Лекция III

Некоторые аспекты микроскопического моделирования реакций переноса электрона. Редокс-процессы в нано- и низкоразмерных системах

Р.Р. Назмутдинов

Казанский национальный исследовательский технологический университет

Москва, МГУ, 19.04.2017

План

- 1. Модель Андерсона-Ньюнса (продолжение).
- 2. Эффект квантовых мод растворителя.
- 3. «Мостиковый» механизм переноса электрона
- 4. Моделирование редокс-процессов в наноразмерных системах.

5. Общие проблемы.

Достоинства модели Ньюнса-Андерсона

при описании гетерогенных реакций переноса электрона:

- 1) Даёт возможность ввести координату растворителя наиболее простым способом.
- 2) Учитывает влияние орбитального перекрывания на величину активационного барьера (катализ).
- 3) Позволяет описать стадийный перенос двух электронов.

Недостатки:

- 1) Реагент характеризуется одной молекулярной орбиталью.
- 2) Не учитывается электронная корреляция.
- 3) Не учитывается отталкивание ядер.

Solvent coordinate vs Quantum effects

- decreasing of the activation barrier -> increasing rate constant
- tunneling → decreasing rate constant

Эффект квантовых мод растворителя

$$k = \frac{\omega_{eff}^{*}}{2\pi} \exp\left[-\frac{\Delta E_{a}^{*}}{k_{B}T}\right] \exp\left[-\sigma\right] = \frac{\omega_{eff}^{*}}{2\pi} \exp\left[-\frac{(\lambda_{s}^{*} + \Delta I)^{2}}{4\lambda_{s}^{*}k_{B}T}\right] \exp\left[-\sigma\right]$$
frequency factor
$$\lambda_{s}^{*} = \xi \lambda_{s}$$

$$\xi = \frac{2}{\pi C} \int_{0}^{\omega^{*}} \frac{\operatorname{Im} \varepsilon(\omega)}{\omega \|\varepsilon(\omega)\|^{2}} d\omega \qquad \qquad C = \frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{st}}$$
$$\sigma = \frac{2\lambda_{s}}{\pi C} \int_{\omega^{*}}^{\infty} \frac{\operatorname{Im} \varepsilon(\omega)}{\hbar \omega^{2} \|\varepsilon(\omega)\|^{2}} d\omega \qquad \qquad \text{Pekar factor}$$

tunneling factor

R. Buchner and co-workers (2008)

Dielectric spectra of some ionic liquids

Частотный фактор в константе скорости

 $\omega_{eff}^{*} \approx \frac{\omega_{eff(s)} \cdot \lambda_{s} + \omega_{in} \cdot \lambda_{in}}{\lambda_{s} + \lambda}$

 $\omega_{eff(s)}^{2} \approx \frac{2}{\pi C} \int_{0}^{\omega^{*}} \frac{\omega \operatorname{Im} \varepsilon(\omega) d\omega}{\left\| \varepsilon(\omega) \right\|^{2}}$

обрезание по верхнему пределу классических мод

Barrier layers

direct ET

bridge assisted ET

Mechanism of the elementary act of electron transfer: *direct path* vs *bridge assisted*

$$\frac{\Delta E_e^*}{2} = \frac{H_{ib}H_{bf}}{\Delta U^*}$$

Схема переноса электрона в конфигурации СТМ

Модель иглы СТМ

Model STM contrast

Cysteine adsorption on Au(110) elecrode (in situ STM images)

10 5
18.5
17.5
16.6
15.6
14.7
13.7
12.8
11.8
10.9
9.9
9.

Примеры наноразмерных систем

5 µm

Изображение массива углеродных нанотрубок, полученное с помощью сканирующего электронного микроскопа.

Модельный проводящий цилиндр В кинетике электрохимических редокс-процессов важную роль играет температурная зависимость константы скорости. На графиках приведены аррениусовские зависимости, построенные для восстановления ферроцианид-аниона на плоском электроде (слева) и на поверхности наноразмерного проводящего цилиндра (справа). Как видно, результаты качественно различаются: Для плоского электрода рост температуры приводит к росту скорости реакции. В случае наноразмерного электрода, наоборот, повышение температуры вызывает снижение скорости процесса. Это вызвано тем, что с ростом температуры усиливается электростатическое отталкивани аниона от поверхности электрода, и для наноцилиндра данный эффект превышает обычный

(аррениусовский) рост скорости процесса с увеличением k_BT.

Эти результаты объясняются различным поведением электронной плотности для поверхности Me(111) и моноатомных проволок. При малых расстояниях электронная плотность для проволок принимает большие значения по сравнению с Me(111), а на больших, наоборот, затухает сильнее (см. график слева). Точка пересечения на графике примерно соответствует границе между участками «катализа» и «ингибирования». Для подтверждения этого вывода на графике справа приведены квадраты резонансного интеграла, рассчитанные переноса электрона на протон с Au(111) и соответствующей проволоки моноатомного размера. Как видно, качественно данные зависимости повторяют поведение профилей электронной плотности (график слева).

Electrochemistry of SWCNT

Calculated charge distribution

Результаты расчетов электронной структуры различных нанотрубок методом функционала плотности

Electron transfer across a SWCNT/electrolyte solution interface is probed by a model H-like reactant

Graphene

DOS (Tight Binding Model)

JACS. 137 (2015) 14319-14328.

0.6

Overvoltage

Figure 7. Single molecule conductance data (blue circles) and fitting with eq 1 (solid blue lines), for 1^{2+} in BMIM-OTf (a) and aqueous electrolytes (b). Experimental data in (b) were recorded in 0.1 M phosphate buffer solution and are taken from refs 10, 12.

Overvoltage

Некоторые общие проблемы молекулярного моделирования редокс - процессов

- 1) Скрытая «полуэмриричность» метода функционала плотности. Большой «зоопарк» обменно-корреляционных функционалов с узкой специализацией.
- 2) Эффекты сольватации (редокс-потенциалы, энергия реорганизации).
- 3) Расчёт электронного трансмиссионного коэффициента (учёт эффектов экранирования растворителем, асимптотическое поведение волновых функций на больших расстояниях; влияние заряда электрода).
- Работа сближения с учётом микроскопической структуры реакционного слоя (наиболее важная, но наименее продвинутая проблема).

Is the DFT a universal key to address complex chemical reactions ?

A zoo of different functionals