

Южный федеральный университет НОЦ «Химия и физика функциональных и наноструктурных неорганических материалов»

Pt/C и Pt-M/C (M=Co, Ni, Cu, Ag) нанесенные электрокатализаторы: синтез в жидкой фазе, микроструктура, активность

1. Фундаментальные и прикладные аспекты, междисциплинарность исследования. Направления совершенствования и методы исследования платиносодержащих электрокатализаторов. 2. Методы синтеза и управление микроструктурой наноструктурного электрокатализатора. Жидкофазный боргидридный синтез. 3. Размер кристаллитов и наночастиц. Влияние агломерации на микроструктуру синтезируемых Pt/C и PtxM/C электрокатализаторов. 4. Активность, удельная площадь поверхности, коррозионно-

морфологическая стабильность катализаторов.

5. Катализаторы на основе наночастиц со структурой «оболочка – ядро».

111 - 115.

3

Pt/C нанокатализатор

ФУНДАМЕНТАЛЬНЫЕ АСПЕКТЫ РАБОТЫ

I. Разработка методов управления составом, структурой и формой моно- и биметаллических платиносодержащих наночастиц, формируемых на поверхности углеродных носителей, с целью повышения каталитической активности этих материалов в реакциях электровосстановления кислорода, электроокисления водорода и простых органических молекул.

II. Поиск физико-химических параметров и их соотношений, чувствительных к особенностям структурной организации нанокомпозитов и позволяющих прогнозировать их каталитическую активность в реакциях электровосстановления кислорода, электроокисления водорода и простых органических молекул.

III. Развитие методов исследования наноструктурных металлуглердных материалов для определения их состава, микроструктуры, изучения особенностей эволюции в процессах взаимодействия с компонентами окружающей среды.

Как повысить УА и ЭХПП Pt/C катализатора?

1. Оптимизация размера НЧ (2-3 нм наночастицы?)

2. Pt-сплавы вместо чистой Pt (уменьшение масс.

доли Pt, влияние на электронную структуру, усиление адгезии к C, и др. эффекты) УА <u>Pt</u>

3. Core-shell M@Pt/С катализаторы (масс-активность Pt[↑])

4. Контроль формы наночастиц УА Активность в РЭВК: Pt (100)<Pt(111)<Pt(110) в HClO₄

5. Новые типы материалов-носителей (нановолокна, оксиды и др. неорг. материалы) (возможны различные позитивные эффекты + Стабильности)

ЭТАП

Оценка

стабиль-

ности

Постобработка в агрессивной среде с последующей аттестацией состава/структуры

ЦВА (500 – 1500 циклов развертки потенциала)

Коррозионноморфологическая устойчивость к внешним воздействиям.

ЧТО ОПРЕДЕЛЯЕМ

Изучение кинетики РВК и др., оценка удельной каталитической активности и массактивности

Исследование ЭК активнос ти ЦВА в атмосфере O₂, хроновольтамперометрия на ВДЭ Методы получения катализаторов («снизу-вверх» - нуклеация и рост зародышей новой фазы; «сверху-вниз» - диспергирование фазы)

-электрохимическое осаждение;

-электрохимическое диспергирование (воздействие переменного тока на блочную платину);

- -электродиспергирование (электроэксплозия);
- -магнетронное напыление, химическое и физическое вакуумное напыление;
- -химическое осаждение (восстановление):
- а) карботермические методы (высокая t^o)
- б) жидкофазные методы (полиольный, боргидридный и др.);
- в) коллоидные методы (мицеллы, эмульсии и др.)

