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Energy Levels of An Isolated Atom

Energy of Coulomb 
interaction between the 
nucleus and the electron

Distance between 
the nucleus and 

the electron

Discrete 
energy levels 

(quantum 
mechanics)

http://ktf.krk.ru/courses/foet/
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Energy Levels of Interacting Atoms

Na

The U(rU(r)) profile 
changes here. 

These electrons 
“feel” each other.

These core 
electrons are 
not “aware” of 
the presence 

of other atoms.
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Energy Levels of Interacting Atoms: 
Orbitals turn into Bands

Note that the closer we bring the  atoms, the 
stronger the interaction between them, and the 

greater the splitting of electron levels. 
If we bring the atoms too close, the increase in the 
electron energy becomes too high. This is one of the 

origins of the repulsive forces between atoms. 

Closed shells -> filled bands. Non-closed shells -> half-filled bands!
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Band Structure of Solids: Metals, 
Semiconductors, Insulators

http://matse1.mse.uiuc.edu/~tw/sc/prin.html

• As dependent on the band arrangement, we can have 
one of the situations above: a semi-filled band; a filled
and an empty band separated with a narrow gap; a filled 
and an empty band separated with a wide gap.

• These cases are known as metals, semiconductors and 
insulators, respectively.  

Valence 
Band

Conduction 
Band
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Energy Levels of Interacting Atoms: 
Metals

When the outmost electron shell forms a semi-filled band, as is the 
case with metals, electrons can travel freely within this band. There is 
no energy barrier to overcome to move an electron within a band, and 
the bands extend throughout the whole lattice.  
It is said that the electrons form an “electron gas” in the metal. 
Sometimes this situation is associated with formation of a “metallic 
bond”, whereby all positively charged lattice ions are held together by 
mutual attraction with negatively charged electrons of the electron gas.
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Band Structure of Solids: Metals

http://mws.mcallen.isd.tenet.edu/mchi/ipc/ch07htm/ch07sec4.htm

• Electrons in metals: the sea 
of electrons or electron gas. 
These exotic substances are 
just free electrons moving in 
the periodic field set up by 
the positive lattice ions.
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Energy Levels of Interacting Atoms: 
Covalent Solids, Mott Insulators

However, if the interaction is not strong enough to form extended 
bands (as is the case with 2p electrons above), the electrons remain 
localized on the specific atoms. This means that to move an electron, 
one needs to promote it to an upper empty band first. There is an 
energy barrier. 
The valence electrons in this case can still form covalent bonds
between adjacent atoms, as was the case in single molecules.  This 
means that the electron clouds are distorted by the interaction so 
that the electrons are “shared” between neighboring atoms, but not 
among all atoms of the lattice. The resulting materials are called 
covalent solids or Mott insulators.
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The Effect of Electron-Lattice Interaction 
(Localized/Strongly Correlated Electrons)

Vpseude is the periodic 
pseudopotential of 

the lattice

Vpseude is the periodic 
pseudopotential of 

the lattice

Wide Bands Narrow Bands
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Doped/Undoped Mott-Hubbard Insulators

M. B. J. MEINDERS, H. ESKES, AND G. A. SAWATZKY, PHYSICAL REVIEW B, VOL. 48, p. 3916

e.g. O 2p orbitalsU is due to e-e
Coulombic repulsion
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Band Structure of Solids: 
Semiconductors and Insulators

http://modernworldview.net/covalent/

• In semiconductors and especially 
insulators, all valence electrons 
form covalent bonds. 

• Making an electron mobile would 
require breaking the bond. This 
is the origin of the energy gap. 

• This also demonstrates the 
fundamental difference between 
metallic and covalent bonds.

