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In this paper we study the electrostatic interaction of a heterogeneously charged wall

with a neutral semipermeable membrane. The wall consists of periodic stripes, where

the charge density varies in one direction. The membrane is in contact with a bulk

reservoir of an electrolyte solution and separated from the wall by a thin film of salt-

free liquid. One type of ions (small counterions) permeates into the gap. This gives rise

to a distance-dependent membrane potential, which translates into a repulsive

electrostatic disjoining pressure due to an overlap of counterion clouds in the gap. To

quantify it we use two complementary approaches. First, we propose a mean-field

theory based on a linearized Poisson–Boltzmann equation and Fourier analysis. These

calculations allow us to estimate the effect of a heterogeneous charge pattern at the

wall on the induced heterogeneous membrane potential, and the value of the

disjoining pressure as a function of the gap. Second, we perform Langevin dynamics

simulations of the same system with explicit ions. The results of the two approaches

are in good agreement with each other at low surface charges and small gaps, but

differ due to nonlinearity at higher charges. These results demonstrate that a

heterogeneity of the wall charge can lead to a huge reduction in the electrostatic

repulsion, which could dramatically facilitate self-assembly in complex synthetic and

biological systems.
1 Introduction

Long-range electrostatic interactions between surfaces play a central role in a
variety of biological processes and substantially inuence the properties of
colloidal suspensions, thin lms, and nanostructured materials. Most theoretical
and experimental studies of electrostatic forces have been conducted for
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symmetric systems, and by assuming that the surfaces are homogeneously
charged and impermeable.1 In this paper we focus on an asymmetric case of
interactions of a patterned impermeable wall with a neutral semi-permeable
membrane, as a boundary to an aqueous electrolyte solution.

Surfaces with inhomogeneous charge distributions are of importance for
several reasons. First, such inhomogeneous systems are ubiquitous, especially in
biology. The best-known examples are the proteins, cellular membrane lipids,2

so anisotropic materials,3 and self-assembled molecular layers on charged
surfaces.4–6 Second, themethods of surface treatment have advanced considerably
during the past decade and enabled the fabrication of charge patterns in systems
such as spherical Janus particles7 and various patchy objects.8,9 Third, they model
the effect of defects in homogeneous systems. In an effort to better understand
the connection between the heterogeneity of a charge distribution and the
amplitude of repulsive forces, the interaction of patterned walls in a liquid has
been studied by several groups. Experimental studies have been performed to
quantify the interaction between charged4–6 and neutral surfaces, where the
average charge is zero,10,11 with different distributions of surface charge hetero-
geneities. Most theoretical effort has been focussed on the interaction between
two periodically patterned surfaces12–14 using the linearized Poisson–Boltzmann
(PB) equation, and boundary conditions of a xed surface charge density (or a
xed surface potential) for the heterogenous patterns. These studies concluded
that for heterogeneously charged surfaces with a non-zero total charge the
leading-order interaction is dominated by the average charge, and that the
repulsion between the surfaces becomes weaker than between two uniformly
charged surfaces with the same average charge. However, for overall neutral
surfaces the interaction of charge patches depends on the location and periodicity
of the pattern and can change from being repulsive to attractive. Another recent
development includes investigations of systems with randomly distributed
charges,15 strong correlations in systems with mobile charges,16,17 charge regula-
tion, and non-linear ionic screening in heterogeneous systems.18

