

Вениамин Григорьевич Левич

(1917-1987)

1937

НОВЕЙШИЕ ИССЛЕДОВАНИЯ В ОБЛАСТИ КОСМИЧЕСКИХ ЛУЧЕЙ

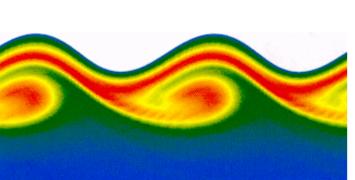
В. Г. Левич, Москва

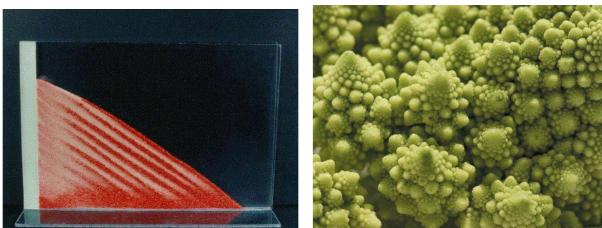
§ 1. Введение

Космические лучи и связанные с ними явления представляют одну из тех областей физики, к которой за последние 10 – 15 лет особенно привлечено внимание исследователей. Последний год ознаменовался рядом значительных успехов, краткому обзору которых посвящена мастоящая статья. 1966 г. Апрель

Том 88, вып. 4

УСНЕХИ ФИЗИЧЕСКИХ НАУК


письма в редакцию


 $546 \ 212 + 538.21$

ОБ ОДНОМ СЕНСАЦИОННОМ ЭФФЕКТЕ

В последнее время в наших популярных журпалах, а также в центральной прессе (газете «Известия») появились сообщения о новом эффекте — влиянии магнитного поля на свойства обычной воды. Утверждается, что вода, прошедшая через постоянное магнитное поле особой геометрической конфигурации, приобретает повые свойства. Эта операция именуется магнитной обработкой воды. При использовании обработанной воды на стенках котлов наблюдается снижение темпа образования и количества появившейся накипи. Пными словами, повышается относительная роль объемного образования паровых пузырей осадков в процессе кипения по сравнению с аналогичным процессом на степках. По мнешню некоторых лиц, этот эффект связан с существенным изменением структуры воды под влиянием магнитного поля. Benjamin Levich Institute for Physico-Chemical HydrodynamicsSteinman Hall, #1MCity College of CUNY140th Street & Convent AvenueNew York, NY 10031Benjamin Levich, Director1979 - 1987

«in March, 1979, he finally accepted the invitation to become the Albert Einstein Professor of Science at City College, where he established the Institute of Applied Chemical Physics and became its first director. It was after Professor Levich's untimely death in January, 1987, that the Institute was renamed, in his honor, as the Benjamin Levich Institute for Physico-Chemical Hydrodynamics.»

ДВИЖЕНИЕ ТВЕРДЫХ И ЖИДКИХ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

А. Фрумкин и В. Левич

1. ДВИЖЕНИЕ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

§ 1. Электрокапиллярные движения ртути

Движения капель ртути под действием электрического тока после ряда наблюдений качественного характера были впервые детально описаны Христиансеном [1]. Христиансен указал, что при прохождении электрического тока через каплю ртути, находящуюся в растворе электролита, происходят изменения разности потенциалов на границе ртуть раствор, приводящие к изменению пограничного слоя. Если ртуть в рас-

ИРИНА АЛЕКСЕЕВНА БАГОЦКАЯ

(1921 – 2007)

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ т. XXI, вып. 9

иотенциалы падающих капель И. Багоцкая и А. Фрумкин

1947

По теории, развитой Фрумкиным и Левичем [1,2], скорость падения капли ртути с радиусом *a* в вязкой среде должна зависеть от электропроводности среды и заряда капли согласно соотношению:

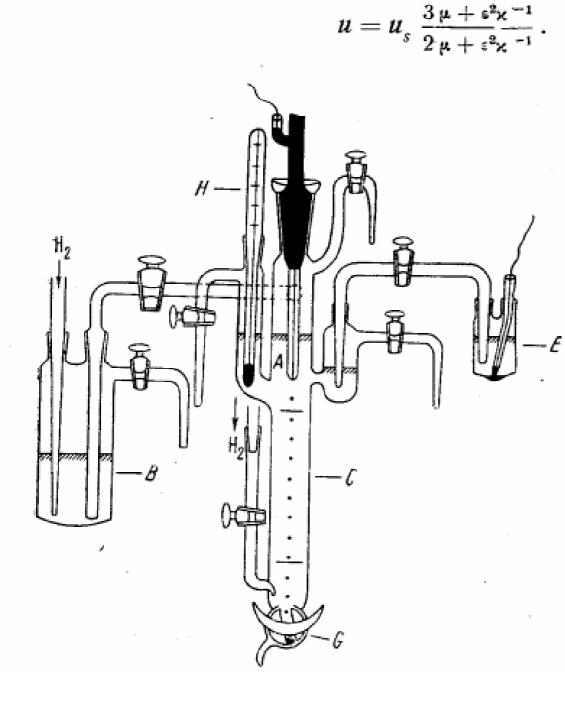
$$U = \frac{2}{3} \frac{(\rho - \rho') g a^2}{\mu} \frac{3\mu + 3\mu' + \epsilon^2 \pi^{-1}}{2\mu + 3\mu' + \epsilon^2 \pi^{-1}}, \qquad (1)$$