Si lattice
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Energy Levels of Interacting Atoms: 
Diamond

For 2 C atoms, mixing of two  sp3 orbitals produces  bonding and 
* antibonding levels with a large energy separation. In diamond, 
which is a crystal built from C sp3 atoms, the  and * levels undergo 
some degree of broadening to form bands; however, the energy gap
remains very wide. Diamond is an insulator.
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Band Structure and Interatomic Distances

Images: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/bandper.html#c1; 

The structure of the outermost (valence) electrons is qualitatively 
similar for carbon, silicon, germanium and tin. However, C (diamond) is 
an insulator, Si and Ge are semiconductors, and Pb is a metal. 
The stronger the atoms interact, the shorter the interatomic
distance and the greater the splitting of the energies of electrons 
(and the bandgap).  
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Intrinsic Semiconductors

Let us consider undoped Si. At T=0, all valence electrons form covalent 
bonds between Si atoms. There are no free electrons. 
However,  if we increase the temperature, an electron could gain enough 
energy to leave its bonding orbital and become a free charge carrier. In 
doing so, the electron leaves behind a vacant energy level.
This level can be filled by a nearby valence electron. In doing so, it again 
leaves behind a vacant energy level, but now at a neighbouring Si atom.
This process is absolutely equivalent to the movement of a free positive 
charge carrier. The latter is called a hole (=an absence of an electron). 

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html#c5

Si Si

T=0 T>0
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Intrinsic Semiconductors

Let us consider undoped Si. At T=0, all valence electrons form covalent 
bonds between Si atoms. There are no free electrons. 
However,  if we increase the temperature, an electron could gain enough 
energy to leave its bonding orbital and become a free charge carrier. In 
doing so, the electron leaves behind a vacant energy level.
This level can be filled by a nearby valence electron. In doing so, it again 
leaves behind a vacant energy level, but now at a neighbouring Si atom.
This process is absolutely equivalent to the movement of a free positive 
charge carrier. The latter is called a hole (=an absence of an electron). 

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html#c5

Si Si

T=0 T>0
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Charge Carriers in Intrinsic 
Semiconductors: Electrons and Holes

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/intrin.html#c1

If we apply voltage to an 
intrinsic semiconductor, we 
observe two types of 
currents: the hole current 
and the electron current. 
Semiconductors, unlike 
metals, have two different 
types of mobile charge 
carriers: electrons and 
holes. 
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Intrinsic Semiconductors

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html#c5

Free electrons are 
generated in the 
conduction band, free 
holes are found in the 
valence band. 
On the contrary, bound 
electrons are in the 
valence band and bound 
holes are in the 
conduction band. The 
energy for holes goes 
from top to bottom. 
Intrinsic semi-
conductors always have 
equal # of electrons and 
holes. 

Si Si
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Doped Semiconductors

n-type
To form a doped semiconductor, we add to intrinsic semiconductors 
special additives called dopants. Dopants substitute native atoms in the 
Si lattice. However, because the electronic structure of dopants 
differs from that of Si, the properties of the whole phase are changed. 
 In this example, we add arsenic. As has 5 valence electrons rather 
than 4. Therefore, we have one excess electron per As atom that has 
nowhere to go except the conduction band (the valence band is full). 
Therefore, we now have more electrons than holes. Electrons are 
called here majority carriers. We have an n-type semiconductor. 
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Doped Semiconductors

p-type
 In this example, we add aluminum. Al has 3 valence electrons rather 
than 4. Therefore, we have one less electron per Al atom. We have made 
a mobile hole in the valence band. 
We have here a p-type semiconductor with holes as majority carriers.
Note that in both cases we also have small number of minority carriers. 
They are generated in the same way as in intrinsic semiconductors. 
However, because the majority and minority carriers should be in
equilibrium, an increase in the doping level (the # of majority carriers) 
decreases the concentration of minority carriers, and vice versa. 

20

Other Dopant Impurities
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Fermi Energy in Intrinsic Semiconductors

The Fermi level in an intrinsic semiconductor lies not at the edge 
of the valence band (the topmost filled energy level) but halfway 
between the valence and conduction bands in the band gap. 
There are no allowed energy levels below the Fermi level down to
the VB edge so at T=0K the highest energy of real electrons will
be the top of the valence band. 

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi.html#c2
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Fermi Energy in Intrinsic Semiconductors

Why then the Fermi level does not lie at the edge of the 
valence band? 
If we increase the temperature, we will excite some electrons 
into the conduction band leaving holes in the valence band. 
The probability of finding an electron in the conduction band 
and finding a hole in the valence band should be described  by the 
same Fermi-Dirac distribution.
In intrinsic semiconductors the # of electrons and holes are 
equal; therefore, the Fermi energy lies in the mid-gap.

