Pt-M AND Au-M BIMETALLIC ELECTROCATALYSTS (M = Pb, Cu, Fe, Co, Ni) PREPARED BY A GALVANIC REPLACEMENT PROCESS

Georgios Kokkinidis

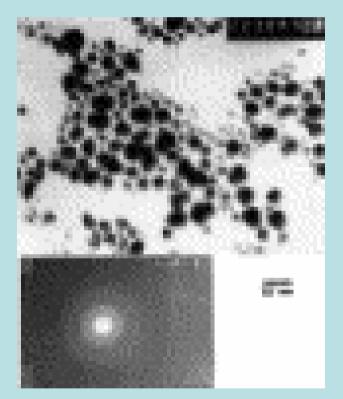
Aristotle University of Thessaloniki (Greece)

FUEL CELL ELECTROCATALYSIS

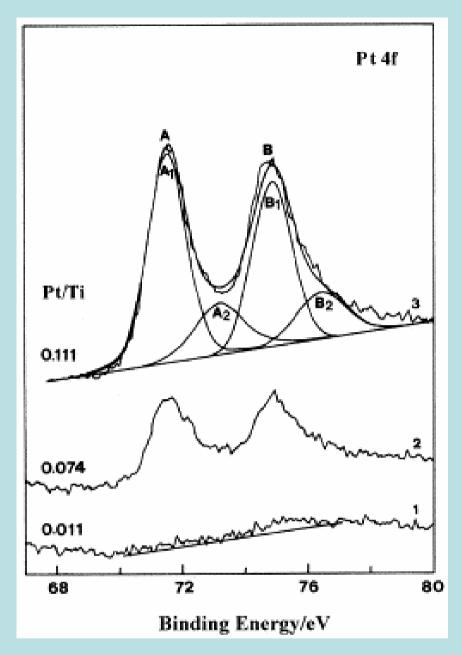
Improvement of the catalytic activity of Pt for fuel cell electrocatalysis.

Modification with ad-atoms – Modes of action

- 1) The third-body mechanism
- 2) The prevention of poison formation
- 3) The bifunctional mechanism
- The modification of the electronic properties of the electrode surface.
- Increase the catalyst utilization


Dispersion of micro- and nano-structured metal particles on porous materials.

- Mostep Procedure (electrodeposition of nonprecious metal and electroless replacement by a precious metal)


ELECTROLESS DEPOSITION OF Pt ON Ti

Immersion of Ti in an aqueous 0.1 M HClO₄ solution containing $2x10^{-3}$ M K₂PtCl₆

 $Ti(bulk) + PtCl_6^{-2} \land Pt^0/Ti + Ti^{IV} + 6Cl^{-1}$

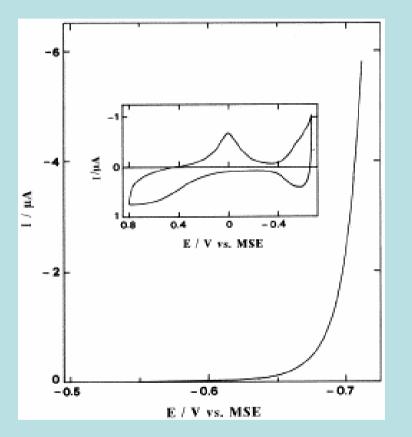

Fig. 2. TEM image and the corresponding diffraction pattern of electroless deposited Pt crystals on freshly polished Ti after immersing it in 0.1 M HClO₄ + $2x10^{-3}$ M K₂PtCl₆ solution for 60 s.

Fig. 3. XPS spectra for Pt 4f obtained from Pt/Ti samples prepared by immersing a freshly polished Ti plate in 0.1 M $HClO_4+2\times10^{-4}$ M K₂PtCl₆ solution for: (1) 5 s; (2) 10 s; (3) 60 s. A and B: original platinum peaks; A1 and B1: deconvoluted platinum peaks; A2 and B2: deconvoluted platinum oxide (PtO) peaks.

HYDROGEN EVOLUTION ON Pt/Ti ELECTRODES

Cyclic voltammogram of the Pt/Ti electrode in 0.1 M $HClO_4$ and the I(E) quasi-stationary polarization curve for the HER in the same solution.

Fig. 4. Quasi stationary I(E) voltammogram for the HER on Pt($t_d = 10$ s)/Ti in aqueous 0.1 M HClO₄ solution. dE/dt = 5 mV s¹.

The inset shows the cyclic voltammogram of the Pt/Ti electrode in 0.1 M HClO₄ ($v = 50 \text{ mV s}^{-1}$).

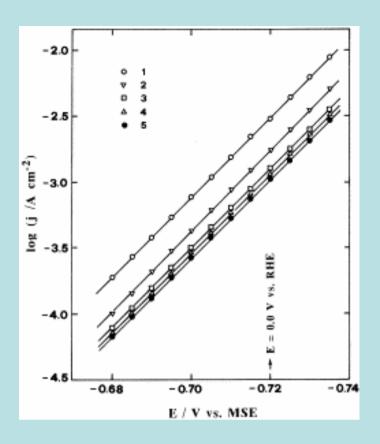
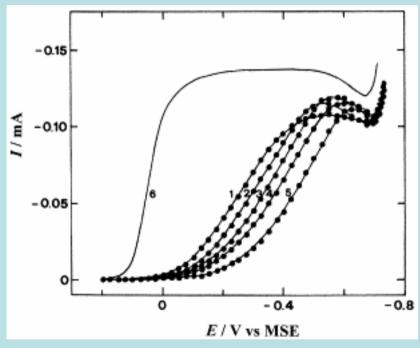


Fig. 5. Tafel plots for HER on Pt/Ti and smooth Pt

electrodes in aqueous 0.1 M HClO₄ solution.