Изменение состава и природы компонентов смешанного растворителя

Различная смачиваемость поверхности углерода

Изменение состава/ устойчивости коорд. соединений Pt

Изменение растворимости веществ

Изменение адсорбции соединений Pt на С

Изменение Red/Ox потенциалов

Изменение механизма образования-роста ядер Pt Изменение работы по образованию новой поверхности

Изменение вязкости раствора и коэффициентов объемной диффузии его компонентов

Изменение кинетики роста ядер Pt

Изменение адсорбции компонентов раствора на поверхности НЧ Рt

Влияние типа углеродного носителя на размер кристаллитов

2 тетта, град

Рис. Дифрактограммы *Pt/C* и *Pt₃Ni/C* электрокатализаторов, синтезированных на разных типах углеродных носителей

Интенсивность

боргидридным методом из $H_2O - ДM\Phi$ и $H_2O - ЭГ$ растворов

Влияние состава двухкомпонентного растворителя

Боргидридный синтез Pt/C в растворе на основе смеси ДМСО – H₂O

При этом массовая доля платины в катализаторе практически не зависит от состава растворителя.

Может ли состав *H*₂*O:X* растворителя влиять на состав Pt-Ni сплава?

Рис. Дифрактограммы Pt_3Ni/C электрокатализаторов, синтезированных боргидридным методом в системах на основе $H_2O - Gl$ растворителя разного состава. $\omega(Pt)$ теор=30% масс.

Рис. Микрофотографии образцов двух Pt₃Ni/C полученных из растворов водно-органического растворителя разного состава

Но! Малый размер наночастиц не является достаточным условием для получения электрокатализаторов с высокой удельной поверхностью.

Рис. Микрофотография частицы Pt₃Ni/C электрокатализатора.

В зависимости от условий синтеза и свойств углеродного носителя Pt(Me)/C электрокатализатор может содержать микрочастицы с существенно разной лоқальной загрузқой Pt Неорганические материалы, 2009, т.45, в.5, с.552 - 559. Гутерман В.Е., Беленов С.В., Дымникова О.В., Ластовина Т.А., Константинова Я.Б., Пруцакова Н.В., Влияние состава водно органического растворителя при боргидридном синтезе на состав и структуру Pt/C и Pt_xNi/C электрокатализаторов

Неорганические материалы, 2009, т. 45, в.7., с. 829-834. А.В. Гутерман, Е.Б. Пахомова, В.Е. Гутерман, Ю.В. Кабиров, В.П. Григорьев, Синтез наноструктурированных катализаторов Pt_xNi/C и Pt_xCo/C и их активность в реакции электровосстановления кислорода

Гутерман В.Е., Беленов С.В., Гутерман А.В., Пахомова Е.Б., Способ получения катализатора для топливного элемента, Патент на изобретение, № 2367520, 20.09.2009 г.

Насколько стабильны состав и микроструктура «идеального» катализатора?

Вопросы: •Возможно ли в процессе синтеза одновременно контролировать различные параметры, определяющие микроструктуру и активность PtxM/C катализаторов?

Дискуссионный вопрос: зависит ли удельная каталитическая активность платины [A/м²_{Pt})] от размера наночастиц?

Площадь поверхности Pt растет с уменьшением размера наночастиц, однако удельная каталитическая активность при этом уменьшается. Антибатное влияние двух этих факторов обусловливает наличие оптимального размера наночастиц, примерно 2.0 - 4 nm (PEMFC/PAFC).

?

В ряде работ факт влияния размера наночастиц Pt на удельную активность трактуется как ошибка, связанная с неучетом явлений агломерации наночастиц и/или адсорбции компонентов электролита на гранях нанокристаллов.

Размер и форма наночастиц могут быть связаны

Фактор анизотропии R (верхняя панель) и масс-активность Pt/C катализатора в РЭВК при E=0.7 В (нижняя панель), как функции среднего размера кристаллитов в направлении <111>, D₁₁₁.

THE JOURNAL OF PHYSICAL CHEMISTRY C I. N. Leontyev, S. V. Belenov, V. E. Guterman, etc., Catalytic activity of carbon supported Pt/C nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial. Journal of Physical Chemistry, 2011, V. 115, i.13, pp 5429–5434.