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi.html#c2
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Population of Conduction Band for a 
Semiconductor

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/fermi.html#c4

The “tail” of the 
Fermi-Dirac
distribution

Density of states 
inside the band 

vs. energy 
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Concentrations of Majority and Minority
Carriers In Respective Zones 
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The probability of having a 
hole on a certain level is 1 
minus probability of having 

there an electron.
The probability of having 

either electron or hole is 1 



13

25

For relatively wide band gap semiconductors we can replace the  
Fermi-Dirac distribution with a simpler Boltzmann distribution. 
We can also simplify our equations by replacing true energy-
dependent density of states with an effective energy-independent 
value Neff and integrating from the band edge to infinity. 

We obtain:

The carrier concentration (and hence, conductivity) exponentially 
decreases with an increase in the separation between the Fermi level 
and the band edges, that is, with an increase in the band gap width.
As a result, wide band gap semiconductors have extremely low 
conductivity, while small band gap ones can be even considered 
half-metals.  
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For an intrinsic semiconductor the Fermi level 
indeed lies in the middle of the bandgap 

Concentrations of Majority and Minority
Carriers and the Position of Fermi Level 
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Fermi Energy in Doped Semiconductors

In doped semiconductors the # of electrons and holes are not equal.
To preserve the Fermi-Dirac distribution, the Fermi energy moves 
closer to the band of the majority carriers.
It is also highly logical: to make a semiconductor material n-type, we 
add a dopant with an excess of electrons. Therefore, the Fermi energy 
should go up as compared to the undoped semiconductor (the level of 
the Fermi sea should increase to accommodate the extra electrons). 

f=0 f=1

EF

f=0 f=1

EF

i-type SC n-type SC
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Fermi Energy in Doped Semiconductors

Obviously, the same applies to a p-type semiconductor as well. 
To make a semiconductor material p-type, we add a dopant with a 
deficit of electrons. We have removed some electrons but left the 
number of available levels unchanged.  The Fermi energy should go down 
as compared to the undoped semiconductor (the level of the Fermi sea 
decreases). 

f=0 f=1

EF

f=0 f=1

EF

i-type SC p-type SC
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Image:http://matse1.mse.uiuc.edu/~tw/sc/prin.html

Other Types of Semiconductors
So far we have talked only about 
Si. However, there are other types 
of semiconductors.
For instance, GaAs will be 
isoelectric to Si-Si (3e+5e=4e+4e). 
Therefore, GaAs should be a 
semiconductor as Si. 
Actually, it is a better 
semiconductor (although much more 
expensive ). It feature very high 
carrier mobilities and is used in 
ultra-high frequency electronics.  
Si and Ge are called elemental 
semiconductors. GaAs, CdTe and 
similar materials are called  
compound semiconductors. 
Materials like GaAs are also 
called III-V semiconductors. 
How would we call ZnSe? 

30

Oxide Semiconductors

Yet another very important class 
of semiconductors are metal 
oxides. 
For example, TiO2 is a wide-band-
gap n-type semiconductor
The reason for its n-type 
conductivity is the presence of a 
small number of Ti3+ rather than 
Ti4+ ions. A Ti3+ ion has an extra 
electron 
Similarly, iron (III) oxide is an n-
type semiconductor due to the 
presence of Fe2+ ions.
On the contrary, uranium dioxide 
UO2 is a p-type semiconductor due 
to the presence of U6+. So is Cu2O 
because of…yes, Cu2+ 

Image: http://cst-www.nrl.navy.mil/lattice/struk/c4.html

Ti4+

O2-

Ti3+

Ti4+

Ti4+
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Materials In External Electric Field
• An interesting and important question is what would happen if 

we put a metal, a semiconductor, or an insulator in an external 
electric field, or the field from the charged surface of another 
phase being in contact with the one in question.

• If we do this with a material that has mobile charge carriers, like 
a metal or a semiconductor, these carriers will move in the field.

