Общие принципы радиационнохимических подходов в нанотехнологиях. Особенности реализации подходов "top-down" и "bottom-up". Трековые нанотехнологии

Нанообъекты и наноструктуры: рабочее определение на основе *размерного эффекта*

- Википедия:
- Нанообъект (англ. nano-object или nano scale object) дискретная часть материи или, наоборот, её локальное отсутствие (пустоты, пора), размер которой хотя бы в одном измерении находится в нанодиапазоне (как правило, 1—100 нм)
- молекула декана нанообъект ?
- Наноструктура (<u>англ.</u> nanostructure) совокупность <u>наноразмерных</u> объектов...
 - димер деканола наноструктура ?
 - «нанонить» структура или объект ?

Размерный эффект в отклике системы:

- Молелулы и квазимолекулы (в т.ч. «кластеры»)– отклик дискретен или не существует
- Наноструктуры отклик непрерывно зависит от размера
- Фазы отклик не зависит от размера

Принципы радиационно-химических подходов в нанотехнологиях

- 1. Неоднородность пространственного распределения первичных событий (радиационноиндуцированные наноструктуры) – физическая стадия: d = f(LET)
- 2. Нанометровое разрешение изображения в проекционных нанотехнологиях ("*принцип λ/2"* нанолитография *и не только*)
- 3. Универсальный способ приготовления *building blocks* (молекулы, ионы, радикалы)

Подходы *top-down* и *bottom-up* в радиационно-химических нанотехнологиях

- *Top-down* (сверху вниз) «дробление» через деструкцию (например, нанолитография с позитивными резистами)
- Bottom-up (снизу вверх) сборка и самосборка из атомов молекул, ионов (сначала необходимо приготовить «кирпичики»)
- В обоих случаях главное «вовремя остановиться» (специфическая природа ограничений)
- Трековые нанотехнологии на самом деле, комбинация обоих подходов !

Пространственное распределение первичных продуктов радиолиза. «Шпоры» и треки - 1.

Трек ускоренного электрона (E ~ 1 МэВ) или γ-кванта (LET ~ 0,2 эВ/нм) показана заключительная часть трека

Пространственное распределение первичных продуктов радиолиза. «Шпоры» и треки - 2.

Трек тяжелой заряженной частицы (LET > 20 эВ/нм)

Вдоль траектории частицы формируется цилиндрическая область сплошной ионизации («колонка из шпор» - плотный трек) Диаметр трека растет с ростом LET

В любом случае для начальных концентраций первичных продуктов радиолиза C_{лок.} >> C_{ср.}

Радиационно-индуцированные первичные наноструктуры: резюме

- ИИ создают («наводят») наноструктуры различной формы и размера в изначально однородной изотропной среде, независимо от химического состава
- Характер «картинки» определяется параметрами ИИ (в первом приближении – величиной ЛПЭ)
- Время жизни и возможности проявления первичных радиационно-индуцированных наноструктур зависят от свойств среды

Особенности действия излучений с различной величиной ЛПЭ на полимеры

Сшивание – обычно результат рекомбинации макрорадикалов → вероятность сшивания растет с ростом ЛПЭ

Деструкция – мономолекулярный процесс

Растворимость полимеров повышается при деструкции и падает при сшивании

Для излучений <u>с очень высокими значениями ЛПЭ</u>в «сердцевине» трека часто преобладает деструкция, на периферии - сшивание

Проявление трековых структур в полимерах: химическое травление

- Зависимость локальной скорости химического травления от расстояния от оси трека тяжелого иона в пленке ПЭТФ (а)
- Влияние величины ЛПЭ на характеристический диаметр трека (б) (граница соответствует максимальной плотности сшивания – минимальной растворимости)

• d* ~ (LET)^{0.5}

[P.Yu. Apel et al., *Nucl. Instr. Meth. Phys. Res. B.*, 1998, **146**, 468;
P.Yu. Apel et al., *Radiat. Meas.*, 1999, **31**, 51]

Получение нанопористых структур: трековые мембраны

- Схема получения нанопористых трековых мембран с использованием ускоренных тяжелых ионов (from A.G. Chmielewski et al., *Nucl. Instr. Meth. Phys. Res. B*, 2007, **265**, 339).
- Используемые полимеры ПЭТФ, поликарбонат, полипропилен, ПВДФ...

