Памяти Владимира Сергеевича Багоцкого мемориальная сессия

Новые катодные материалы для литий-ионных аккумуляторов – текущие работы в МГУ

Е.В. Антипов

Химический факультет, МГУ им. М.В. Ломоносова

План:

- Введение
- Катодные материалы с полиатомными анионами
- -Li₂CoPO₄F и Li₂FePO₄F– перспективные катодные материалы с высокими удельными энергетическими параметрами:
- а) кристаллическая структура
- b) электрохимические измерения
 - с) структурная трансформация при деинтеркаляции лития

- Заключение

1995: «Advances in battery research are always restricted by chemistry » *R. E. Powers (N.Y. Times)*

Цель

Создание новых «sustainable» технологий для генерации, накопления и передачи энергии

Использование возобновляемых источников энергии

Развитие гибридных и электромобилей - улучшение экологи

Бензиновые

Электромобили

Накопление и использование электроэнергии с помощью энергии химических реакций

Перспективы литиевых аккумуляторов

Yunil HWANG, A. D. Little Korea, Korea, "Nano-enhanced Market Perspectives in Solar & Li-ion Battery"OECD workshop on "Nanotechnology for sustainable energy options", 2010

Литий-ионный аккумулятор

Электролит - соли: LiPF₆, LiBF₄ (LiClO₄, LiAsF₆), LiCF₃SO₃ - растворители: EC, PC, DMC, DEC

1M Lipf₆ B EC/DEC/DMC

Li аккумуляторы – наиболее эффективные системы для накопителей энергии

Для увеличения E_g: 1)Увеличить Е^о 2)Уменьшить М

Почему литий?

- Более широкое "окно электролита"
 Высокая энергоемкость : E^o (cell) x C
- 2) Высокая электропроводность электролита (≈ 10⁻² См/см)
- 3) Небольшой размер → механическая стабильность мгу. 22.01.2013

Основные структурные типы

Оптимизация морфологии LiFePO₄ (ЗАО «Минерал»)

Эффект полианионов

1) "Индуктивный эффект" – увеличение потенциала _____увеличение удельной энергии

1) Увеличение скорости диффузии лития увеличение мощности

J.Goodenough & Y.Kim, Chem.Mat. 22 (2010) 587

Lithium Iron Borates as High-Capacity Battery Electrodes

By Atsuo Yamada,* Nobuyuki Iwane, Yu Harada, Shin-ichi Nishimura, Yukinori Koyama, and Isao Tanaka

Adv. Mater. 2010, 22, 3583-3587

Зачем нужен фтор в катодных материалах

 $r(O^{2-}) = 1.21$ » $r(F^{-}) = 1.15$

1) Разница в заряде 🛛 🔿

двукратное количество фтора для аналогичного заряда переходного металла

- ⇒ возрастание свободного объема в структуре
- ⇒ ускорение транспорта лития

2) Большая ионность связи М-F (в сравнении с М-О) ⇒ увеличение потенциала «редокс» пары Мⁿ/Мⁿ⁺¹ + (BO_n)^{m-} полианионы с сильными ковалентными М-О связями

Фторфосфаты с двумя типами анионов : $(PO_4)^{3-}$ and F⁻

Катодный материал для высокоэнергоемких и мощных аккумуляторов

Фторфосфаты: Li_2MPO_4F

 $Li_2FePO_4F - 2D$ ($E_{av} = 3.5V$)

B.L. Ellis et al. Nature Materials 6 (2007) 749

From Tavorite: Li_{1+x}FePO₄F (E_{av} = 3.0V)

N. Recham et al., Chem. Mat. 22 (2010) 1142 T.N. Ramesh et al., Electrochem. And Solid State Lett. 13 (2010) A43 Li_2MO_4F (M=Ni, Co) – 3D

Ni-phase: M. Dutreilh et al. JSSC 142 (1999) 1 **Co-phase**: S. Okada et al., J. Power Sources 146 (2005) 565

Синтез

• Электрохимические измерения

Li2CoPO4F/C средний размер частиц **0.6 µm** Состав электрода Li₂CoPO₄F/C / PVdF = 72/18/10 электролит: 1M LiPF6 in EC:DMC:DEC (1:1:1 vol.%) Диапазон потенциалов **3.0-5.1 В**

Структура Li₂CoPO₄F из данных электронной

ДИФРАКЦИИК. (1964) Structure analysis by electron diffraction. New York: Pergamon Press

Интенсивности (≈ IFI²) для определения структуры были взяты из 13 различных зон

Formula	Li ₂ CoPO ₄ F
Space group	Pnma
<i>a</i> , Å	10.452(2)
<i>b</i> , Å	6.3911(8)
<i>c</i> , Å	10.874(2)
Z	8
Cell volume, $Å^3$	726.4
Calculated density, g/cm ³	3.415
Radiation	electrons, $\lambda =$
	0.025Å
Number of reflections	326
Parameters refined	28
R _F	0.24

[010] HAADF-STEM image of Li_2CoPO_4F . The structure projection is overlaid with marked positions of the Co columns (large white circles) and P columns (small grey circles).