Рис. Фрагменты рентгенограмм Pt₃Ni/C материалов синтезированных из систем на основе 2х-компонентных органических растворителей

ПЭМ микрофотографии некоторых синтезированных Pt/C катализаторов

Ожидаемое соответствие между D_{cp} и ЭХПП катализаторов не наблюдается

Главная причина: при уменьшении размера частиц усиливается их агломерация

Особенности структуры и дисперсия размерного распределения наночастиц Pt₃Co

Fig. 3. XRD patterns of carbon-supported Pt-Co/C catalysts (samples PC3-PC6)

Journal of Alloys and **Compounds**, 500 (2010) 241-246. I.N. Leontyev, V.E. Guterman, etc., XRD andalaatraahamiaal **Applied Catalysis A:** General 357 (2009) 1-4. I.N. Leontyev, D.Yu. Chernyshov, *etc.*, Particle size effect of carbon supported **Pt-Co alloy** electrocatalysts prepared by the borohydride method: **XRD** characterization

Природа легирующего компонента, микроструктура, каталитическая активность и стабильность Pt_xM/C электрокатализаторов

Можно ли влиять на микроструктуру Pt_xM/C катализатора меняя природу M?

Рис. Рентгеновские дифрактограммы 2 @, degree PtM/С катализаторов

30

Табл. 2. Некоторые параметры синтезированных катализаторов

the second s	Contraction of the second s	the second s	Contraction of the Contraction of the Property of the Contraction of the	and the second	the second s	and the second se	and the second sec	
Обра-	COCTAB			Масс. доля		2Θ,	a, nm	D _{cp} ,
зец				металлов, %		град		HM
	Фазовый	Pt:M	Pt:М соотн. в	Teop.	Практ			
	состав	соотн.	сплаве (з-н					
		(РФлАн)	Вегарда)					
Pt/C	Pt, C	-	-	30	31	39,65	0,3934	2,1
PtNi/C	Pt(Ni) [*] ,C	Pt ₄₂ Ni ₅₈	Pt ₆₁ Ni ₃₉	35	33	41,50	0,3808	1,6
PtCu/C	$Pt(Cu)^*$,	Pt ₄₆ Cu ₅₄	$Pt_{82}Cu_{18}$	30	30,2	40,27	0,3876	2,0
	CuO, C					CuO:	0 2464	_
						42,51	0,2404	
PtAg/C	$Pt(Ag)^*, C$	$Pt_{59}Ag_{41}$	$Pt_{51}Ag_{49}$	31	32	39,02	0,4003	3,6

* - твердый раствор на основе Рt

 D_{cp} убывает в ряду PtAg/C > Pt/C \ge PtCu/C > PtNi/C

Увеличивается ли ЭХПП катализатора?

Циклические вольтамперограммы Pt/C и PtM/C катализаторов. 1MH₂SO₄. Ar. 100 мB*с⁻¹. 3й цикл. 33

$\mathbf{D_{cp}} \downarrow \mathbf{PtAg/C} > \mathbf{Pt/C} \ge \mathbf{PtCu/C} > \mathbf{PtNi/C},$

то почему

JANNI PtNi/C \approx PtCu/C < Pt/C << PtAg/C ?

<u>ГЛАВНЫЕ ПРИЧИНЫ</u>:

 Уменьшение размера кристаллитов усиливает их агломерацию. Агломерация минимальна для Pt/C и, особенно, для PtAg кристаллитов.
Поверхностный слой PtAg наночастиц может быть обогащен атомами Pt (Ag core - Pt shell структура?).

Электрохимия, 2011, т. 47, в.8, с. 997 – 1004. Гутерман В.Е, Беленов С.В., Ластовина Т.А. и др. Микроструктура и электрохимически активная площадь поверхности Pt-M/С электрокатализаторов

Результаты электронно-микроскопического исследования

Рис. Электронно-микроскопические фотографии и гистограммы распределения наночастиц по размерам

Рис. Влияние содержания *H*₂*O* воды в смешанном растворителе на средний размер наночастиц *Pt*₃*Co*