Трековые мембраны: разнообразие возможностей

200 нм

- Трековые мембраны различной структуры, (СЭМ-изображения)
- (а)– мембрана с цилиндрическими параллельными каналами
- (б) микрофильтрационная (d ~ 200 нм)
- (в) –асимметричная ультрафильтрационная
- (г) «колодцы» с пористым дном

[данные группы П.Ю. Апеля: P.Yu. Apel et al., *Nucl. Instr. Meth Phys. Res. B*, 2003, **209**,329; ibid, 2003, **208**, 11]

возможность получения пор различной формы с d = 10 нм – 10 мкм управление : 1) физические параметры (ЛПЭ, интенсивность); 2) режим травления; 3) химическая и фотохимическая обработка перед травлением

10 мкм

Применение трековых мембран

 Ультрафильтрационная очистка плазмы крови (плазмаферез)

Другие биомедицинские приложения

Культивация клеток Изучение клеточной активности

Очистка деионизированной воды для микроэлектроники

Ультрафильтрация напитков

Аналитические приложения

Схема технологической установки для получения трековых мембран для плазмафереза (ожидаемая производительность – до 1 млн м² мембранной пленки в год)

Модифицирование и фукционализация трековых мембран

PET Ion Track Membrane

- Трековые мембраны «заготовки»:
- шаблоны для нанопроводов
 (электроосаждение металлов, каталитическое осаждение)
- прекурсоры функциональных мембран (полимеризация функциональных мономеров в нанопорах)
- получение smart materials, («сенсорные» полимерные гели в порах трековых мембран)

Diameter: 200 nm Height: 12 µm

lon Track Membrane

Copper Wires

Медные нано- (вверху) и микро-(внизу) проволоки, сформированные в каналах трековых мембран (A.G. Chmielewski et al., Nucl. Instr. Meth. Phys. Res. B, 2007, **265**, 339; P.Yu. Apel et al., Nucl. Instr. Meth Phys. Res. B, 2003, **208**, 11)

Production of nanopores in polyethylene terephthalate film with no chemical etching (track-UV technique)

<u>Reproduced from</u>: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Highly selective ion transport through the ~ 1 nm pores in PET foil in the electrodialysis process)

Reproduced from: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Lit

 Mg^{2+}

 Ca^2

Ba

SO²

Hydration ion radius /Å

4.0

4.5

Na

3.5

Chemical etching of ion tracks

Polyethylene terephthalate (PET) foil

<u>Reproduced from</u>: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Fabrication of single conical track-etch nanopores using asymmetric etching

Electrical field assisted one-sided chemical etching

(Apel P.Yu, Korchev E.Y., R.Spohr, Z.Siwy, M.Yoshida. *Nucl. Instrum. Meth.*, 2001)

The pore is not exactly conical because of cross-linked halo

Reproduced from: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Asymmetric etching. Control over the nanopore shape using osmotic effects

Important parameters

- D diffusion coefficient of NaOH
- v linear velocity of osmotic flow

c(x) – concentration of NaOH

$$V(x)\frac{dc}{dx} = D\frac{d^2c}{dx^2}$$

(P.Y. Apel, I.V. Blonskaya, N.E. Lizunov et al. Small, 2018)

Reproduced from: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

An example of single-molecule resistive-pulse sensor based on asymmetric track-etch nanopore: detection of porphyrine molecules

E.A.Heins, Z. Siwy, L.A. Baker, C.R. Martin. Nano Lett. 2005, 5, 1824

Reproduced from: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Diode-like behavior of asymmetric nanopores in electrolyte solutions – ionic current rectification (ICR)

The rectification ratio: *r* = *I* (-1V) / *I* (+1V)

Asymmetric track-etch nanopores are of great interest because

- Some biological channels show the ionic current rectification
 - Nanofluidic devices can be built based on ICR

<u>Reproduced from</u>: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018

Asymmetric nanopores as nanofluidic logic elements

J. Cervera, P. Ramirez, S. Mafe, P. Stroeve. *Electrochimica Acta*, 2011

V. Gomez, P. Ramirez, J. Cervera et al. *Electrochem. Commun.* 2018, v. 88, 52.

<u>Reproduced from</u>: P.Yu Apel, lecture at IRaP 2018, Aug. 28, 2018