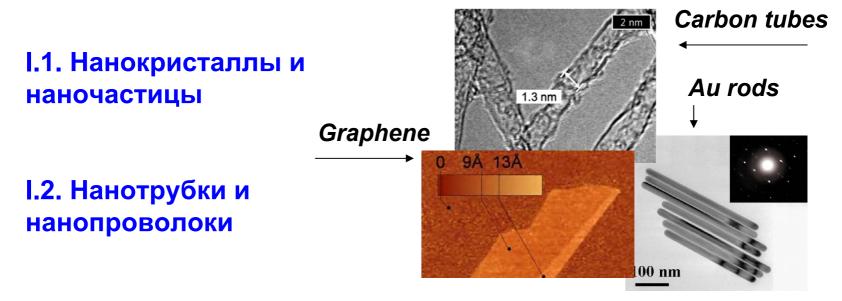
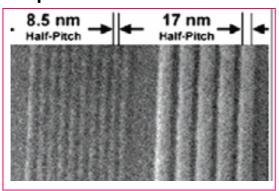
Химические методы получения наноструктур

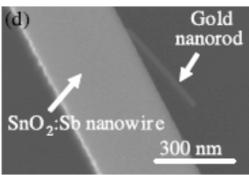
7.09.2009

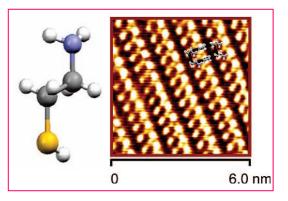

Классификация наноструктур и их фрагментов по конфигурации и химическому составу → принципы выбора технологии

Метрология: важнейшие методы, их возможности и ограничения

Размерно-зависимые химические и физикохимические свойства веществ


Классификация


І. Элементы наноструктур - искусственные (синтетические) низкоразмерные объекты (однородные по составу объекты с характерными размерами менее ~0.1 мкм в одном или более измерениях, если их свойства или свойства включающих их материалов (структур) существенно отличаются от свойств более крупных объектов того же состава)



І.3. Двумерные нанообъекты с характерными толщинами порядка размеров молекул

Классификация

- **II. Наноструктуры** комбинации элементов **I.1 I.3**, для которых наблюдаемые физические свойства (отклики) непосредственно определяются размерно-зависимыми свойствами элементов.
 - **II.1. Упорядоченные ансамбли** (многослойные и многополосные структуры и сетки) одинаковых твердых элементов на подложках.
 - **II.2.** Твердотельные **гибридные** и **гетероструктуры** на основе полупроводников, металлов и магнетиков
 - **II.3. Элементы или наборы элементов**, контролируемо модифицированные функциональными молекулами, мицеллами или биологическими объектами субмикронных размеров.

Классификация «по веществу» (по реакционной способности)

Твердотельные наноструктуры:

Металлы и сплавы

Углеродные материалы

Бинарные полупроводники (II-VI, III-V)

Многокомпонентные оксиды/оксофториды

Кремний, оксид кремния Диэлектрические оксиды

Для технологической совместимости важны:

- термическая стабильность
- химическая инертность в технологической среде
- температурная зависимость физических свойств
- -отсутствие взаимодействий с веществами других элементов

