SOLUBILITY PRODUCT CONSTANTS

The solubility product constant K_{sp} is a useful parameter for calculating the aqueous solubility of sparingly soluble compounds under various conditions. It may be determined by direct measurement or calculated from the standard Gibbs energies of formation $\Delta_f G^\circ$ of the species involved at their standard states. $K_{sp} = [M^+]^m [A^-]^n$ is the equilibrium constant for the reaction

$$\mathbf{M}_m \mathbf{A}_n(\mathbf{s}) \Longrightarrow m \mathbf{M}^+(\mathbf{a}\mathbf{q}) + n \mathbf{A}^-(\mathbf{a}\mathbf{q}),$$

where $M_m A_n$ is the slightly soluble substance and M^+ and A^- are the ions produced in solution by the dissociation of $M_m A_n$

Formula	K_{sp}	Formula	$K_{ m sp}$	Formula		K_{sp}
		PbCO ₃	7.40·10 ⁻¹⁴	$Ag_2C_2O_4$		5.40·10 ⁻¹²
AlPO ₄	9.84·10 ⁻²¹	PbCl ₂	1.70·10 ⁻⁵	Ag_3PO_4		8.89·10 ⁻¹⁷
Ba(BrO ₃) ₂	2.43·10 ⁻⁴ 2.58·10 ⁻⁹	PbF ₂	3.3·10 ⁻⁸	Ag_2SO_4		1.20-10-5
BaCO ₃	1.17·10 ⁻¹⁰	Pb(OH) ₂	1.43·10 ⁻²⁰	Ag_2SO_3		1.50-10-14
BaCrO ₄ BaF ₂	1.84·10 ⁻⁷	$Pb(IO_3)_2$	3.69·10 ⁻¹³	AgSCN		1.03·10 ⁻¹²
Ba(OH) ₂ ·8H ₂ O	2.55·10 ⁻⁴	PbI ₂	9.8·10 ⁻⁹	$Sr_3(AsO_4)_2$		$4.29 \cdot 10^{-19}$
Ba(IO ₃) ₂	4.01.10-9	PbSeO ₄	1.37·10-7	SrCO ₃		5.60·10 ⁻¹⁰
$Ba(IO_3)_2 \cdot H_2O$	1.67·10 ⁻⁹	PbSO ₄	2.53·10-8	SrF ₂		$4.33 \cdot 10^{-9}$
BaMoO ₄	3.54.10-8	Li ₂ CO ₃	8.15.10-4	$Sr(IO_3)_2$		$1.14 \cdot 10^{-7}$
Ba(NO ₃) ₂	4.64·10 ⁻³	LiF	1.84·10-3	$Sr(IO_3)_2 \cdot H_2O$		$3.77 \cdot 10^{-7}$
BaSeO ₄	3.40.10-8	Li ₃ PO ₄	2.37·10 ⁻¹¹	$Sr(IO_3)_2 \cdot 6H_2O$		$4.55 \cdot 10^{-7}$
BaSO ₄	1.08·10 ⁻¹⁰	$MgCO_3$	6.82·10 ⁻⁶	$SrSO_4$		$3.44 \cdot 10^{-7}$
BaSO ₃	5.0.10-10	MgCO ₃ ·3H ₂ O	2.38·10-6	$TlBrO_3$		$1.10 \cdot 10^{-4}$
Be(OH) ₂	$6.92 \cdot 10^{-22}$	MgCO ₃ ·5H ₂ O	3.79·10 ⁻⁶	TlBr		$3.71 \cdot 10^{-6}$
BiAsO ₄	$4.43 \cdot 10^{-10}$	MgF_2	5.16·10 ⁻¹¹	TlCl		1.86·10 ⁻⁴
	$7.71 \cdot 10^{-19}$	$Mg(OH)_2$	5.61·10 ⁻¹²	Tl_2CrO_4		$8.67 \cdot 10^{-13}$
BiI_3 $Cd_3(AsO_4)_2$	2.2·10 ⁻³³	$MgC_2O_4 \cdot 2H_2O$	4.83·10 ⁻⁶	$TlIO_3$		3.12.10-6
$Cd_3(AsO_4)_2$ $CdCO_3$	1.0·10 ⁻¹²	$Mg_3(PO_4)_2$	$1.04 \cdot 10^{-24}$	TlI		5.54.10-8
CdF ₂	6.44·10 ⁻³	$MnCO_3$	2.24·10 ⁻¹¹	TISCN		1.57-10-4
Cdr ₂ Cd(OH) ₂	7.2·10 ⁻¹⁵	$Mn(IO_3)_2$	$4.37 \cdot 10^{-7}$	Tl(OH) ₃		1.68·10 ⁻⁴⁴
	2.5·10 ⁻⁸	$MnC_2O_4 \cdot 2H_2O$	$1.70 \cdot 10^{-7}$	$Sn(OH)_2$		$5.45 \cdot 10^{-27}$
$Cd(IO_3)_2$ $CdC_2O_4\cdot 3H_2O$	1.42·10 ⁻⁸	$\mathrm{Hg_2Br_2}$	6.40·10 ⁻²³	$Y_2(CO_3)_3$		$1.03 \cdot 10^{-31}$
CdC_2O_4 · SH_2O $Cd_3(PO_4)_2$	2.53.10-33	Hg_2CO_3	$3.6 \cdot 10^{-17}$	YF_3		$8.62 \cdot 10^{-21}$