• This will modify the charge distribution inside the material.
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Materials In External Electric Field
• If a material has plenty of mobile charge carriers, they will be 

able to move to the interfaces until they set up their own 
electric field that will cancel the external field. This is the case 
for metals. 

• It is said that electric field cannot penetrate metals. Metals are 
good shields against electric and magnetic fields.
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Non-metals In Electric Field
• If we put into an external electric field a material that has no mobile

charges, like an insulator, there will be no charge redistribution to set 
up the counter-field.

• The material cannot shield the external electric field. 
• The only thing that can happen with insulators is the occurrence of

induced dipoles (polarization) and re-orientation of existing dipoles in 
the external field. 

• These processes reduce (but not cancel out) the field inside the 
phase. This change is characterized by the dielectric constant . 

EEextext EEextext

EEintint<<EEextext

IntExt EE /
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Semiconductors. Debye Length.
• So we have seen that everything depends on whether or 

not there are mobile charge carriers in the material. 

• We have seen that the electric field cannot penetrate into 
metals and easily penetrate into insulators. 

• However, how about semiconductors? There are mobile 
charge carriers in semiconductors; just their concentration 
is smaller than in metals. Can electric field penetrate into 
semiconductors? 

• Intuitively, we can say that in these cases the field can 
penetrate into these materials…to a certain length. 

• And that is right, and this length is called the Debye length.
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Debye Length
• When we put a material with a bulk 

concentration c0 of  mobile charge 
carriers into external electric field, 
charge redistribution occurs. 

• In the example shown on the left, 
mobile negative charges (probably, 
electrons, but maybe also anions ) 
move towards the interface.

• If we have several types of mobile 
charge carriers, they all redistribute 
according to their charge, but the 
outcome will be the same: an excess 
net negative charge at the interface. 

• This negative charge will screen the 
external field so it will be completely 
cancelled in the bulk beyond the 
Debye length, which is sometimes 
also called Debye screening length. 

The Debye 
Length

36

Electric potential inside the 
phase due to the external 

electric field

The bulk beyond the 
Debye length is 

electrically neutral 

0
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 Excess charge density 

near the interface

Electric field in the 
phase at the interface

dielectric constant 
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Calculating the Debye Length

Poisson’s 
equation
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Calculating the Debye Length -
Insulators

Let’s check how the Poisson’s equation 
works for insulators (no mobile charge 
carriers), charge density (x) is zero.

Therefore,

x
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The electric field in an insulator is constant 
and proportional to the applied voltage. 
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Let’s suppose for simplicity that the only 
mobile charge carriers are electrons. They 
obey Boltzmann’s distribution in the electric 
field (x) and their bulk concentration is n0.
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Calculating the Debye Length -
Semiconductors
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Calculating the Debye Length
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Calculating the Debye Length
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Constant Potential-
dependent term

Electrons are “-”vely charged. 
Therefore, we have “+” rather than “-”

This is the Modified Poisson-Boltzmann equation.
Note that the electric field is no longer constant!!!
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Calculating the Debye Length
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Debye length, LD, is the length at which the electric 
potential induced by the external field decreases by a 

factor of e=2.71828.
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Calculating the Debye Length
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The electric potential induced by the external field 
exponentially decays from the surface into the bulk. 
The Debye screening length determines the 
characteristic distance of the potential decay. Virtually no 
electric field exists in the phase beyond LD. 
LD depends on the concentration of free charge carriers 
inside the phase. The higher the carrier concentration, the 
smaller the Debye length. 
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Estimating the Debye Length
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In heavily doped semiconductors, n0 is of the order of 
1018 cm-3 (1024 m-3 ). For doped Si (=12) at T=300K, 
the Debye length can be estimated as: 
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Space-Charge Region
• The region within the semiconductor where there is an electric field is 

also called a space-charge region. Normally materials are electrically 
neutral, that is, there is no net charge. However, for semiconductors 
in the external electric field this is no longer true and space charge is 
formed at the contacts.

• Outside the space-charge region the semiconductor remains 
electrically neutral. This region is called quasi-neutral region (quasi 
because electroneutrality can be slightly disturbed by the current 
flowing through the semiconductor). 