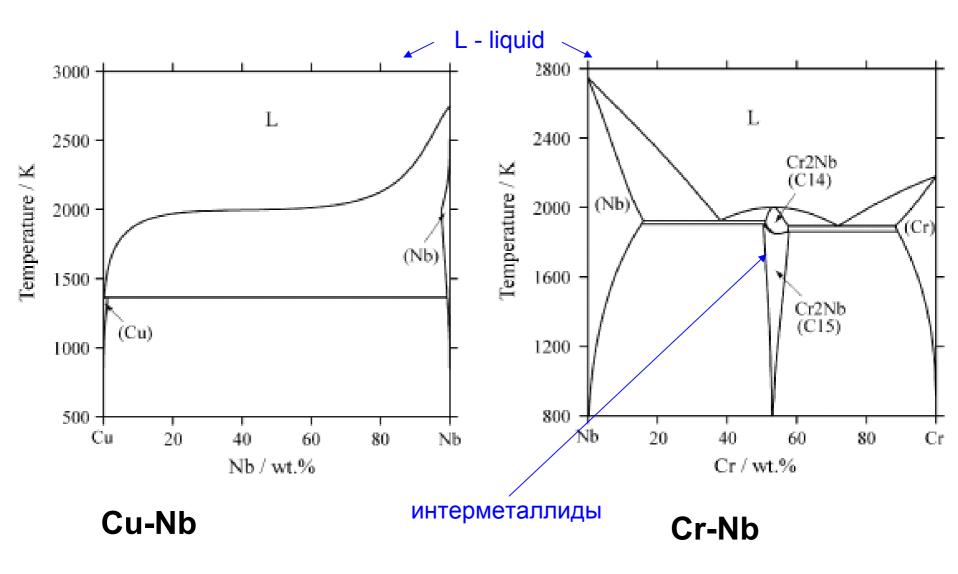
«Soft» наноструктуры

Низкомолекулярные органические вещества

Полимеры (непроводящие, проводящие) *

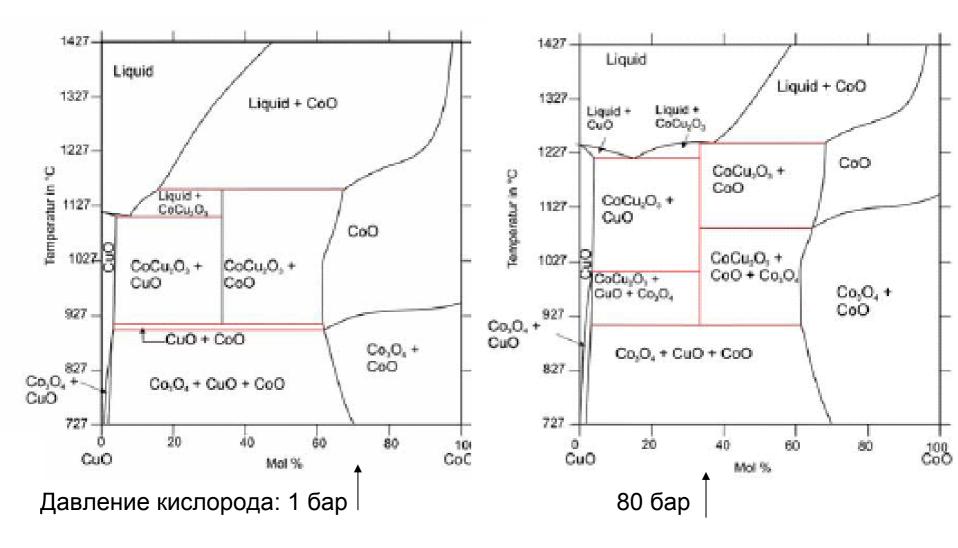
Полиэлектролиты

Макромолекулы, содержащие редокс-центры

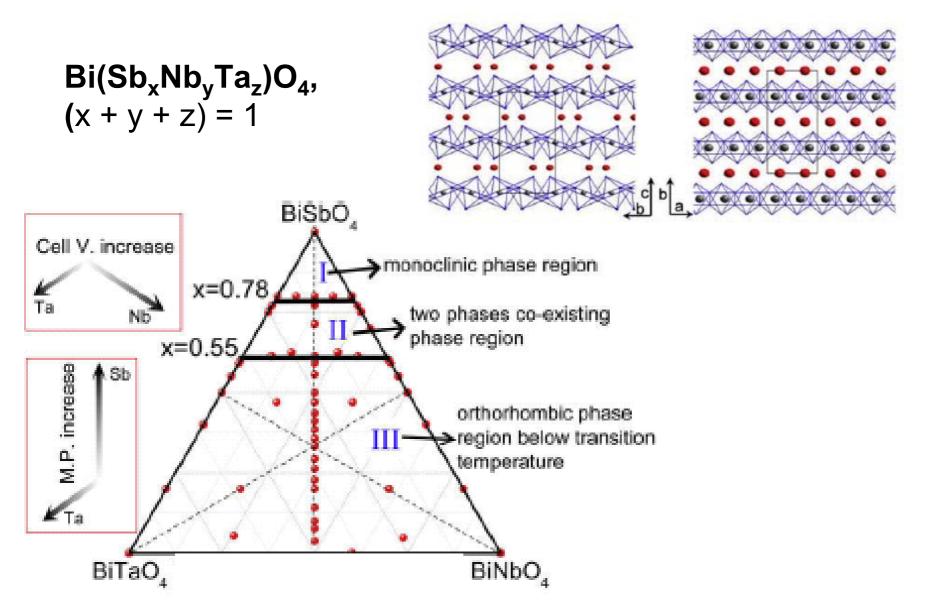

Компоненты «наноматериалов»