Donnan equilibria, which arise in the presence of semipermeable membranes,
are of considerable importance in many areas of science and technology. Well
known examples of semipermeable membranes are synthetic liposomes with ion
channels,19 and multilayer shells of polyelectrolyte microcapsules.20–23 Biological
examples include viral capsids,24 cell25 and bacterial26–28 membranes. Since they
were discovered, the theory of Donnan equilibria mainly focussed on the case of a
single membrane,29,30 or a single vesicle/capsule.29,31–34 However, ion equilibria
play a very important role in processes determining various interactions with
membranes. The quantitative understanding of electrostatic interactions
involving membranes is still challenging. Previous investigations were restricted
to interactions of two model membranes and relied on a number of assumptions
and simplications. Some solutions of the PB equation are known for charge
bearing ionizable groups immersed in salt reservoirs.35 Later works in this
direction assumed that the membranes are uncharged, and are separated by a
thin lm of salt-free solvent.36 Results were not limited by calculations within the
PB theory, and also included Langevin dynamics simulations with explicit ions. In
the wide gap limit, a repulsive disjoining pressure was predicted. Recent integral
equation studies suggested charge correlation effects in large concentration
solutions of multivalent ions that could result in short-range attractions.37 We are
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unaware of any previous work that has addressed the question of the interaction
of a semipermeable membrane with a wall.

In this paper, we explore the charge and potential distributions arising
when a neutral semipermeable membrane as a boundary to the electrolyte
solution, is separated by a thin lm of background solvent from the charged
wall decorated by stripes with xed densities of a local surface charge. We rst
solve analytically a linearized PB equation for a weak local charge, and evaluate
the distribution of electrostatic potential in the system. We then derive an
explicit expression for the pressure on the membranes and a disjoining
pressure in the gap between them. Our mean-eld approach is veried by
Langevin dynamics simulations.
2 Theory

We consider a system consisting of a charged impermeable wall and a semi-
permeable membrane in contact with an electrolyte solution. The gap between
the wall and the membrane, h, is lled with a salt-free solvent (Fig. 1). We
assume that the membrane is permeable to one type of ion (small ions or
counter-ions) with charge ze and impermeable to another type (large ions) with
charge rZer $ rzer. Here, Z and z are the valencies of the large and small ions,
respectively, and e is the elementary charge. The ion concentrations are denoted
by C for large ions and c for small ions. The membrane is innitesimally thin,
rigid, and electrically neutral. We focus on a periodic, charged, striped wall with
an average charge density ss, where the charge and the potential, j, are varying
in only one direction, y, with a periodicity L. Alternating stripes are character-
ized by charge densities ss1 and ss2. The surface fraction of stripes of type 1 is
denoted as u ¼ L1/L, where L1 is the width of the stripe with charge density ss1.
The permittivities of the inner and outer solutions are equal and denoted
below as 3.
Fig. 1 Schematic of the studied system consisting of a neutral semipermeable membrane at x ¼ hwith
a heterogeneously charged surface at x ¼ 0. The period of the charge distribution is denoted by L. Small
spheres indicate small ions. The large ions are also depicted as spherical, which is appropriate, for
instance, for conventional charged colloids, nanogels or micelles, but our conclusions are general. They
could also apply for cylindrical species, e.g., DNA, viruses, actin filaments or polyelectrolytes.
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2.1 Potential

We rst introduce the dimensionless electrostatic potentials 4i;o ¼
zeji;o

kBT
� 1

with the indices i and o standing for “in” (x < h) and “out” (x $ h) of the conned
slab.36 We then assume a weakly charged surface, so that 4 satises the linearized
PB equations:

D4i(x, y) ¼ ki
2(4i(x, y) � 1), 0 < x < h (1)

D4o(x, y) ¼ ko
24o(x, y), x $ h, (2)

where the inner inverse screening length, ki
�1, is dened as ki

2 ¼ 4p‘Bc0 with
‘B ¼ z2e2/(4p3kBT) the Bjerrum length, ~Z ¼ Z/z < 0 is the valence ratio of large
and small ions, and c0 is the bulk concentration of small ions in the outer
space. The outer inverse screening length, ko, can be calculated as ko

