## ОТЧЕТ ЗА 2010 ГОД

## Е.В.СТЕНИНА, Л.Н.СВИРИДОВА

## Адсорбция супрамолекулярных комплексов и органических соединений с каркасной структурой молекулы на электродах различной природы

Адсорбция дипротонированного криптанда2.2.2. на Hg-электроде











# Таблица. Адсорбционные параметры дипротонированного криптанда 222 на границе ртутного электрода с 0.1 М H<sub>2</sub>SO<sub>4</sub>

| $\varphi_{\rm m}, B$       | ln B <sub>m</sub><br>л/моль | Г <sub>m</sub> * 10 <sup>10</sup><br>моль см <sup>-2</sup> | a <sub>m</sub>    | С <sub>т</sub> ,<br>мкФ<br>см <sup>-2</sup> | С <sub>m2</sub> ,<br>мкФ см <sup>-2</sup> В <sup>-2</sup> | $arphi_{ m N},\ B$ |                          |
|----------------------------|-----------------------------|------------------------------------------------------------|-------------------|---------------------------------------------|-----------------------------------------------------------|--------------------|--------------------------|
| - <b>0.76</b> <sup>1</sup> | 15.8 <sup>1</sup>           | <b>0.77</b> <sup>1</sup>                                   | -2.01             | 10.21                                       | 14.7 <sup>1</sup>                                         | 0.21               | 3.71                     |
| -0.38 <sup>2</sup>         | <b>9.89</b> <sup>2</sup>    | 1.25 <sup>2</sup>                                          | -0.2 <sup>2</sup> | 11.6 <sup>2</sup>                           | 47.3 <sup>2</sup>                                         | 0.12               | <b>3.4</b> <sup>2</sup>  |
| <b>-0.42</b> <sup>3</sup>  | 13.2 <sup>3</sup>           | <b>0.78</b> <sup>3</sup>                                   | -1.5 <sup>3</sup> | 11.1 <sup>3</sup>                           | <b>39.4</b> <sup>3</sup>                                  | 0.14               | <b>4.</b> 1 <sup>3</sup> |

Примечание: Расчет параметров адсорбции проведен с использованием экспериментальных *С,Е*-кривых, снятых с шагом изменения E, равным 0.025B:

<sup>(1), (2)</sup> – от отрицательных значений *E*, при времени выдержки при каждом значении E, равном 3с<sup>(1)</sup> и 32с<sup>(2)</sup>.

(3) – от положительных значений Е при времени выдержки при каждом значении Е, равном 32с

# Сравнение экспериментальных и рассчитанных С,Е-зависимостей



### Сравнение С,Е-зависимостей для дипротонированного криптанда и криптатов катионов металлов





Вещества, адсорбция которых исследована из растворов в ДМСО на ртутном и нанотрубном электродах







### Нанотрубные электроды 1,4 – 0.1 М перхлорат натрия



2,3- криптат натрия



### Рd-Рру-катализатор, [d (Pd)=1.5нм, d (глобул)= 20нм] 34.5% Pd



### ПЛАНЫ

- •1. Адсорбция каркасных, супрамолекулярных соединений на ртутном и нанотрубных электродах.
- •2. Эффекты втягивания катионов цезия в двойной электрический слой.

•3.Синтез композитных полимернонеорганических материалов, их характеризация.