Задача 1

H ₂ O	-6.4		CN-	-75 ± 5	-77
H ₃ O ⁺	-105 ± 5	-104	acetonitrile	-3.9	
OH-	-110 ± 5	-106	CH₃CNH ⁺	-69 ± 5	-69
$MeOH_2^+$	-87 ± 5^{j}	-83	nitromethane	-3.7^{h}	
MeO-	-98 ± 5	-95	CH ₂ NO ₂ -	-80 ± 6	
EtOH ₂ +	$-81 \pm 6^{\circ}$		HNO_2		
EtO ⁻	-94 ± 5		NO_2^-	-73 ± 7	-72
PhOH	-6.6		HNO₃		
PhO^{-d}	-75 ± 5	-72	NO_3^-	-66 ± 5	-65
acetaldehyde	-3.5		H_2S	-0.7	
formic acid			HS-	-76 ± 5	-76
formate	-80 ± 5		MeSH	-1.2	
acetic acid	-6.7		MeS-	-76 ± 5	
acetate	-82 ± 5	-77	EtSH	-1.2	
CHF_2COOH			EtS ⁻	-74 ± 5	
CHF ₂ COO [−]	-70 ± 6		PhSH	-2.6	
CHCl2COOH			PhS-	-65 ± 7^{l}	-67
CHCl2COO [−]	-66 ± 6		PH_3	0.6	
NH_4^+	-81 ± 5	-79	PH_4^+		-73
$MeNH_3^+$	-73 ± 5	-70	$MePH_2$		
Me_2NH2^+	-66 ± 5	-63	$MePH_3^+$	-63 ± 5	-66
Me₃NH+	-59 ± 5	-59	Me_2PH		
aniline	-4.9		Me_2PH2^+	-57 ± 5	-57
aniline H^{+m}	-68 ± 6	-68	Me_3P		
pyridine	-4.7		Me_3PH^+	-53 ± 5	-53
pyridine H^{+m}	-58 ± 5	-59	H ₃ PO ₄		
imidazole	−10.3 ^g		$H_2PO_4^-$	-68 ± 8^{l}	
imidazoleH+m	-64 ± 5	-62	$HPO_4^{(2-)}$	-245 ± 15^{l}	
formamide			PO ₄ (3-)	-536 ± 20^{1}	
formamide H^{+k}	-78 ± 5		CH₃F	-0.2	
acetamide	-9.7		HF		
acetamideH+k	-70 ± 5		F-	-107 ± 6	-107
cytosine			CH₃C1	-0.6	
cytosineH ^{+f}	-67 ± 6		ClH		
HCN			CI ⁻	-78 ± 7	-77

Энергии гидратации (эксперимент, <u>ккал/моль</u>)

- (1) Отличия от расчета по Борну, возможные причины
- (2) Анализ «геометрических» причин, согласование гипотез с независимой экспериментальной информацией
- (3) Поиск спектроскопических подтверждений гипотез
- (4) <u>Какую информацию</u> можно извлечь из отклонений от Борна?

Задача 1 – Общая схема

