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Кинетика процессов в конденсированных
фазах и на межфазных границах.

Границы раздела и кинетика реакций на 
полупроводниковых электродах.

Dr. O.A. Semenikhin

Lecture 2. Semiconductor/Solution Interface. 
Mott-Schottky Plots. Electron transfer via Valence and 

Conduction Bands.
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Semiconductor/Solution Interface: 
Interfacial Capacitance
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 Capacitance of a semiconductor-
electrolyte solution interface consists 
of three components:
 capacitance of diffuse layer in the 

solution;
 capacitance of compact (Helmholtz) 

layer at the interface;
 capacitance of space-charge layer in 

the semiconductor.
 Of the three components, we have 

already discussed CH and Cdiff.
 We can eliminate Cdiff if we use 

sufficiently high electrolyte 
concentration. 

 For semiconductor electrodes, 1/CSC
is most often much higher than 1/CH, 
and it is CSC that determines Cint.

 We need to know how CSC depends 
on potential. 
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Flat-Band Potential

 As with the Me/Sc interface, we 
can bias the interface so that we 
compensate the build-in contact 
potential difference. 

 There will be no interface 
charging and no band bending in 
the semiconductor phase. 

 The electrode potential at which 
such a situation happens is 
called flatflat--band potentialband potential. 

 Alternatively, we can bias the 
interface in other direction and 
repulse mobile carriers deeper 
into semiconductor bulk.

 The band bending will increase 
and so will the widthwidth Lsc of the 
spacespace--charge layercharge layer in the 
semiconductor.
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Width of the Space-Charge Layer

The bulk of 
semiconductor is 
electrically neutral 
outside the SCL
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Width of the Space-Charge Layer
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Width of the Space-Charge Layer
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Width of the Space-Charge Layer
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Width of the Space-Charge Layer
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The width of the space-charge layer increases as a 
square root of the potential drop across the SCL
at =fb there is no SCL and (0)=0.
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Space-Charge Region

• The width of the space charge region can be 
also expressed through the Debye length: 
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Space-Charge Region
• For a doped semiconductor,

• and

• At T=298 K                                              

• and therefore the Debye length is equal to the width of the space 
charge layer when the potential drop across the SCR is half of this 
value, or ca, 15 mV at 298K.

• In semiconductor devices, the potential drops are typically much
greater and Lsc can be up to several micrometers.  
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Capacitance of the Space-Charge Layer
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electrode potential, the C-2 dependence yields a straight 
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Capacitance of the Space-Charge Layer
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Such dependencies are called Mott-Schottky plots

16

An Example of Experimental 
Mott-Schottky Plots

O.A. Semenikhin et al. J. Phys. Chem. B, Vol. 110, No. 41, 2006
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Kinetics of Dark and Light Processes at 
Semiconductor/Solution Interface

Image Source: Arthur J. Nozik; J. Phys. Chem. 1996, 100, 13061-13078.

For the electron transfer to occur, the energy levels of the iniFor the electron transfer to occur, the energy levels of the initial and tial and 
final electronic states must coincide: the Franckfinal electronic states must coincide: the Franck--Condon principle.Condon principle.

This distribution  is due 
to the reorganization 

energy of the solvent λ

  TkB2

λ is usually 0.5 – 2 eV

-λ

+λ

18Image Source: Arthur J. Nozik; J. Phys. Chem. 1996, 100, 13061-13078.

Electron exchange 
through 

conduction band

Hole exchange 
through valence 

band

Redox System II had more positive Eredox before contact

Semiconductor/Solution Interface
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19Image Source: Arthur J. Nozik; J. Phys. Chem. 1996, 100, 13061-13078.

J-E curves for p- and n-GaAs
GaAs, 6M HCl, Cu2+/Cu+

Currents only via valence band

E (Cu2+/Cu+) No holes are 
available in the 

dark

Hole injection into 
valence band

Photoexcited holes 
(minority carriers) 
from valence band

Holes (majority 
carriers) from 
valence band

Hole injection into 
valence band. Hole 

diffusion limited 
current

20Image Source: Arthur J. Nozik; J. Phys. Chem. 1996, 100, 13061-13078.

Positions of Semiconductor Bands 
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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Energy Diagrams for p- and n-GaAs
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