Цеолиты и слоистые алюмосиликаты

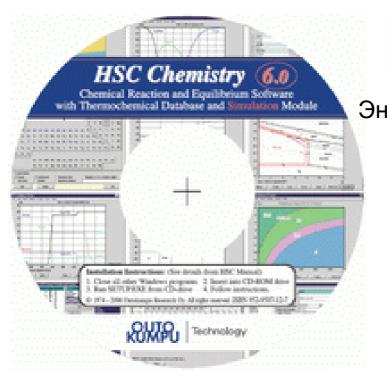
Аморфные оксогидросиды


Неорганические и гибридные молекулярные кристаллы

Термодинамическое прогнозирование реакций в твердой фазе


Термодинамическое прогнозирование реакций в твердой фазе

Cocтав – температура, CuO + CoO + O₂



J. Solid State Chem. 182 (2009) 2036

Термодинамическое прогнозирование реакций в твердой фазе

D.Zhou et al., Solid State Sci, 2009

$$\begin{split} \mathrm{d}G = & - S \mathrm{d}T + V \mathrm{d}p + \sum_{i} \mu_{i} \mathrm{d}N_{i} \end{split}$$

Энергия Гиббса

Химический потенциал

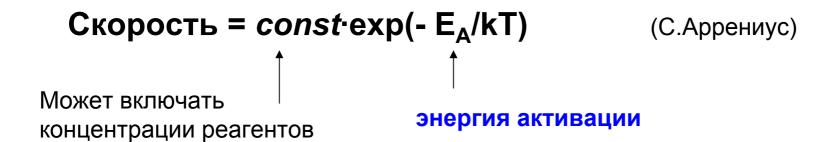
$$u_{A}A + \nu_{B}B + ... \rightleftharpoons \nu_{L}L + \nu_{M}M + ...$$
реагенты продукты

Стехиометрические коэффициенты

$$\xi = N_i/\nu_i$$

«Химическая переменная» - масса вещества в грамм-эквивалентах

Данные о стандартных свободных энергиях

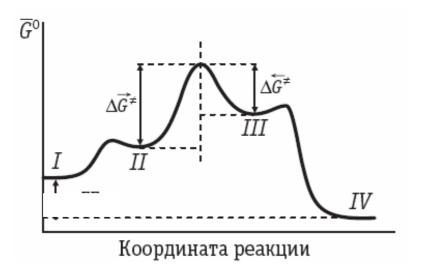

$$\left(\frac{\partial G}{\partial \xi}\right)_{p, T} = 0$$

Стандартное состояние: 298 K, 1 атм фазовых диаграмм

Построение

Условие равновесия

Кинетика химических реакций



Наблюдаемая энергия активации относится к медленной стадии реакции!!!

Факторы, влияющие на *const* и E_A для любых элементарных стадий:

Реакционная среда

Размеры и молекулярно-орбитальное строение реагентов и продуктов

I – регент «в объеме»

II – регент в реакционной зоне

III – продукт в реакционной зоне

IV – продукт «в объеме»

Классификация технологических схем

Top-down Bottom-up

Формирование элементов — иммобилизация

Формирование наноструктур на подложке:

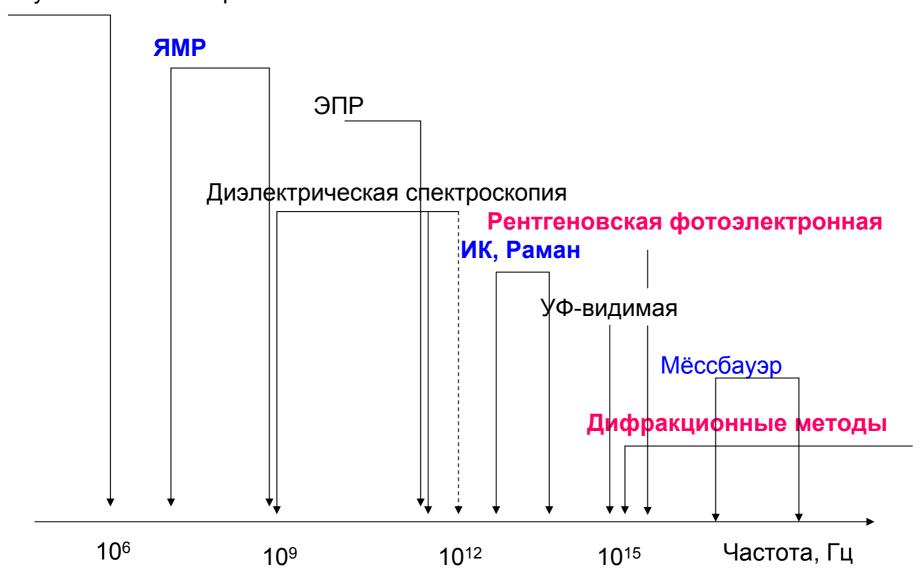
Токальное формирование элементов Формирование ансамблей элементов

«Сухие» - процессы в газовой фазе, топохимические реакции «Мокрые» (wet) – процессы в жидкостях и растворах Комбинированные