на межатомное расстояние в решетке *Pt₃Co/C*

Стабильность Pt-Ni/C катализаторов разного состава

Электро-	Массовая доля металлов, % масс.		Фактичес-	Постоян-			
катализа- тор (Теор. состав)	% масс Рt по загрузке прекурсо ров	По результа- там анализа	кое соотноше- ние Pt - Ni	ная крист. решетки, нм	d _{Pt – Pt} , nm	D _{cp} , nm	Примечания
Pt ₃ Ni/C	30	30	Pt73Ni27	3,8368	0,2217	2,7	
Pt ₃ Ni/C	30	29	Pt74Ni26	3,8278	0,2211	2,6	
Pt ₃ Ni/C	30	33	Pt73Ni27	3,8266	0,2209	2,5	
Pt ₃ Ni/C	30	33	Pt78Ni22	3,8501	0,2225	3,2	После кипячения в 1 M H ₂ SO ₄ (ΔD=20%)
Pt ₂ Ni/C	30	28	Pt65Ni35	3,8330	0,2214	2,9	
PtNi/C	30	42	Pt49Ni51	3,8220	0,2208	2,6	
PtNi/C	30	38	Pt77Ni23	3,8637	0,2232	3,8	После кипячения в 1M H ₂ SO ₄ (ΔD= 48%)

Влияние «кислотной обработки» на гистограммы распределения наночастиц Pt₃Co по размеру

40

Механизм многостадийной реакции электровосстановления O₂ зависит от природы металла электрода и в случае платины и ее сплавов может быть представлен упрощенной схемой

Параллельное протекание реакции восстановления кислорода до пероксида водорода (I₂) с его последующим окислением до воды (I₃) приводит к существенному снижению потенциала кислородного электрода под током (равновесные потенциалы реакций $O_2 + 4H^+ + 4e^- \leftrightarrow 2H_2O$

 $O_2 + 2H^+ + 4e^- \leftrightarrow 2H_2O_2$ равны, соответственно, 1,23 В и 0,68 В

Протекание побочной реакции разложения перекиси водорода (I₅) с промежуточным образованием активных радикалов OH*, OOH* вызывает коррозионное разрушение катализатора и других компонентов мембранно-электродного блока.

Механизм и кинетика восстановления кислорода сильно зависят от состава/свойств поверхности металла, в т.ч. от наличия прочно адсорбированных кислородсодержащих или иных частиц.

An estimation of electrocatalyst activity

Steady-state polarisation curves for ORR. 0,5 M H₂SO₄. Pt/C (1), Pt₃Ni/C (2), Pt₂Co/C (3) electrods. ω = 600 s⁻¹. $p(O_2)$ =1 atm.

Потенциодинамические кривые электровосстановления O₂ измеренные при различных скоростях вращения дискового электрода (а) и зависимости Коутецкого-Левича (б) для Pt₃Ni/C катализатора. 0,5 M H₂SO₄.

Уравнение Коутецкого – Левича: $1/i = 1/i_{\kappa} + 1/i_{\pi} = 1/i_{\kappa} + 1/Z\omega^{0.5}$, где Z = 0,62 nFD^{2/3}v^{-1/6}c Таблица. Сводные результаты электрохимических исследований электровосстановления кислорода на Pt/C катализаторах. ВДЭ.

Наименова- ние катали- затора	Загруз ка Pt, %	$S_{_{3X}},$ M^2/Γ_{Pt}	D _{ср} , нм	(A/Γ_{Pt})	ј _{удел} (А/м ² _{Pt})	Число электро нов,
				61,37	1,705	n

Альтернативная энергетика и экология, 2011, в. 9, с. 105 – 110. С.В. Беленов, В.Е. Гутерман, Состав, структура и коррозионная стабильность PtxNi/C электрокатализаторов с различной микроструктурой

TEC10v30e	28,4	43,2	2,6	54,92	1,271	3,8
PG50	30	25	2,8	37,54	1,501	4,0

Биметаллические наночастицы с неоднородным распределением компонентов как основа катализатора

Попытка получения M@Pt частиц может иметь разные результаты (рис.). Цель – получение структуры 1 (рис.).

Последовательное осаждение ядра и Рt оболочки может привести к полезным эффектам: усиление адгезии частиц к носителю, повышение устойчивости границы раздела к окислению, существенное снижение загрузки Рt в сочетании с ростом удельной активности.