2 ¼
4p‘B(~Z

2C0 + c0), where C0 is the concentration of large ions far from the
membrane. Obviously, this represents the inverse Debye length of the bulk
electrolyte solution in the container. Enforcing the electroneutrality ZC0 + zc0 ¼
0, we nd ko ¼ kih, where h ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~Z

p
. Note that for this particular problem,

the main reference length scale that determines the behavior of the system is
ki
�1, as we show below.
We solve these equations with a boundary condition of prescribed surface

charge ss(y) on the wall and continuity of the electric eld at x ¼ h which corre-
sponds to the case of a neutral membrane:

vx4iðx; yÞ|x¼0 ¼ � 4pze

3kBT
ssðyÞ ¼ �bðyÞ; (3)

vx4i(x, y) |x ¼ h ¼ vx4o(x, y) |x ¼ h, (4)

where bð yÞ ¼ 4pze
3kBT

ssð yÞ is a local analogue of the Gouy–Chapman inverse length.

In our case of alternating stripes b(y) switches between two values, b1 and b2.
Parameter b1,2ki

�1 then characterizes the interplay between ion–ion and ion–wall
interactions.38

Note that at high charge densities and high values of the electric potential, the
description of the problem cannot be simplied by linearization of the PB
approach. Beside that, correlations between macroions should be taken into
account in the limit of large charges Z. Based on earlier results,33 one can expect to
observe the same qualitative picture at least at low polyion concentrations, while
at the higher concentrations the correlation effects might become signicant.37

We leave the study of the latter regime for a future work.
Applying boundary conditions (4) to eqn (1) and (2) we obtain a distribution of

the potential:

4iðx; yÞ ¼ 1þ b0ki
�1cosh½kiðh� xÞ� � h0cosh½kix� þ h0b0ki

�1sinh½kiðh� xÞ�
h0cosh½kih� þ sinh½kih�

þ
X
ns0

bn

qn

cosh½qnðh� xÞ� þ hnsinh½qnðh� xÞ�
hncosh½qnh� þ sinh½qnh� eikny;

(5)
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where bn is the Fourier coefficient of b(y), kn ¼ 2pn
L

, qn
2 ¼ kn

2 + ki
2, and

h2n ¼
kn2 þ ko

2

qn2
. The average dimensionless surface charge is b0ki

�1, where b0 ¼
b1u + b2(1 � u).
2.2 Disjoining pressure

At the equilibrium, the disjoining pressure consists of two parts, namely, the
pressure due to the electric volume force (rE) and the ideal osmotic pressure.39

Within the linearized PB theory, one should replace the boundary density rule
from the nonlinear PB theory by its linear case analogue.33,40 Below we discuss this
for our system.

A mechanical equilibrium requires that the solution for the potential and
charge distribution satisfy the hydrostatic equation
0 ¼ �Vp + rE ¼ V$(T � I p) h �V$P (6)

where T is Maxwell's electrostatic stress tensor

Tij ¼ 3

4p

�
EiEj � dij

E2

2

�
(7)

The difference, P(x, y) ¼ T(x, y) � I p(x, y), represents an electrostatic dis-
joining pressure, which is equal to the excess osmotic pressure at the particular
position in the lm, x0, where the magnitude of potential has a minimum value,
and the electrostatic stress vanishes (T ¼ 0).36,38,41,42 The interaction force for
heterogeneous objects is a surface integral of P$~ns.43–45 Therefore, to nd x0 for
our system, which now could depend on y, we propose to use a y-average dis-

joining pressure
1
L

ðy¼L

y¼0
Pðx; yÞhhPðx; yÞiy dy, as a measure of an electrostatic

interaction. We then use eqn (6) to calculate the average disjoining pressure
hP(x0, y)iy ¼ hp � Tiy ¼ hp(x0, y)iy z kBTc0(1 � h4i(x0, y)iy) (8)

To calculate the value of a potential at the (still unknown) point, x0, y0, we have
to nd a relationship between the eld and the potential. This can be done by

multiplying eqn (1) by V4 h {vx4, vy4}. Taking into account that E ¼ �V4
kBT
ze

,

we nd:

�V

�
T

kBTc0
� 4i

2ðx; yÞ
2

� 4iðx; yÞ
� �

I

�
¼ 0 (9)

The off-diagonal components represent the tangential force on the charged
surface, which should vanish on average. The y-averaging of eqn (9) then elimi-
nates these components of the Maxwell stress tensor hTx,yi ¼ hTy,xi ¼ 0:

v

vx

*
ðvx4iÞ2 �

�
vy4i

�2
2ki2

þ 4i
2ðx; yÞ
2

� 4iðx; yÞ
� �+

y

¼ 0h
v

vx
CðhÞ (10)
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where C(h) is an integration constant for the linearized PB equation. Comparing
eqn (9) and (10) to eqn (6), we derive

pðx; yÞ ¼ Aþ kBTc0
4i

2ðx; yÞ
2

� 4iðx; yÞ
� �

(11)

Following this approach33,36,40 we nd the constant A by using van't Hoff's law
at the position of the minimum-magnitude potential, x0:

pðx; yÞ ¼ kBTcðx0; yÞ þ kBTc0
4i

2ðx; yÞ � 4i
2ðx0; yÞ

2
� ð4iðx; yÞ � 4iðx0; yÞÞ

� �
(12)

Aer solving the linearized PB equation for 4, one can verify that the le-hand
side of eqn (10), i.e. C(h), does not depend on x but can be a function of sepa-
ration, h. Without loss of generality, we then can calculate the constant by using
eqn (10) at x ¼ h:

CðhÞ ¼
	 ~Z

2
4mðyÞ2 � 4mðyÞ



y�average

; (13)

where 4m is the potential of a membrane.
Now we set Ex ¼ Ey ¼ 0 in eqn (10) and solve it with respect to 4(x0) h

4|T(x0,y) ¼ 0: 	
1

2
42ðx0; yÞ � 4ðx0; yÞ



y

¼ CðhÞ (14)

By substituting this into eqn (8), we obtain an expression for the disjoining
pressure in the gap between the semipermeable membrane and the heteroge-
neously charged surface:�

PðhÞ
kBTc0

�2

¼ 1þ 2CðhÞ ¼ 1þ
D
~Z4m ðyÞ2 � 24mðyÞ

E
y�average

(15)

A remarkable corollary of this relationship is that the disjoining pressure can
be easily determined once the induced membrane potential is found.
3 Simulation

The Langevin dynamics (MD) simulations are performed on the level of the
primitive model with explicit large and small ions using the ESPResSo simulation
package.46 Our model also includes a charged surface and neutral semipermeable
membrane. The membranes are made impermeable for cations, but “invisible”
for anions.32

All electrolyte ions repel each other with a repulsive Weeks–Chandler–Ander-
sen (WCA) potential47 of range sWCA andmagnitude 3WCA. The same potential acts
between the particles and the walls (charged surfaces and semipermeable
membranes). To illustrate our approach, we here use only a monovalent
electrolyte (Z ¼ 1, z ¼ �1). The temperature is set by a Langevin thermostat to
kBT ¼ 1.03WCA.

The solvent is treated as a homogeneous medium with a dielectric permittivity
set through the Bjerrum length ‘B. The electrostatic interaction between the ionic
322 | Faraday Discuss., 2013, 166, 317–329 This journal is ª The Royal Society of Chemistry 2013
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species is modelled by the Coulomb potential UCoulðrijÞ ¼ kBT
‘Bqiqj
rij

; where

qi ¼ �1 with ‘B ¼ 0.8sWCA to 1sWCA. We model the systems with 2D-periodicity in
the y and z directions to exclude any boundary effects. The electrostatic interac-
tions are calculated using the P3M48 method combined with the electrostatic layer
correction (ELC)-algorithm49 with gap size 50sWCA.