где μ и μ' — вязкости среды и ртути, ε — заряд единицы поверхности ртути, х — электропроводность среды, ρ' и ρ — плотности среды и ртути, g — ускорение силы тяжести. Зависимость эта проистекает из влияния

ады Академии Наук СССР 1947. Том LV, № 2

ФИЗИЧЕСКАЯ ХИМИЯ

И. А. БАГОЦКАЯ и академик А. Н. ФРУМКИН


СКОРОСТЬ ПАДЕНИЯ КАПЕЛЬ РТУТИ В ВЯЗКОЙ СРЕДЕ

Скорость падения твердого шарика с радиусом a в вязкой жидкости u_s определяется известной формулой Стокса. Адамар (¹) и Рыбчинский (²) показали, что скорость падения жидкой капли u превышает u_s

$$u = u_s \frac{3\mu + 3\mu'}{2\mu + 3\mu'}, \qquad (1)$$

где μ — вязкость окружающей среды, а μ' — вязкость капли. В случае, когда $\mu \gg \mu'$,

$$u = {}^{3}/_{2} u_{s}.$$
 (2)



Рис. 26. Насыщен. Na₂ SO₄ в глицерине, $\varkappa = 8,1 \cdot 10^{-6}$, $\mu = 7,2$, a = 0,442 мм. Сплошная кривая — $\alpha_{выч}$ по уравнению (5а); пунктирная — $\alpha_{выч}$ по уравнению (7), принимая $\varepsilon_t - \varepsilon_0 = 3,4 \cdot 10^{-6}$; $\circ \circ \circ - a_{ha\delta n}$

іды Академии Наук СССР 1953. Том XCII, № 5

ФИЗИЧЕСКАЯ ХИМИЯ

И. А. БАГОЦКАЯ и академик А. Н. ФРУМКИН

ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ СОЕДИНЕНИЙ НА ПРОНИКНОВЕНИЕ ВОДОРОДА В ЖЕЛЕЗО И МЕХАНИЗМ ВОДОРОДНОГО ПЕРЕНАПРЯЖЕНИЯ

Исследование влияния различных добавок на проникновение выделяющегося при электролизе водорода в металл и изучение передачи перенапряжения через тонкие металлические мембраны могут пролить свет на механизм выделения водорода (¹). Особый интерес представляет случай железа. Рядом авторов изучалось влияние примесей как в самом

ДВИЖЕНИЕ ТВЕРДЫХ И ЖИДКИХ МЕТАЛЛИЧЕСКИХ ЧАСТИЦ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

IV. МАКСИМУМЫ НА КРИВЫХ ТОК — НАПРЯЖЕНИЕ КАПЕЛЬНОГО ЭЛЕКТРОДА

А. Фрумкин и В. Левич

1. Влияние электрокациллярных движений на концентрационную поляризацию

В предыдущих частях этой работы [1] нами была разобрана теория движения жидких и твердых металлических частиц в растворах электролитов в том случае, когда полный ток, текущий на частицу, равен нулю, т. е. в том случае, когда частица не является электродом.

ТАТЬЯНА АЛЕКСАНДРОВНА КРЮКОВА (1906 – 1987)

ТОРМОЖЕНИЕ ТАНГЕНЦИАЛЬНЫХ ДВИЖЕНИЙ ПОВЕРХНОСТИ РТУТНОЙ КАПЛИ РАСТВОРАМИ н-БУТИЛОВОГО СПИРТА

Т. А. Крюкова и А. Н. Фрумкин

Торможение тангенциальных движений поверхности ртутной капли, вытекающей из капилляра капельного катода, различными поверхностноактивными веществами, было рассмотрено в работе Т. Крюковой [1]. Там же дано было объяснение тормозящего действия этих веществ. В настоящей работе на примере торможения движений поверхности ртути растворами н-бутилового спирта мы попытаемся рассмотреть количественную сторону этого вопроса на основании теории, развитой Фрумкиным и Левичем [2].