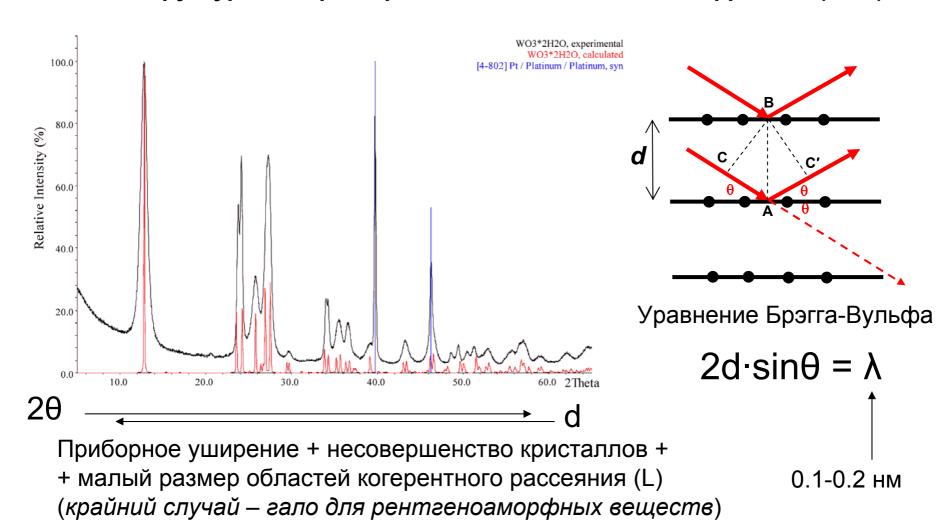
Контролируемость (управляемость)

Варьируемые параметры Совместимость с методами технологического режима

Возможность мониторинга


Совместимость с методами метрологического контроля

Температура, время + фото..., электро...


Применимость in situ

Спектральные методы для исследования процессов на разных характерных временах, определения состава и структуры

Акустическая спектроскопия

Методы структурной характеристики. Рентгеновская дифракция (XRD)

Формула Шерера: полуширина (рад) ≈ 0.94 λ/[L·cos θ]

Идентификация (ренгенофазовый анализ)

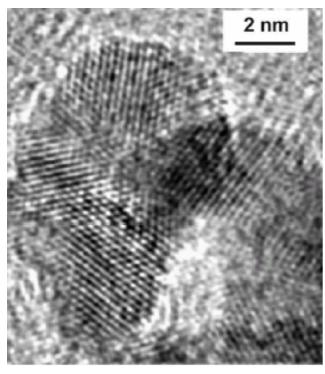
The International Centre for Diffraction Data (ICDD, http://www.icdd.com/):

Heopганические вещества: JCPDS PDF2 – порошки; ICSD - монокристаллы

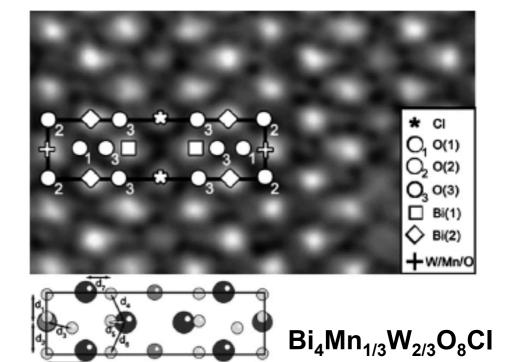
44-258

clep	d, 9	Int.	hkl	d, 0	Int.	hkl
SbSBr	6.296	<u>26</u> 3	110	1.9829	<u>22</u> 5	002
A-4i	4.876 4.195	27	020 120	1.8970 1.8902	2	150,420 112
Antimony Bromide Sulfide	4.119	9	200	1.8540	13	241,331
Rad. CuKa ₁ λ 1.54056 Filter Mono. d-sp Diff.	3.794	16	210	1.8272	<1	401
Rad. CuKa ₁ λ 1.54056 Filter Mono. d-sp Diff. Cut off 14.7 Int. Diffractometer I/I _{cor.} 3.02	3.673	6	011	1.7955	12	411
Ref. Antipov, E., Putilin, S., Shpanchenko, R., Moscow State	3.354	4	111	1.7616	12 5	250
University, Moscow, Russia. ICDD Grant-in-Aid. (1993)	3.145	ġ	220	1.7115	<1	151
Sys. Orthorhombic S.G. Pnam(62)	3.023	1	130	1.6774	1	222
a 8.2370(5) b 9.7491(6) c 3.9646(3) A 0.8449 C 0.4067	2.8818	100	121	1.6562	3	431
α β γ Z 4 mp 330 <i>d</i> Ref. Ibid	2.8550	15	201	1 6246	2	060,510
Kei. 1010	2.8550 2.7413	15 12	201 211	1.6246 1.5935	2 3	160,431
D _x 4.876 D _m SS/FOM F ₃₀ =158(.005,36)	2.6430	<u>16</u> 3	310	1.5860	4	312
Color Orange	2.5507 2.5136	16	230 031	1.5730 1.5656	<1	440 232
Pattern taken at 26 C. The sample was provided by Shevelkov, A.,	2.5150	_10_	031	1.5050	_1	232
Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S	2.4641	4 7	221	1.5380	3	042
and SbBr3 in sealed silica tube at 360 C for 10 hours followed by an-	2.4369	7	040	1.5266	3	322
nealing at 310 C for 6 days. SbSBr melts with decomposition. Single	2.4037 2.3919	12	131 320	1.5116 1.4762	<1	142,260 351
crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima,	2.3366	9 2	140	1.4692	2	530
T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used						
as external standard. PSC: oP12.	2.1992	3	311	1.4408	2	242,332
	2.0972 2.0594	8	330 400	1.4124 1.3986	<1 <1	261 360
	2.0477	1	321	1.3779	1	531
	2.0131	5	141	1.3713	2	152
See follwing card.						