Bulk ion concentrations vary from 10�4sWCA
�3 to 10�3sWCA

�3, which gives the
screening length in the range ki

�1 ¼ 6sWCA to 20sWCA. We veried that the force
exerted on the surface depends on the dimensionless parameter kih rather than
on ki or h separately. Therefore for force measurements for kh we xed ki

�1 ¼
10sWCA and varied h in the range from 3sWCA to 70sWCA. These values allow us
to calculate the interaction force for a wide range of dimensionless separations
kih ¼ 0.3–20.

A charged plate is constructed from discrete charges at surface density ss ¼
10�2qse � sWCA

�2, where qse is the charge of a discrete surface ion. The surface
charges are located at x ¼ 0 and random {y, z} coordinates. In our system, the
inverse Gouy–Chapman length is equal to b ¼ 0.1s so that bk�1 ¼ 1. To model
heterogeneity we used a periodic charge pattern with stripe widths L1 ¼ L2 ¼ 50s.
This gives the fraction of the charged stripe u¼ 0.5 at which heterogeneity effects
are the most pronounced. Dimensionless periodicity could be varied in a wide
range up to kiL z 10.

We use a simulation box of depth Lx ¼ 100sWCA–200sWCA in the x direction,
which is conned by impermeable walls at both ends (x ¼ 0 and x ¼ Lx). The
lateral dimensions Ly � Lz ¼ 200sWCA � 100sWCA and the number of ions (N ¼
1000–4500) are selected to be large enough to achieve constant bulk ion
concentrations at large x, far from the membrane. The width of the simulation
box in the y-direction is set so that we have at least two periods of the charge
pattern within the unit cell.

We evaluated the pressure on a plate by summation of contributions of all
ions. For example, the Lennard–Jones interaction force exerted by an ion on the
surface located at x ¼ h is equal to:

FðxÞ ¼ 43WCA

12sWCA
12

ðx� hÞ13 �
6sWCA

6

ðx� hÞ7
 !

(16)

The surface-averaged pressure is then

p ¼
ð
​
hþ21=6s

h=2

dxhCðx; yÞiy FðxÞ: (17)

We measured both bulk osmotic pressure (the pressure at the end of the
box x ¼ Lx) and the force on the membrane exerted by large ions. The
calculated bulk osmotic pressure is further used to derive the bulk concen-
trations c0 and C0, and to normalize the disjoining pressure by the
factor kBTc0.
4 Results and discussion

In this section we present some example calculations based on the analytical
linearized PB theory and results of Langevin dynamics simulations.
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4.1 Homogeneously charged wall

We begin by studying the case of a homogeneously charged wall, which will be a
reference system for our problem. Let us rst focus on ion distributions in the
system, which are shown in Fig. 2 versus x/h (symbols). Also included are the
theoretical curves (dashed curves). The agreement is excellent at small kih (strong
overlap of an inner double layer). Such a situation would be realistic for dilute
solutions and/or a thin gap. At large kih (weak overlap of the inner ionic layers), i.e.
thicker lms and/or more concentrated solutions, a linearized PB theory fails to
describe quantitatively the simulation data in the gap. In this case, the large ions
are concentrated near the membrane, which is reected by a very sharp
concentration change. The values of this peak calculated within the linearized
approach differ from the simulation value. Nevertheless, the linear theory is in a
good qualitative agreement with the simulation data, and could safely be used as
a rst approximation. We would like to stress that this is neither adsorption
driven by an attraction of ions to the membrane nor condensation driven by an
attraction between ions. In our case, we deal with another effect, where electro-
static self-assembly of large ions and a neutral membrane is caused by attraction
of large ions to inner counterions. This, in turn, is the consequence of a coun-
terion leakage leading to an excess charge of the inner and outer regions. At large
kih the concentration proles of the small ions have a minimum, which can be
used to calculate the disjoining pressure. In the case of simulation results we can
employ a boundary density rule:

P0 ¼ kBTcmin ¼ kBTc0 + kBTC0 � kBTC
m (18)

Here and below the subscript 0 for P corresponds to the case of a homoge-
neous wall. The simulation data presented in Fig. 2 are indeed in excellent
Fig. 2 Distribution of small and large ions in the system. Dashed curves show predictions of the line-
arized PB theory. Symbols show simulation results. Open symbols indicate small ions, filled symbols
correspond to large ions.
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agreement with this formula, but the linearized PB theory obviously deviates from
the prediction (see ref. 33 and 40 for a detailed discussion of calculations of
pressure in the linearized PB theory).

