Λ^0 , S·cm²·mol⁻¹; K_A , dm³·mol⁻¹ d, kg dm⁻³; η , Pa s

Смеси вода-1,4-диоксан (x – мольная доля диоксана), 298.15 К,

X	$\Lambda^0(x)^{\mathbf{b}}$		0 0000							
	$\Lambda (\lambda)$	$K_{\mathbf{A}}(x)$	0.0000	276.18	95.3	0.0000	279.50	94.8		
			0.0270	213.86	77.4	0.0110	246.48	90.3	X	
0.0222	223.80	325	0.0461	187.20	92.7	0.0303	215.52	92.6		298.15
0.0222	220.60	294	0.0801	156.04	128	0.0669	173.82	147	\overline{d}	
0.0486	187.80	805	0.1276	137.46	364	0.1192	142.58	328	0.0222	1.00568
0.0486	184.06	673	[Ni(en)2]		201	0.1694	129.80	1051	0.0486	1.01404
0.0806	154.58	2022	0.0000	267.98	13.7	[Ni(en)2 0.0000	267.22	43.7	0.0806	1.02173
0.1072	131.00	4870	0.0224	226.72	23.1	0.0367	196.78	35.2	0.1072	1.02648
0.1384	110.58	13963	0.0509	177.96	26.6				0.1384	1.03053
0.1698	80.66	32560	0.0309	154.08	42.4	0.0701	163.32	53.2	0.1698	1.03330
MgSO4			0.1234	127.08	126	0.0889	149.98	106	ε 0.022	70.259
- Л Косова (с	грязано с и	ндивидуальным	0.1234	109.78	646	0.1340	128.74	263	0.0486	70.258 61.820
заданием)	льязапо с и	пдивидуальным	[Cu(en)20		040	0.1750	115.24	591	0.0806	53.174
			[Cu(Cii)2V	C12		0.1874 [Cu(en)	112.00	849	0.1072	47.055
0.0106	211.10	201	0.0106	200.80	6.6	<u> </u>		202	0.1384	40.929
	244.40	201				0.0000		382	0.1698	35.710
0.0222	219.20	242	0.0222	185.20	10.0	0.0215	248.32	757	$\eta \cdot 10^3$	33.710
0.0348	199.00	409	0.0348	160.00	16.0	0.0542	202.60	1960	0.0222	1.0913
0.0486	176.40	804	0.0486	155.20	26.4	0.0704	185.00	3720	0.0486	1.2874
0.0638	162.00	1156	0.0806 0.1200	135.60 110.00	96.2 588	0.1460	158.00	40700	0.0806	1.5083
MnSO4				110.00 НЗОЛДИСУЛІ		Co[(NH	3)5NO2]SO4	1	0.1072	1.6676
0.0214	414.00	13106	0.0222	382.29	5288		<u> </u>		0.1384	1.8128
0.0348	390.00	25445	0.0222	401.94	12165				0.1698	1.9109
0.0432	373.50	39063	0.0486	291.53	13034					
0.0609	330.00	83822	0.0486	333.18	39683					
La[Fe(CN)6	6]		La[Co(Cl	N)6]						

Индивидуальные растворители, 298.15 К (справочные данные искать самостоятельно)

	Метанол		Диметилсульфоксид Ацетонитрил		Диметилформамид				
	Λ^0	K_{A}	Λ^0	$K_{\mathbf{A}}$	Λ^0	$K_{\mathbf{A}}$	Λ^0	K_{A}	
Cu(ClO4)2	261.1	96	88.30	45.7	406.4	75.0	184.88	25.0	
Co(ClO4)2	262.9	101	88.00	41.7			183.00	28.6	
Ni(ClO4)2	264.5	82	83.68	42.6	462.0	162	184.32	10.2	
Zn(ClO4)2	258.0	64	86.20	34.7			182.88	25.0	
Mn(ClO4)2			85.50	19.1	380.6	282	181.12	9.6	

Вода, температурные зависимости (справочные данные искать самостоятельно)

T/K	$\Lambda^{\circ}/$	$K_{\mathrm{A}}/$	T/K	$\Lambda^{\circ}/$	$K_{\mathrm{A}}/$
	S·cm ² ·equiv [−]	-1 dm ³ ·mol ⁻¹		S·cm ² ·equiv ^{−1}	$dm^3 \cdot mol^{-1}$
273.15	468.18	1119	273.15	561.64	1293
278.15	548.34	1109	278.15	654.38	1274
283.15	633.06	1102	283.15	751.14	1263
288.15	722.70	1106	288.15	852.12	1258
293.15	816.36	1128	293.15	957.30	1265
298.15	914.46	1104	298.15	1065.90	1274
303.15	1016.58	1152	298.15 ^b	1065.90	1380
308.15	1122.78	1184	298.15 ^c	1065.90	1267
313.15	1232.94	1220	303.15	1177.80	1301
318.15	1346.10	1261	308.15	1292.70	1333
323.15	1463.16	1310	313.15	1410.36	1369
			318.15	1530.96	1425
[Co(en)3]2(SO4)3		323.15	1653.90	1480 [Co(NH3)6]2(SO4)3

Смеси вода-этиленгликоль, 298.15 К (D – диэлектрическая проницаемость) – Мп(*m*-бензолдисульфонат), **Е. Алексеев** (в связи с индивидуальным заданием)

		D	equiv-1	$K_{\rm A}, M^{-1}$
0.00	0.895	78.54	112.80	(5)4
0.20	2.80	65.6	36.33	16
0.30	4.15	60.7	24.25	26
0.50	7.25	53.1	13.57	77
0.555	8.25	51.1	11.806	110

Что нужно сделать

- 1. Проанализировать зависимость K_A от диэлектрической проницаемости или температуры в рамках модели ионной ассоциации Фуосса. Сформулировать в чем состоят отклонения от модели, определить ключевой параметр (или набор параметров, если нет постоянства в серии).
- 2. Сопоставить параметр (или набор параметров) с возможной реальной геометрией сольватированных ионов, а также сопоставить электропроводности с ожидаемыми по Стоксу величинами. Сделать выводы из этого сопоставления, в том числе выдвинуть предположения о природе явных отклонений от реальности, если они обнаружены.
- 3. Попытаться устранить выявленные противоречия, учитывая несферичность ионов, реальные зарядовые распределения и иные осложняющие обстоятельства.