При наличии текстуры соотношение интенсивностей – другое!


Методы структурной характеристики. Микроскопия

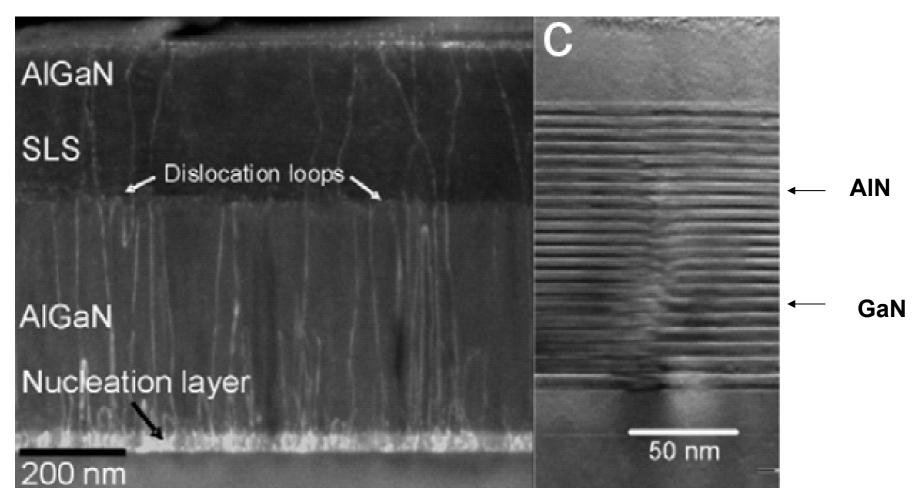
Просвечивающая электронная микроскопия


(Transmision electron microscopy - TEM; High Resolution ... - HRTEM) ~50pm

Толщина < 100 нм Вакуум

Возможно плавление и разрушение образца

Наночастицы PtRu



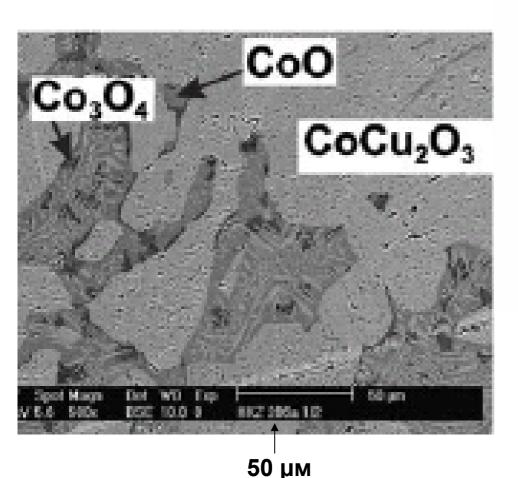
Phys. Chem. Chem. Phys. 9(2007)5476

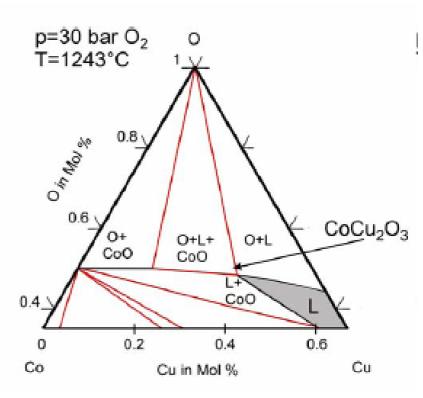
J. Mater. Chem. 19(2009)2660

TEM на поперечных сколах (cross-sectional)

Возможно изменение морфологии при сколе

J. Crystal Growth 298 (2007) 383


Методы характеристики. Микроскопия


Сканирующая электронная микроскопия [растровая]