• The width of such a space-charge region Lsc is determined by the 
properties of a semiconductor and the applied voltage . It can be 
found by solving the modified Poisson-Boltzmann equation with 
appropriate boundary conditions. We will go through the derivation 
later but first let us look into how the space charge is formed and 
what kinds of space charge are found at semiconductor interfaces.
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Schottky Junction

Sc

EF
Sc

Ev

Ec

Let us consider several practical cases of space charge formation. 
We may start with a very simple case of bringing an n-type 
semiconductor in contact with a metal so that an electronic 
equilibrium will be established.
Let’s assume that the Fermi level of metal before contact is lower 
than that of semiconductor. 
Upon contact, electrons will flow from metal to semiconductor. The 
interface will be charged.

eMe  eSc

EF
Me

Me
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Schottky Junction

eMe = eSc

EF

Me Sc Ev

Ec
EF+

+
+

-
-
-

• The surface of metal is charged negatively. It repulses the electrons 
in semiconductor from the interface. Since electrons are majority 
carriers, the resulting space-charge layer is called a depletion layer. 

• Another results in a change in the electrostatic energy of electrons 
near the interface, in particular, in the energies of the edges of the 
valence and conduction bands. This is called band bending.

• Where the bands are bent, there exists an electric field in the 
semiconductor. Therefore, the region with band bending is the space 
charge region.  Outside the space charge region the bands are flat. 
There is no electric field. This is the quasi-neutral region. 
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Schottky Junction
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• Note that while the electrostatic energy of electrons varies with 
distance from the interface, the electrochemical potential (EF) is the 
same across the semiconductor. The variation in the electrostatic 
energy is compensated by the variation in the electron 
concentration.

• Another important note is that the positive charges in the SCR are 
not holes; there are too few holes in an n-type semiconductor; 
rather, the positive charges are ionized donors introduced into 
semiconductor to make it n-doped. 

• Since the donors are also ions of the lattice, they cannot move.
There are no mobile carriers in the SCR. However, there are mobile 
carriers in the quasi-neutral region. 
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Schottky Junction
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• What will happen if we try to pass current across this interface with 
the depletion layer?

• There are no electrons in the depletion layer, they have been 
swept away from the interface by the interfacial charge. There are 
too few holes to speak of.  And the ionized donors cannot move 
and therefore they cannot carry current. 

• There will be no current across the interface. Such an interface is 
called a Schottky junction. It features rectifying properties. it 
behaves like a diode.

• Similar structures are very widely used in various Metal-Oxide-
Semiconductor devices (MOS), e.g., all memory chips . 
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Metal/Semiconductor Interface. 
Accumulation Layer.

EF
Me

Me Sc

EF
Sc

Ev

Ec

Let us now consider a metal and an n-type semiconductor when 
the Fermi level of metal before contact is higher than that of 
semiconductor. We again bring them in contact so that an electronic 
equilibrium will be established.

Upon contact, electrons will flow from metal to semiconductor. The 
interface will be charged.

eMe  eSc
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eMe = eSc

EF

Me Ev

Ec EF
+
+

+
-

-

-

 The surface of metal is charged positively. It attracts the electrons 
(majority carriers) in semiconductor to the interface!

 This results in formation of a so-called accumulation layer. Unlike 
the previous case, when the space-charge region had no mobile 
carriers with sufficiently high concentration, the accumulation layer 
is able to sustain electric current through the interface. 

 The surface concentration of electrons could be made even higher
by additional surface doping. Then the resulting situation is known 
as Ohmic contact.  

 In many practical cases it is very essential to have Ohmic 
contacts. All semiconductor chips must have metal leads…

Sc

Metal/Semiconductor Interface. 
Ohmic Contact
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Ohmic Contacts, Schottky Junctions 
and Work Functions 

 Let us look a bit back and see what is the difference between our 
two cases that resulted in so different interfacial properties.

 The ultimate reason is the different relative positions of the Fermi 
energies of the metal and the semiconductor before contact.

 When the Fermi energy of the metal was higher than that of 
semiconductor, we had accumulation layer and Ohmic contact.