Fig. 3 shows simulation data for the disjoining pressure as a function of kih
obtained for walls with different surface charges. Also included are theoretical
results calculated using eqn (15). The agreement between the theory and simu-
lations is quite good, but one can see that at large kih the linear theory under-
estimates the value of the disjoining pressure. The data presented in Fig. 3 show
larger P0 at larger values of the surface charge b0ki

�1. Note that in the case of the
uncharged wall, b0 ¼ 0, our system is equivalent to a symmetric system of two
semipermeable membranes36 separated by a distance two times larger, 2h.

Finally, we note that simple asymptotic expressions can be constructed for
large and small kih. Thus, at the limit of large kih we derive�

P0ðhÞ
kBTc0

�2

z4
h2

ð1þ hÞ2 e
�2kih � 4

b0

ki

h

1þ h
e�kih (19)

These asymptotic curves are included in Fig. 3. Eqn (19) indicates qualitatively
the different behavior of P0(h) in the cases of neutral and charged walls. For a
neutral wall the second term vanishes, and only therst termdetermines the decay
ofP0(h). For charged walls the rst term can safely be ignored, and the asymptotic
curve is determined by the second term. In the limit of small kih we obtain�

P0ðhÞ
kBTc0

�2

z1� 2kib0h� b20
~Z

ki2h2
; (20)

which gives the maximum value of the disjoining pressure in our system.
4.2 Heterogeneously charged wall

We begin by studying the membrane potential. Fig. 4 plots results evaluated from
simulated concentration proles [as 4m ¼ �log (c/C0)] collected in the interval of
Fig. 3 Disjoining pressure in the gap between a homogeneously charged wall and a semipermeable
membrane simulated at different surface charge densities on the wall (symbols). For a charge density of
b0ki

�1 ¼ �1 data were obtained at several c0 values. Solid curves show the predictions of the linearized
PB theory [eqn (15)]. Dashed curves are asymptotic results calculated with eqn (19).
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Fig. 4 Membrane potential calculated from concentration profiles collected from x ¼ h to x ¼ h + 2.5s.
The charge density of the surface stripes is given by b1,2ki

�1 ¼ �1 � 2.
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Dx from h to h + 0.25ki
�1. The simulation data demonstrate that a heteroge-

neously charged surface induces an inhomogeneous potential of the uncharged
membrane if separations are small enough. The theoretical predictions shown in
Fig. 5 are in good qualitative agreement with the simulation results.

Our results show that at h > L the membrane potential is uniform and does not
vary with y, which is in agreement with earlier predictions made for impermeable
surfaces.13 At small h < L there are pronounced variations of the induced
membrane potential in the y-direction, and its sign coincides with that of the
charge patches of the wall. Note that for a very small kih � 1 and a strong
screening, kiL > 1, the distribution of the membrane potential becomes locally
uniform within each stripe L1 or L2. The net membrane potential is then given
merely by a sum of independent contributions of each charged stripe. Such a
superposition approximation has been previously used to describe heteroge-
neously charged impermeable walls separated by a lm of an arbitrary thick-
ness.50 We see that in the case of a membrane the range of applicability of this
model is much smaller.