ПРОБЛЕМЫ:

Как синтезировать большинство наночастиц с core-shell структурой?
Как доказать, что большинство наночастиц в катализаторе

обладают core-shell структурой?

Какова роль органического сорастворителя?

51

Фотографии высокоразрешающей ПЭМ и электронограмма наночастицы Cu@Pt/C электрокатализатора

Cu@Pt/C после обработки в кислоте

Cu@Pt/C после обработки в 1 М H₂SO₄ при 100°C в течение 1 часа

5 nm

Cu₂@Pt/C

Альтернативная энергетика и экология, 2011, в.9, с. 111 - 115. Т.А. Ластовина, В.Е. Гутерман, С.С. Манохин, Влияние постобработки на состав, микроструктуру и электрохимически активную площадь поверхности (CuPt_{0,1})₂@Pt/C электрокатализаторов

TEM microphotographs of $Cu_2@Pt_{1,1}/C$ after acid treatment

Деградация PtCu/C катализаторов

Циклические вольтамперограммы Pt-Cu/C электрокатализатора. 1000 циклов. 0,5 М H₂SO₄. Ar.

Необходимо найти оптимальные условия обработки в агрессивной среде (природа и концентрация кислоты, t, τ) и термообработки (t, τ).

Из жизни наночастиц

Нагревание пучком электронов

ПЭМ микрофотографии Cu@Pt/C электрокатализатора

Инертная атмосфера(Ar), 1 М H_2SO_4 , скорость развертки потенциала 100 mV*s⁻¹. Стационарный электрод. 5^й цикл.

59

Электроокисление CO. Атмосфера Ar, 1 M H_2SO_4 , скор. развертки потенциала 20 mV*s⁻¹. Неподвижный электрод.

60

Cyclic voltammetry of Pt-Cu/C catalysts

O₂ saturated 1 M H₂SO₄. Potential scan rate -20 mV*s^{-1} , electrode rotation speed -1500 min^{-1} . 5th cycle.

ПЭМ микрофотографии PtAg/C (a, b) и Ag@Pt/C (c) катализаторов

Не удается «увидеть» ядро и то оболочку

Результаты рентгеновской фотоэлектронной спектроскопии Pt-Ag/C материалов до и после обработки в кислоте*

Образец	Состав поверхности, данные XAS	Загрузка металлов, % масс. (гравиметрия)	Параметр ячейки, нм	Ср. диаметр НЧ, нм
PtAg/C	Pt _{1,2} Ag ₁ /C	34,6	0,4025	3,8
PtAg/C обраб. в 1М HClO ₄ (1 час, 90 °C)	Pt _{1,4} Ag ₁ /C	22,7 (-12%)	0,4011	4,1
Ag _{0.9} @Pt _{1,1} /C	Pt _{2,54} Ag ₁ /C	21,4	0,4030	3,4
Ag _{0.9} @Pt _{1,1} /C обраб. в 1М НСЮ ₄ (1 час, 90 °C)	Pt _{2,17} Ag ₁ /C	15,8 (-6%)	0,3986	3,4

*Исследование проведено А.Т. Козаковым, А.В. Никольским, К.А. Гуглевым, лаборатория "Физика поверхности и гетероструктур" НИИФ ЮФУ.

Циклические вольтамперограммы Pt-Ag/C катализаторов

Атмосфера Ar, 1 M H₂SO₄, скор. развертки потенциала 100 мВ*с⁻¹. Неподвижный электрод. 5^й цикл.

Циклические вольтамперограммы двух наших M@Pt/C core-shell и двух коммерческих (Pt/C and PtCo/C) катализаторов. 1M H₂SO₄. Ar. 100 мB*c⁻¹.

В работе представлены данные, полученные совместно с сотрудниками кафедры нанотехнологий фф и НИИФ ЮФУ, МИСИС и др.

Исследования были поддержаны ООО ИНКОРМЕТ, РФФИ (гранты 08-08-0869а, 10-03-00474а, 11-08-00499а), МОН РФ, внутренними грантами ЮФУ.

Благодарю за внимание !