 When the Fermi energy of the metal was lower than that of 
semiconductor, we had depletion layer and Schottky junction.

 Fermi levels are related to work functions of the materials.
 Metals with low work functions form Ohmic contacts; metals with 

high work functions form Schottky diodes (with n-type Sc). 

EF

Me +
+

+
-

-

- Sc Me Sc Ev

Ec
+

+
+

-
-
-
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Polarized Metal-Semiconductor Interface

 We can bias the interface 
to increase or decrease 
the width of the space 
charge layer. 

 In the above case of a 
Schottky junction with an 
n-type semiconductor, 
applying negative 
potential to the metal will 
increase the band bending 
and extend the space 
charge layer in the 
semiconductor.

Me Sc Ev

Ec
+

+
+

-
-
-

scsc

Me Sc

+

+
+
+



27

53

Flat-Band Potential

 We can also bias the 
interface so that we 
compensate the build-in 
contact potential difference. 

 There will be no interface 
charging and no band 
bending in the 
semiconductor phase. 

 The electrode potential at 
which such a situation 
happens is called flatflat--band band 
potentialpotential. 

 Flat-band potential is a 
special case of the 
potential of zero charge 
(pzc).

Sc
Ev

Ec

fbfb

Me

Me Sc Ev

Ec
+

+
+

-
-
-
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Appendix. Contact Potential 
Differences, Work Functions 

and Fermi Levels. 
Electrochemical and Vacuum 
Scale of Electrode Potentials.
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Interface at Equilibrium: Equality of 
Electrochemical Potentials

 When we bring two phases in contact, they come to equilibrium
with respect to a given species which exists in both phases and 
can pass from one phase to the other. 

 Prior to establishing of the equilibrium, there is a transfer of 
charge between the phases until the difference in chemical 
potentials of the charged species is balanced by the electrical 
energy of the species. 

 The equilibrium condition is the equality of electrochemical 
potentials of the species in the two phases:

 Since we have movement of charged species across the 
interface, the phases become charged versus one another.

B
e

A
e  
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Interface at Equilibrium: Bringing Two 
Phases In Contact

 Let us consider two phases that have different compositions and 
hence different Fermi levels, electrochemical potentials, etc. 

 Assume for simplicity that these phases are two pieces of 
different metals or of a metal and a semiconductor and the only 
species that exists in both phases are electrons.

 The phases are not in contact. There is no electron flow between 
the phases. The electrochemical potentials of electrons in phases
A and B are different.

EF
A

A B

EF
B

eA  eB
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Interface at Equilibrium: Bringing Two 
Phases In Contact

 If we bring the phases into contact, the electrochemical potentials
of electrons will be equalizing.

 The electrons will flow from the phase with a higher Fermi level to
the phase with the lower one (or from the phase with the higher
electrochemical potential to the phase with the lower one).

 This electron flow is transient and occurs only until the 
electrochemical potentials of electrons in the two phases become 
equal. In the process, the Fermi level of phase A goes up, and 
that of phase B goes down.

eA
EF

A

A B

EF
B

eB
e-

e-

e-
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Interface at Equilibrium: Bringing Two 
Phases In Contact

 When the electrons flowed from phase B to phase A, they left 
behind the ions of the lattice whose charge is no longer balanced.

 Similarly, electrons that came to phase A have their charge
uncompensated by lattice ions of phase A.

 The result is that the interface between phases A and B becomes 
polarized. 

 This shows itself as a change in the inner potentials of the phases 
A and B (naturally, since electrochemical potentials change upon
contact and chemical potentials do not, why should they???)

EF
A

A B

EF
B

eA = eB
+
+
+
+

-
-
-
-
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Interface at Equilibrium: Bringing Two 
Phases In Contact

EF
A

A B

EF
B

+
+
+
+

-
-
-
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B
e

A
e  

BB
e

AA
e FF   electron has a negative charge!!!

F

A
e

B
eABB

A

 


The inner potential difference B
A  between two phases brought 

in contact is equal to the difference in chemical potentials of 
electrons in these phases
The work of transfer of electrons from one phase to the other in 
equilibrium is zero.