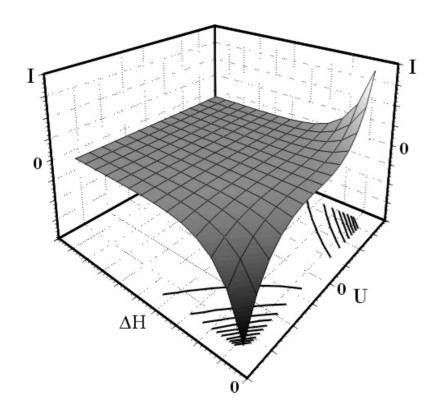
(Scanning electron microscopy - SEM) + микроанализ, локальность µm

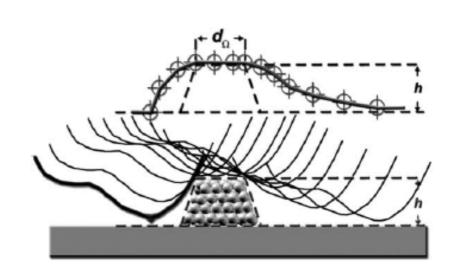
Не более 1-2 нм

Вакуум

J. Solid State Chem. 182 (2009) 2036

Методы структурной характеристики. Микроскопия

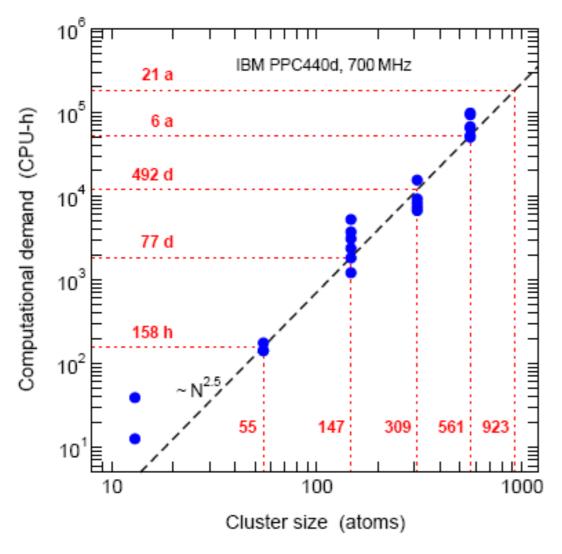

Зондовая микроскопия


Scanning tunneling microscopy – STM Atomic force microscopy - AFM

$$\boldsymbol{I}_{\scriptscriptstyle{\mathrm{TYH}}} = \! \mathrm{const} \cdot \boldsymbol{U}_{\scriptscriptstyle{\mathrm{TYH}}} \cdot \boldsymbol{e}^{-\mathrm{const}' \sqrt{\boldsymbol{V}_{\scriptscriptstyle{\mathrm{TYH}}}} \, \boldsymbol{H}_{\scriptscriptstyle{\mathrm{TYH}}}}$$

~ работа выхода электрона

При низких $U_{\text{тун}}$, низких температурах, в вакууме

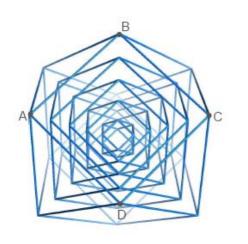


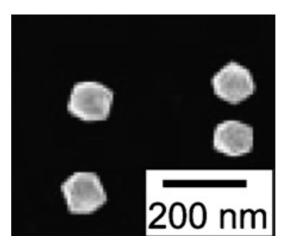
Искажения, связанные с несовершенством

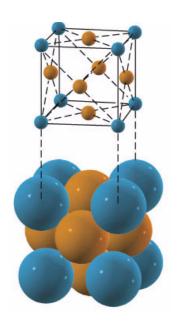
Может использоваться в любой среде формы и конечным размером острия без разрушения образца

Прогнозирование. Моделирование равновесных кластеров (the Density Functional Theory, DFT)

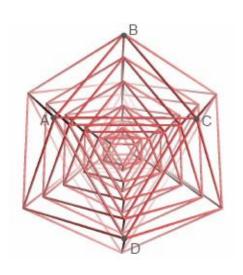
Проблемы:

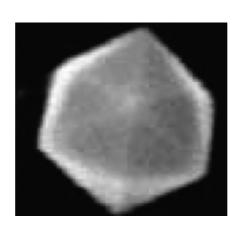

- масштабирование
- учет среды
- учет взаимодействия с подложкой

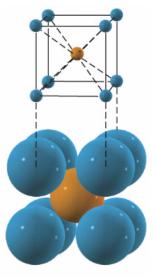

NIC Series, V. 39, pp. 161-168, 2008


http://www.fz-juelich.de/nic-series/volume39

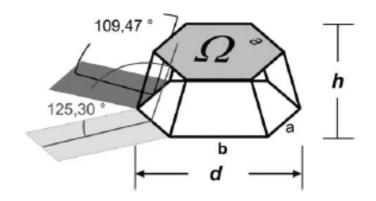
Размерно-зависимые свойства малых частиц.