Со и Р найдены прямыми методами (SIR2008), O(F) и Li из карт Фурье

Структура Li₂CoPO₄F из данных электронной дифракции

-	Atom	Position	x/a	y/b	z/c	$U_{iso}, Å^2$
	Li(1)	8 <i>d</i>	0.724(13)	0.963(11)	0.665(5)	0.014(2)
	Li(2)	4 <i>c</i>	0.936(14)	3/4	0.729(9)	0.014(2)
	Li(3)	4 <i>c</i>	0.244(19)	1/4	0.581(7)	0.014(2)
	Co(1)	4 <i>a</i>	0	0	0	0.014(2)
	Co(2)	4 <i>b</i>	0	0	1/2	0.014(2)
	P(1)	4c	0.739(3)	3/4	0.9278(12)	0.014(2)
	P(2)	4 <i>c</i>	0.008(3)	1/4	0.7470(13)	0.014(2)
	O(1)	8 <i>d</i>	0.800(3)	0.945*	0.9833(12)	0.014(2)
	O(2)	4 <i>c</i>	0.596(3)	3/4	0.9562(12)	0.014(2)
	O(3)	4 <i>c</i>	0.759(3)	3/4	0.7885(12)	0.014(2)
	O(4)	8 <i>d</i>	-0.041(3)	0.445*	0.6808(13)	0.014(2)
	O(5)	4c	0.154(3)	1/4	0.7466(12)	0.014(2)
	O(6)	4 <i>c</i>	-0.041(3)	1/4	0.8798(13)	0.014(2)
	F(1)	4 <i>c</i>	0.047(6)	3/4	0.877(4)	0.014(2)
	F(2)	4 <i>c</i>	0.872(5)	3/4	0.545(5)	0.014(2)

2D сечения разностных карт Фурье с максимумами, отвечающими атомам L

Структура уточнена JANA 2006 (PO₄ - rigid body)

J. Hadermann et al., Chem. Mat. 23 (2011) 3540

Из расчетов BVS

М. Авдеев (ANSTO)

Электрохимические измерения

Capacity vs. voltage: from potentiostatic step measurements between 4.2 V and variable anodic potentials.

- Cyclic voltammograms measured with Li_2CoPO_4F electrodes in the potential range 3.0-5.1 V at the scan rate 50 μ Vs⁻¹. The insert shows chargedischarge performance at C/2 cycling rate.
- разрядная емкость 80 mAh/g ~ 0.55 mole Li
- наклон зависимости «емкость-потенциал» : ~ 0.7 В на 1Li
- (Li_{2-x}CoPO₄F x=1 при 5.5 V)
- "твердый раствор"

4.8 В после 3 полных циклов в диапазоне 3.0-4.8 В; 5.0 В; 3.3 В после 7 полных циклов в диапазоне 3.0-5.1 В

	<i>a</i> , Å	b, Å	c , Å	V , Å ³
исходный	10.452(2)	6.3911(8)	10.874(2)	726.4(3)
заряжен до 4.8 В	10.446(3)	6.3591(13)	10.854(3)	721.0(6)
заряжен до 5.0 В	10.933(3)	6.2815(13)	11.048(2)	758.7(5)
разряжен до 3.3 В	10.835(5)	6.298(2)	11.018(6)	752.1(8)

2 различные фазы; а-параметр увеличивается ≈ 0.5Å; Объем увеличивается ≈ 4.5 %

Li₂CoPO₄F в сравнении с LiMPO₄

при Li- деинтеркаляции

Твердый раствор (нет интерфейсных проблем) Двухфазный механизм

Расширение объема ~ 4.5 % (способствует улучшению диффузии Li) Высокие диапазон потенциалов уменьшение объема ~ 7%

Высокая мощность + высокая удельная энергия

- ?: высоковольтный электролит
- ?: Li₂MPO₄F (M=Fe, Mn)

Новая модификация Li₂FePO₄F: перспективный катодный материал

3D структура не образуется при твердотельном синтезе: LiF + LiFePO₄

Подход: синтез NaLiFePO₄F и электрохимическое замещение Na⁺ на Li⁺ в ячейке

Na⁺ и Li⁺ занимают различные позиции

Электрохимические свойства Li₂FePO₄F

Intensity 3 4 Energy / keV 2 4 0 1

EDX:	Преимущества: 1)Твердый раствор – быстрая
Исходный	кинетика 2)Малые изменения объема
	(1.7%)
После 6 циклов	3)Возможность деинтеркаляции 2 Li (емкость возрастет на 70% vs. LiFePO ₄)

N.R. Khasanova et al., Chemistry of materials (2012)

Возможные направления развития?

1) Новые типы электродных материалов: Фторфосфаты Фторсульфаты Силикаты

Бораты и др.

- 2) Новые электролиты
- 3) Нанокомпозиты
- 4) Магниевые аккумуляторы

Различные электроды – различное применение!

Благодарности

H.P. ХасановаА. ГавриловО.А. Дрожжин

Artem Abakumov Antwerp Joke Hadermann Gustaaf Van Tendeloo

Claude Delmas Bordeaux

Поддержка РФФИ

Химический факультет МГУ им. М.В. Ломоносова

EMAT, RUCA,

ICMCB, CNRS,