BB
AA 

60

Contact Potential Difference

 However, we cannot measure inner potentials (and chemical 
potentials of electrons, by the way).

 So does anything happens that we can measure???
 Yes. There is a change in the outer potentials of the phases.

 The value B
A  is called contact potential differencecontact potential difference.

 It can be measured because it occurs between two points in the 
same phase (vacuum).

B
A  = B

A A +

+ B
A AA B

+
+
+
+

-
-
-
-

BB
AA 

BB
AA 
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Contact Potential Difference

 Let’s take an electron from the Fermi level of phase A to the 
point just outside it. The work required for this is the work 
function AA of the phase A.

 We then take the electron in the vacuum from the point just 
outside phase A to a point just outside phase B; this requires the 
work –e0 BB

A A 
 We then take the electron to the Fermi level of phase B and gain 

the energy BB

 Since we are at equilibrium the sum of 
these three works must be zero and 

A B
+
+
+
+

-
-
-
-

BB
AA 

AA BB

0

)(

e
ABB

A


 
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Contact Potential Difference

 The contact potential difference between two phases is 
equal to the difference in work functions of these phases.

 Similarly, the contact potential difference is equal to the 
difference in Fermi levels of these phases before contact.

A B

AA

BB

A B

vacuum (just outside the phase)

EF
A

EF
B AA BB

vacuum

BB
AA 

EF EF+
+
+

-
-
-
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Me Sol

vacuum
just outside 
the phase

MeMe
SolSol 

-
-
-

+
+

+

Hydrogen Scales of Electrode Potentials

 We can take the potential of an electrode containing a certain redox 
couple as zero and reckon all other potentials by comparing them to 
the electrode potential of this electrode. 

 If this standard redox reaction is ½ H2  H+ + e-, the resulting 
potential scale is called the hydrogen scale of electrode potentials.

 Electrochemical standard potentials in the reference literature are 
tabulated vs. this standard hydrogen electrode (SHE). 

 There are a few other widely used reference electrodes, such as the  
saturated calomel electrode (SCE). Of course, the conversion 
factors from one scale to another are known very precisely.

64

Me

vacuum

MeMe
SolSol 

Absolute Scale of Electrode Potentials

 If electrode potentials are reckoned vs. the vacuum level, the 
resulting potentials are said to be measured on the absolute scale. 

 The difference between the hydrogen and absolute scales is the 
work function of solution containing the hydrogen/hydrogen ion 
redox couple under standard conditions.

 The work function of the standard hydrogen electrode (SHE) is 
estimated as 4.5 0.2 eV.

 Note that the absolute electrode potentials are reckoned from the 
level of free electrons in vacuum… they are always negative!

EF
Sol

 = 4.5 eVSHE

Eabs= - E - 4.5 VSHE
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Standard and Absolute Electrode Potentials

E=0 E vs. SHE

reduced oxidized

Li+(aq) + e– → Li(s)
E=-3.04 

negative positive

2 H2O(l) + 2e– → 
H2(g) + 2 OH–(aq)

E=-0.83 V

2H+(aq) + 2e− → H2(g)
E=0.0 V

more electrons less electrons

Fe3+(aq) + e– → Fe2+(aq)
E=+0.77 V

F2(g) + 2e− → 2F−(aq)
E=+2.87 V
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Standard and Absolute Electrode Potentials

E=0 V

E vs. SHE

Li+(aq) + e– → Li(s)
E=-3.04 V; Evac=-1.46V ne

ga
ti
ve

2 H2O(l) + 2e– → H2(g) + 2 OH–(aq)
E=-0.83 V; Evac=-3.67 V

2H+(aq) + 2e− → H2(g)
E=0.0 V; Evac=-4.5 V

more electrons

less electrons

Fe3+(aq) + e– → Fe2+(aq)
E = +0.77 V; Evac = -5.27 V

F2(g) + 2e− → 2F−(aq)
E=+2.87 V; Evac=-7.37 V

E vs. vacuum

po
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ve

Evac=-4.5 V

free electrons in vacuum
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Positions of Semiconductor Bands 