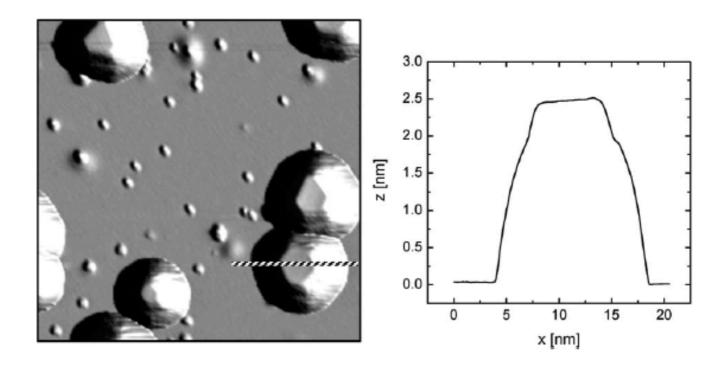

1. Геометрия (равновесная форма частицы)





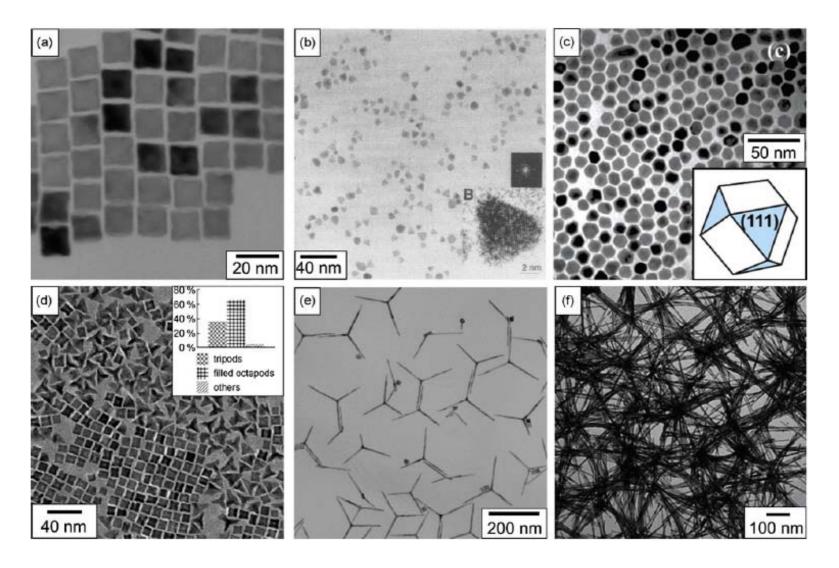
Кубооктаэдр – кубическая гранецентрированная решетка (fcc)




Икосаэдр – кубическая **объемноцентрированная** решетка (**bcc**)

Фасетирование –

– экспериментальные наблюдения


Au на базисной грани пирографита (highly oriented pyrolitic graphite, HOPG)

Progress Surface Sci. 81(2006)53

Устойчивые частицы разнообразной формы – экспериментальные наблюдения (Pt)

Размерно-зависимые свойства малых частиц и тонких слоев. Геометрия (координация атомов) (AIO2)-(LaO)* (AIO2)-Coordination (LaO)+ Icosahedron (TiO₂)0 bcc (SrO)0 (TiO₂)0 (SrO)0 fcc (LaO)+ icosahedral (AIO2)-(center) (LaO)+ (AIO₂)icosahedral (SrO)0 (spine) (TiO₂)0 (SrO)0 hcp (TiO₂)0

other

Nature 427(2004)423

Размерно-зависимые свойства малых частиц. Геометрия (межатомные расстояния)