$Ca_3(FO_4)_2$ $CaCO_3$	3.36·10 ⁻⁹	Hg_2Cl_2	$1.43 \cdot 10^{-18}$	$Y(OH)_3$		$1.00 \cdot 10^{-22}$
CaCO ₃ CaF ₂	3.45·10 ⁻¹¹	Hg_2F_2	3.10.10-6	$Y(IO_3)_3$		$1.12 \cdot 10^{-10}$
Ca(OH) ₂	5.02·10 ⁻⁶	$\mathrm{Hg}_{2}\mathrm{I}_{2}$	$5.2 \cdot 10^{-29}$	$Zn_3(AsO_4)_2$		$2.8 \cdot 10^{-28}$
$Ca(OII)_2$ $Ca(IO_3)_2$	6.47.10-6	$Hg_2C_2O_4$	$1.75 \cdot 10^{-13}$	$ZnCO_3$		$1.46 \cdot 10^{-10}$
Ca(IO ₃) ₂ ·6H ₂ O	7.10·10 ⁻⁷	Hg_2SO_4	6.5·10 ⁻⁷	$ZnCO_3 \cdot H_2O$		$5.42 \cdot 10^{-11}$
CaMoO ₄	1.46.10-8	$Hg_2(SCN)_2$	$3.2 \cdot 10^{-20}$	ZnF_2		$3.04 \cdot 10^{-2}$
CaC ₂ O ₄ ·H ₂ O	2.32·10-9	$HgBr_2$	$6.2 \cdot 10^{-20}$	$Zn(OH)_2$		$3 \cdot 10^{-17}$
Ca ₃ (PO ₄) ₂	$2.07 \cdot 10^{-33}$	HgI_2	2.9·10-29	$Zn(IO_3)_2 \cdot 2H_2O$		$4.1 \cdot 10^{-6}$
CaSO ₄	4.93·10-5	$Nd_2(CO_3)_3$	1.08.10-33	$ZnC_2O_4 \cdot 2H_2O$		1.38·10 ⁻⁹
CaSO ₄ ·2H ₂ O	3.14.10-5	NiCO ₃	$1.42 \cdot 10^{-7}$	ZnSe		$3.6 \cdot 10^{-26}$
CaSO ₃ ·0.5H ₂ O	$3.1 \cdot 10^{-7}$	$Ni(OH)_2$	5.48.10-16	ZnSeO ₃ ·H ₂ O		$1.59 \cdot 10^{-7}$
CsClO ₄	$3.95 \cdot 10^{-3}$	$Ni(IO_3)_2$	4.71.10-5			
CsIO ₄	5.16.10-6	$Ni_3(PO_4)_2$	$4.74 \cdot 10^{-32}$			
$Co_3(AsO_4)_2$	$6.80 \cdot 10^{-29}$	Pd(SCN) ₂	4.39.10-23		6-16-1	
Co(OH) ₂	$5.92 \cdot 10^{-15}$	K ₂ PtCl ₆	7.48.10-6		Sulfides	
$Co(IO_3)_2 \cdot 2H_2O$	$1.21 \cdot 10^{-2}$	KClO ₄	$1.05 \cdot 10^{-2}$			
$Co_3(PO_4)_2$	$2.05 \cdot 10^{-35}$	KIO ₄	3.71.10-4	CdS		$1,2 \cdot 10^{-28}$
CuBr	$6.27 \cdot 10^{-9}$	Pr(OH) ₃	3.39.10-24	CuS		$3.2 \cdot 10^{-38}$
CuCl	$1.72 \cdot 10^{-7}$	$Ra(IO_3)_2$	1.16·10 ⁻⁹	FeS		$3.8 \cdot 10^{-20}$
CuCN	$3.47 \cdot 10^{-20}$	RaSO ₄	3.66·10-11	PbS		$3.6 \cdot 10^{-29}$
CuI	$1.27 \cdot 10^{-12}$	RbClO ₄	3.00·10-3	MnS		
CuSCN	$1.77 \cdot 10^{-13}$	ScF ₃	5.81.10-24			$1,4 \cdot 10^{-15}$
$Cu_3(AsO_4)_2$	$7.95 \cdot 10^{-36}$	Sc(OH) ₃	2.22.10-31	HgS		$3 \cdot 10^{-54}$
$Cu(IO_3)_2 \cdot H_2O$	6.94·10 ⁻⁸	AgCH ₃ COO	1.94·10 ⁻³	Ag_2S		$5.7 \cdot 10^{-51}$
CuC ₂ O ₄	4.43·10 ⁻¹⁰	Ag ₃ AsO ₄	1.03·10 ⁻²²	SnS		1 - 10 27
$Cu_3(PO_4)_2$	1.40.10-37	AgBrO ₃	5.38·10-5	ZnS		$6.9 \cdot 10^{-26}$
Eu(OH) ₃	9.38·10 ⁻²⁷	AgBr	5.35·10 ⁻¹³			. 07
Ga(OH) ₃	7.28·10 ⁻³⁶	Ag_2CO_3	8.46·10 ⁻¹²			
FeCO ₃	3.13.10 ⁻¹¹	AgCl	1.77·10 ⁻¹⁰			
FeF ₂	2.36.10-6	Ag ₂ CrO ₄	1.12·10 ⁻¹²			
Fe(OH) ₂	4.87·10 ⁻¹⁷	AgCN AgCN	5.97·10 ⁻¹⁷			
Fe(OH) ₃	2.79·10 ⁻³⁹	AgIO ₃	3.17·10 ⁻⁸			
FePO ₄ ·2H ₂ O	9.91·10 ⁻¹⁶ 7.50·10 ⁻¹²	AgIO ₃ AgI	8.52·10 ⁻¹⁷			
La(IO ₃) ₃ PbBr ₂	6.60·10 ⁻⁶	1151	0.52-10			
1 0112	0.00.10					

CRC Handbook of Chemistry and Physics, 84th Edition, 2003-2004.