Электроосажденные оксиды: обратимые изменения стехиометрии, гидратация, структурные несовершенства

Г.А. Цирлина Кафедра электрохимии МГУ tsir@elch.chem.msu.ru

С.Ю. Васильев, М.И. Борзенко, Л.В. Пуголовкин, Э.Е. Левин, В.К. Лауринавичюте, А.А. Хохлов, А.Н. Гаврилов (МГУ)

Л.М. Плясова, О.В. Шерстюк, Т.Ю. Кардаш, И.Ю. Молина, О.А. Стонкус, Д.А. Яценко, В.В. Каичев (БИК)

Barbara Palys, Pawel Kulesza (Warsaw University)

Requirements:

- at least two non-zero oxidation states;
 - essential difference in solubility of the reduced and oxidized states in certain the solvent/medium;
- conductivity of the resulting solvent.

ר Anodic

electrocrystallization

 $[M(OH)_{x}(H_{2}O)_{y}]^{z+}$ Cathodic
electrocrystallization

Electrochemistry starts, solution chemistry continues

Oxide-forming ions undergo electrode reaction (either oxidation or reduction) in the close vicinity of the interface, e.g.

 $Tl^+ \textbf{-} 2e = Tl^{3+} \quad \text{ or } \quad Cu^{2+} + e = Cu^+$

Reaction products form insoluble solid compound with hydroxyl ions and/or other anions from the medium. Solids are formed just at the interface (**heterogeneous nucleation**) and undergo partial or complete dehydration:

Cathodic deposition of non-stoichiometric tungsten oxides

Molecular Precursors

For all these W(VI) isopolyanions, W(V) containing mixed valence species can be generated under cathodic polarization.

a

Recharging in supporting solution

~ 10% W^v

	Charge, mC	W, *10 ⁷ , mol (from ICP-MS)	e per W atom	d, nm
Pt / film	2.7	2.26	0.12	60
Pt / film	14.3	14.15	0.11	390
FTO / film	6.3	9.75	0.07	140
Pt / aged film	7.2	7.67	0.10	160

Our data:D ~ 10^{-6} cm² s⁻¹For anhydrous WO3:D ~ $10^{-8} - 10^{-12}$ cm² s⁻¹

Ageing: 'development of crystallinity'

Ageing: ca. 8% of tungsten keep 5+ oxidation state even in air

Reversible cycling in the gas phase:

H₂ – He – H₂, Pd catalyst monoclinic/orthorhombic Model experiments with tungstic acid powder

In- situ Raman

Deposition of tungsten-based doped oxides

200-700 cycles in Na_2WO_4 metastable solution or mixtures (12 mM total concentration) in 0.5 M H_2SO_4

In-situ UV-VIS characterization (W-V film)

Coloration efficiency (1100 nm) and response time, 2 M H_2SO_4

700 nm: т (0,5 M H₂SO₄) ≈ т (2.0 M H₂SO₄)

т (700 nm) > т (1100 nm)

Small charges (< 2–4 mC cm⁻²):

- CE (W) = 95 cm² C⁻¹
- CE (V-W) = $269 \text{ cm}^2 \text{ C}^{-1}$
- CE (Mo-W) = 183 cm² C⁻¹ Higher CEs at 1100 nm Higher CEs for doped films

Cycling stability in 2.0 M H₂SO₄

 $2.0 \text{ M} \text{H}_2\text{SO}_4 \text{ vs. } 0.5 \text{ M} \text{H}_2\text{SO}_4$

Alternative way: deposition from peroxo-complexes

 $2W(s) + 10H_2O_2 \rightleftharpoons [W_2(O)_3(O_2)_4(H_2O)_2]^{2-} + 2H_3O^+ + 5H_2O$

 $[Mo_2(O)_3(O_2)_4(H_2O)_2]^{2-} + [H_2MoO_4]$ $+ 12[H_3O^+] + 10e^- \Rightarrow Mo_3O_{8(s)} + 21H_2O$

$$[W_{2}^{VI}(O)_{3}(O_{2})_{4}(H_{2}O)_{2}]^{2-} + 14H_{3}O^{+} + 10e^{-} \rightarrow (W_{2}^{VO_{2}^{+}})_{2} \cdot 2H_{2}O(s) + 21H_{2}O(s) + 2H_{2}O(s) + 2H_{$$

T.M.McEvoy, K. J. Stevenson, Anal. Chim. Acta 496 (2003) 39–51 L. Kondrachova et al., Langmuir 22 (2006) 10490-10498

Any synthesis starts from Pourbaix diagram (as the first approximation)

Trans. Faraday Soc. 58 (1962) 1865-1877 BY M. FLEISCHMANN, H. R. THIRSK AND I. M. TORDESILLAS $[Mn(H_2O)_n]_{soln}^{2+} \rightleftharpoons [Mn(H_2O)_n]_{ads.}^{3+} + e$ $[Mn(H_2O)_n]_{ads.}^{3+} + [Mn(H_2O)_n]_{ads.}^{3+} \rightleftharpoons [Mn(H_2O)_n]_{soln}^{2+} + [Mn(H_2O)_n]_{ads.}^{4+} \qquad [Mn(H_2O)_n]_{soln}^{2+} \rightleftharpoons [Mn(H_2O)_n]_{ads.}^{4+} + 2e$ 8 $--[Mn(H_2O)_{n-1}(OH)]_{ads}^{3+} + H^+$ The principle industrial process: 10 $--[Mn(H_2O)_{n-2}(OH)_2]_{ads.}^{2+} + H^+$ $[Mn^{4+}]_{soln} \leftarrow$ β -MnO₂ from acidic bath 11 $--[Mn(H_2O)_{n-3}(OH)_3]_{ads.}^+ + H^+$ EDM (electrolytic manganese $[Mn(H_2O)_{n-4}(OH)_4]_{ads.} + H^+$ $[Mn(H_2O)_n]_{solin}^{2+} + 3OH^{-}$ dioxide) demand: $(n+1)H_2O+H^+$ +2e $(n+1)H_2O+2e$ | 13 slow 1962 1985 2007 2020 $\Rightarrow MnO_2 + (n-2)H_2O$ [MnO(OH)]⁺_{ads} ₹ (forecast) 54% 6.3bn 81% High 14.6bn punity EMD required 325.000tp Recent review: High purity EMD 48.2bn required = 485.000to RSC Advances, 5 (2015) 58255-58283 Alkaline 17 63.0bn C-Zn

Kinetics of Electrodeposition of γ -Manganese Dioxide

The principle industrial process: β -MnO₂ from acidic bath. *However* the material operates in alkaline medium, and birnessite formation is unavoidable.

Slow **cathodic** deposition (**kinetic mode**) allows to obtain the compact, but highly dispersed material.

L.V. Pugolovkin et al, ECS Trans. 85 (2018) 137-145

formation of resistive flakes.

deposition under diffusion control result in

Cathodic deposition from permanganate: less usual technique

Anodic deposition

TEM (Antwerpen: Joke Hadermann, Maria Batuk)

Cathodic deposition at low overvoltage,

good recharging

Cathodic deposition at higher overvoltage,

bad recharging

Задачи для in situ структурного экспермента:

- Мониторинг роста
- Эволюция после осаждения при разомкнутой цепи
- Мониторинг перезаряжения

Сложности:

- Сильное разупорядочение, вплоть до рентгеноаморфности
- Ограниченность толщин осадков и площади электродов
- Наличие кристаллических подложек