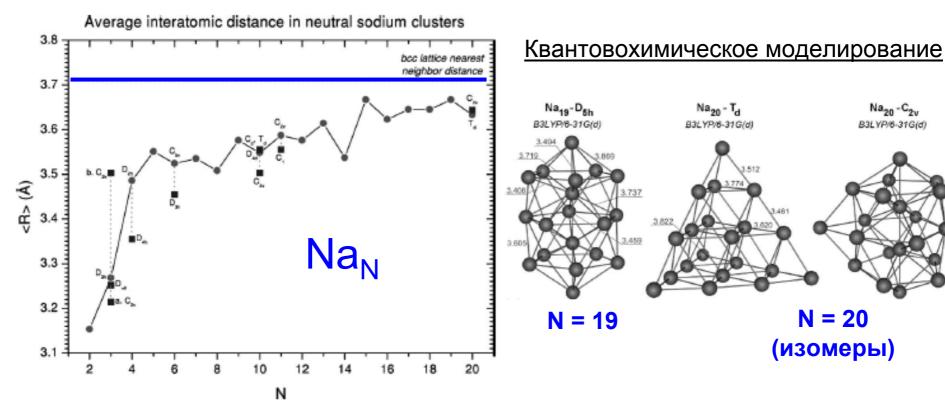
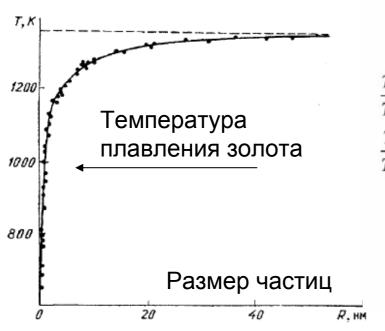
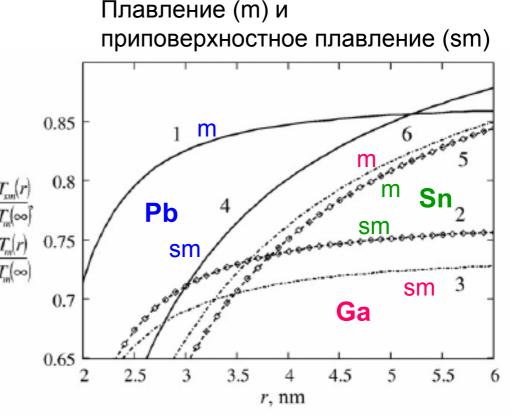


FIG. 3. Averaged bonding distance as a function of cluster size for optimized geometries of neutral sodium clusters. For some cluster numbers more than one isomer has been considered. In these cases, labels indicate the point symmetry group of the corresponding isomers. Geometries of the optimized clusters can be found in Fig. 1.


Phys Rev B 65 (2002) 053203

Коррелирует с экспериментом по уменьшению параметра решетки при переходе от массивного к дисперсному металлу


Размерно-зависимые свойства малых частиц. «Дополнительная» свободная энергия

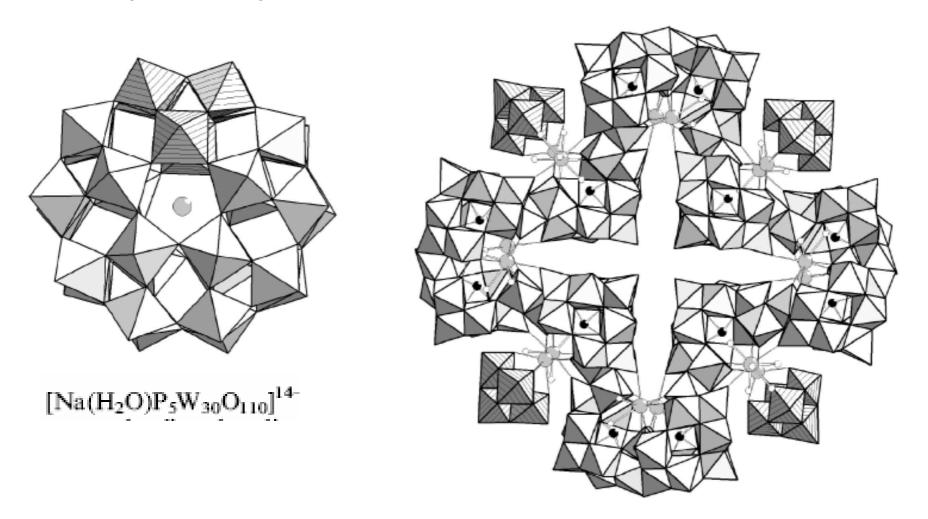
$$A_{
m pabh} = 4\pi r^2 \sigma$$
 — Поверхностное натяжение (~ сотни мН/м)

Равновесная работа образования новой поверхности **одной** сферической частиць

Phys. Rev A 13(1976)2287

Mater. Lett. 63(2009)1525

Проблема эксперимента


Определение свойств единичных элементов наноструктур по данным о свойствах их ансамблей

Аккумулирование непрямой информации для стабильных систем:

- свойства охарактеризованных наноматериалов сложного строения
- свойства кластерных соединений = наночастиц, свойства которых существенно зависят от «наружного» стабилизатора

PS: «супрамолекулярная химия» - готовые наночастицы

 $\left[Ln_{16}(H_2O)_{36}(WO_2)_4(W_2O_6)_8(AsW_9O_{33})_{12}(W_5O_{18})_4\right]^{76-}$