Fig. 6 shows the disjoining pressure in the gap between the striped wall and
the membrane at xed kiL¼ 10. We also x an average charge of the wall, b0ki

�1 ¼
�1, and u¼ 0.5, but vary the surface heterogeneity, b1 � b2. It can be seen that for
large kih (above 3 for our parameters) the heterogeneity of the wall does not play
Fig. 5 Membrane potential, 4m, (colorbar shows the color scale) as a function of kih and y/L calculated
at ~Z ¼ �1, kiL ¼ 2, and b0ki

�1 ¼ �1. The dashed line shows the distance from the wall h ¼ L.
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Fig. 6 Disjoining pressure in the gap between a heterogeneously charged wall and a semipermeable
membrane (kiL¼ 10). The curves show the predictions of the linearized PB theory, and the symbols show
the simulation results.
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any role. However, at smaller kih there is a discrepancy from the reference
homogeneous system, especially where the heterogeneity is higher. The
discrepancy is always in the direction of a smaller pressure than that predicted for
a homogeneously charged wall. Therefore, the contribution from the heteroge-
neity can be seen as an additional attractive force acting in the system. Simple
arguments given below justify this conclusion. Indeed, if kih[ 1, one can derive�

PðhÞ
kBTc0

�2

z

�
P0ðhÞ
kBTc0

�2

� ðb1 � b2Þ2
ki2

ðh� 1Þ
hþ 1

uð1� uÞe�2q1h (21)

The second (negative) term can be interpreted as an exponentially decaying
(weak) attractive force with the characteristic length q1

�1. For kih � 1, we get�
PðhÞ
kBTc0

�2

z

�
P0ðhÞ
kBTc0

�2

þ ðb1 � b2Þ2
ki2

~Z

h2

uð1� uÞ
2

(22)

The second term of this expression is again negative (i.e. attractive), but of
much larger amplitude, which allows us to interpret the results presented in
Fig. 6. In particular, it explains a stronger attraction for more heterogeneous (i.e.
with larger b1 � b2) surfaces.

5 Conclusions and perspectives

In this paper, we have considered the effect of surface charge heterogeneity on the
electrostatic interaction with a neutral semipermeable membrane in contact with
a bulk reservoir of an electrolyte solution. Two approaches have been followed.
First, we have used continuum electrostatics, namely, a linearized PB approach, to
propose a macroscopic estimate of the electrostatic disjoining pressure
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 166, 317–329 | 327
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associated with a surface characterized by a heterogeneous (striped) charge
pattern. This (analytical) approach has enabled us to determine the important
factors controlling the electrostatic interaction with a membrane. In particular,
we have demonstrated that the membrane potential can be tuned by a charged
wall located near the membrane, so that a membrane can take a heterogeneous
electrostatic potential. We have also shown that surface heterogeneity becomes
important at low net surface charge, large kiL and relatively small, compared to L,
distances. In this case, heterogeneity reduces the repulsive disjoining pressure as
compared with that expected for a uniformly charged wall. In other situations the
patterned surface can be treated as a homogeneous one. Then on the basis of
Langevin dynamics simulations we have veried our theory for weakly charged
surfaces and small kih. However, a discrepancy between the two approaches is
exhibited at large kih and/or strongly charged surfaces. This points out the
importance of the nonlinear effects in the full PB theory.

In our paper, we presented results on the repulsive interaction associated with
a surface formed by alternating stripes of different local charge and a neutral
semi-permeable membrane in contact with a water–electrolyte solution. However,
our results can be easily extended to more complex patterns, relevant to articial
and biological systems, to charged membranes, and polyelectrolyte systems. As
some examples, the heterogeneity may have a dramatic implication on the cell
adhesion since it is known to be controlled by non-specic forces such as long-
range electrostatics.51 Additionally, similar to ref. 52 we propose that the neigh-
bouring charged objects affect the state of the cell membrane surface and cell
interactions, as well as complicated biological processes such as endocytosis and
signalling processes through altering the membrane potential. Finally, the
induced potential could change the conformation of the membrane proteins,
which in turn could affect the ion channels. Note that such complex systems
cannot be solved in an analytical way. Still, we believe that our study suggests a
promising way towards understanding some basic physics underlying the
behavior of these biological systems.
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