Доклады Академии Наук СССР 1949. Том LXVII, № 2

ФИЗИЧЕСКАЯ ХИМИЯ

в. левич

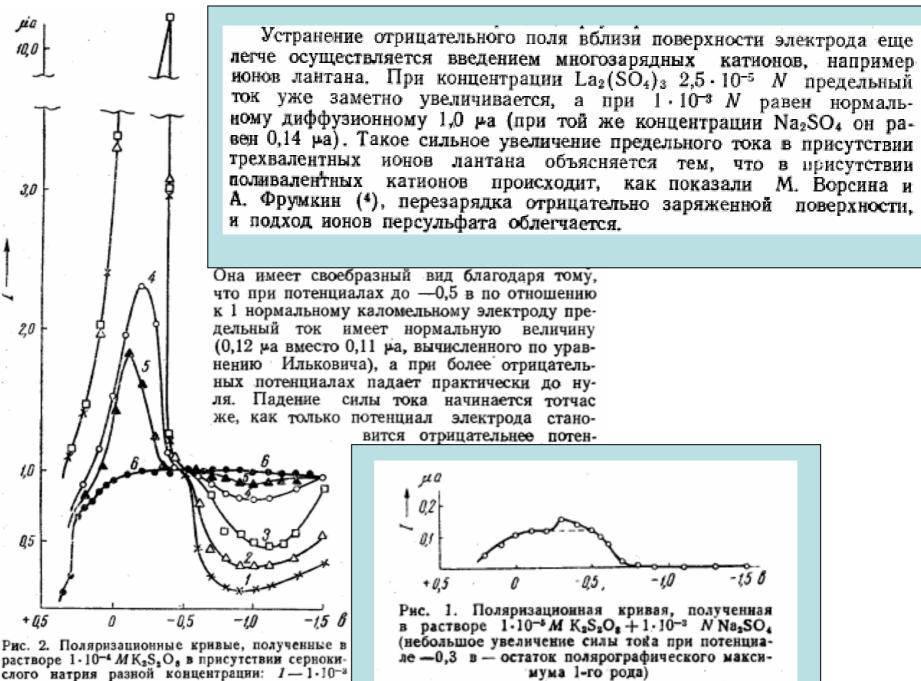
ТЕОРИЯ НЕРАВНОВЕСНОГО ДВОЙНОГО СЛОЯ

(Представлено академиком А. Н. Фрумкиным 21 V 1949)

1. Постановка вопроса и некоторые выводы. Как известно, на поверхности электрода, погруженного в раствор электролита, образуется ионный двойной слой. Роль двойного слоя в процессе прохождения тока чрезвычайно существенна. Однако число теоретических работ по двойному слою сравнительно невелико. Все они посвящены разбору свойств равновесного слоя и не учитывают изменений, вносимых прохождением тока через двойной слой. Тем не менее, качественная картина двойного слоя на поверхности электрода, вытекающая из совокупности теоретических и экспериментальных работ, довольно ясна и может считаться установленной. 3. Сравнение с экспериментом. Значительно позже выполнения настоящих расчетов, но независимо от них, в лаборатории акад. А. Н. Фрумкина Т. А. Крюковой сделаны были измерения тока, текущего на капельный электрод при восстановлении ионов персульфата. Наблюденная картина оказалась сложной и подробно описана Т. А. Крюковой.

Оказалось, что при прохождении через нулевую точку и появлении отрицательного заряда на поверхности электрода наблюдается спад плотности тока с ростом отрицательного потенциала электрода. Пересчет потенциала электрода на потенциал ψ_1 показал, что между плотностью тока и ψ_1 существует связь, которую в первом приближении можно считать экспоненциальной. Однако она не отвечает закону (12), а скорее закону (11) для одновалентных ионов. Это означает, повидимому, что ионы (S₂O₈--), несущие слишком большой заряд, могут достигнуть электрода только путем образования одновалентного комплекса. Возможно, что небольшая часть ионов, достигающих поверхности электрода, при небольшом ψ_1 , является ионами S₂O₈⁻⁻, но с ростом ψ_1 число их становится ничтожным. Добавка поливалентных катионов приводит, в согласии с теорией, к исчезновению эффекта, так что ток оказывается не зависящим от потенциала ψ_1 . Зависимость тока от концентрации электролита следует приближенному закону (13). Таким образом, теоретически предсказанные эффекты фактически наблюдаются на опыте, если токопроводящими ионами являются анионы, и теория находится в качественном согласии с опытом.

Доклады Академии Наук СС СР 1949. Том LXV, № 4


ФИЗИЧЕСКАЯ ХИМИЯ

Т. А. КРЮКОВА

ВОССТАНОВЛЕНИЕ ПЕРСУЛЬФАТА НА РТУТНОМ КАПЕЛЬНОМ КАТОДЕ И ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ЗАРЯДОВ ПОВЕРХНОСТИ ЭЛЕКТРОДА НА ПРОТЕКАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ РЕАКЦИИ

(Представлено академиком А. Н. Фрумкиным 5 II 1949)

При восстановлении персульфата на ртутном капельном катоде происходят своеобразные явления, которые до сих пор не удавалось отчетливо наблюдать при восстановлении других анионов. Ион персульфата восстанавливается на ртутном капельном катоде при потенциале +0,3 в против нормального каломельного электрода по следующей схеме: $S_2O_8^{2-} + 2e \rightarrow 2SO_4^{2-}$. Разряд происходит с большим перенапряжением, так как нормальный равновесный потенциал +2,05 в по нормальному водородному электроду (¹).

 $N \operatorname{Na}_{3} \operatorname{SO}_{4}$; $2 - 3 \cdot 10^{-8} N$; $3 - 1 \cdot 10^{-2} N$; $5 \cdot 10^{-3} N; 5 = 0,1 N; 6 = 1,0 N$

μa

10,0

3,0

2,0

1,0

Ц5

