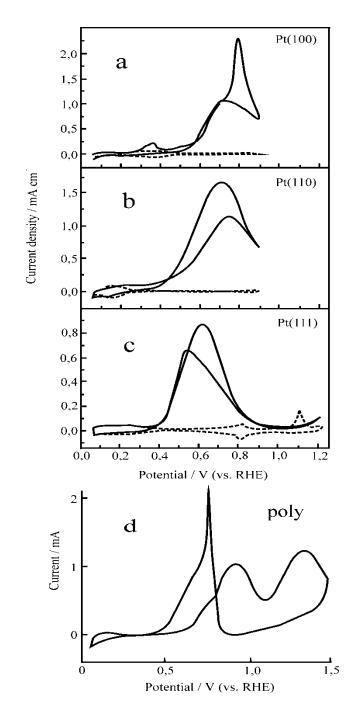
$$CH_3OH \xrightarrow{k_1} CH_3OH_{ad}$$

$$CH_3OH_{ad} \xrightarrow{k_2} CO_{ad} + 4H^+ + 4e$$

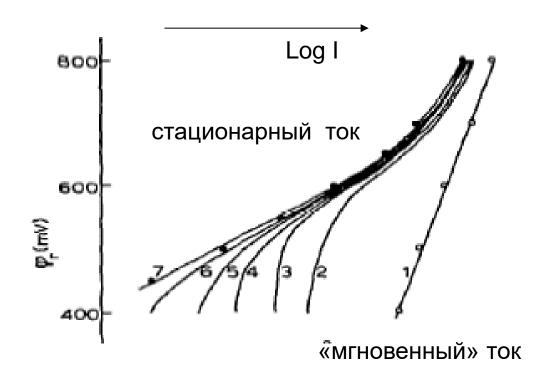
$$H_2O \xrightarrow{k_{3,1}} OH_{ad,Pt} + H^+ + e$$

$$H_2O \xrightarrow{k_{3,2}} OH_{ad,Ru} + H^+ + e$$

$$CO_{ad} + (OH_{ad,Pt} + OH_{ad,Ru}) \xrightarrow{k_{4,1}} CO_2 + H^+ + e$$


Коммерческие:

E-TEK


HiSpec

JM

Pt-
$$CO_{ad} + Sn(Mo)-OH_{ad} \rightarrow CO_2 + H^+ + e$$

Самоингибирование

Вольтамперометрия **не может** использоваться для определения стационарной каталитической активности в условиях **самоингибирования** электродного процесса.