- (1) Pt $(t_d = 2 \text{ s})/\text{Ti}$
- (2) Pt $(t_d = 4 \text{ s})/\text{Ti}$
- (3) Pt $(t_d = 10 \text{ s})/\text{Ti}$
- (4) Pt $(t_d = 60 \text{ s})/\text{Ti}$
- (5) Smooth Pt.

Note

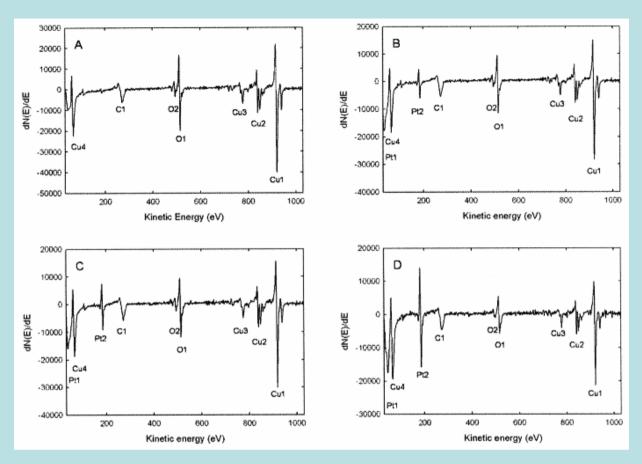
The smaller the platinum particles the higher the catalytic activity is

OXYGEN REDUCTION ON Pt/Ti ELECTRODES

The next system studied was the reduction of oxygen on Ti covered by electroless-deposited Pt in 0.1 M HClO_4 aqueous solution.

Fig. 6. Averaged current–potential curves for oxygen reduction on a Pt/Ti rotating-disc electrode in O₂-saturated 0.1 M HClO₄ $(dE/dt = 20 \text{ mV s}^{-1})$. Rotation frequency f = 18.33 Hz.

- (1) $Pt(t_d = 5 s)/Ti$
- (2) $Pt(t_d = 15 \text{ s})/Ti$
- (3) $Pt(t_d = 20 \text{ s})/Ti$
- (4) $Pt(t_d = 35 \text{ s})/Ti$
- (5) $Pt(t_d = 60 \text{ s})/Ti$
- (5) Smooth Pt


GOLD SUPPORTED Pt ELECTROCATALYSTS FOR O₂ REDUCTION

Two-step procedure:

- ❑ Deposition of a less n oble metal (*i.e* Cu, Pb etc.) electrochemically
- **Deplacement by platinum at open-circuit potential**

 $2Cu^{0}/Au + PtCl_{6}^{-2} \ddot{Y} Pt^{0}/Au + 2Cu^{2+} + 6Cl^{-1}$

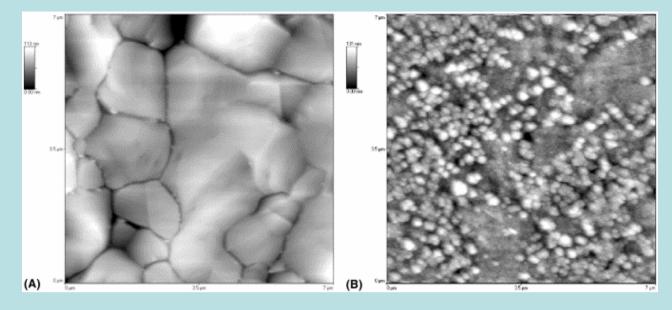
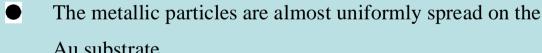

- The time of copper deposition was changed from 3 s to 120 s
- The displacement time with Pt was kept constant equal to 180 s.

Fig. 8. AES spectra for the system $Pt/(Cu_{60s})/Au$ at different immersion times. (A) 0 s; (B) 60 s; (C) 120 s; (D) 180 s.


Note

Even at immersion time of 180 s the Cu amount was not fully displaced by Pt

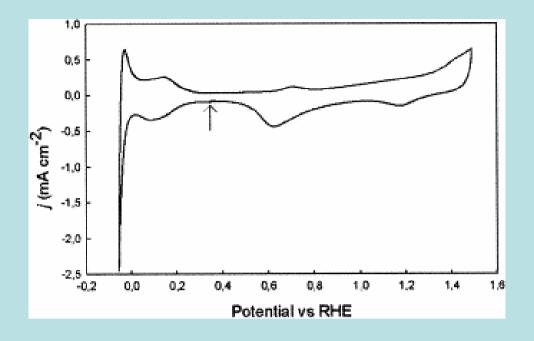
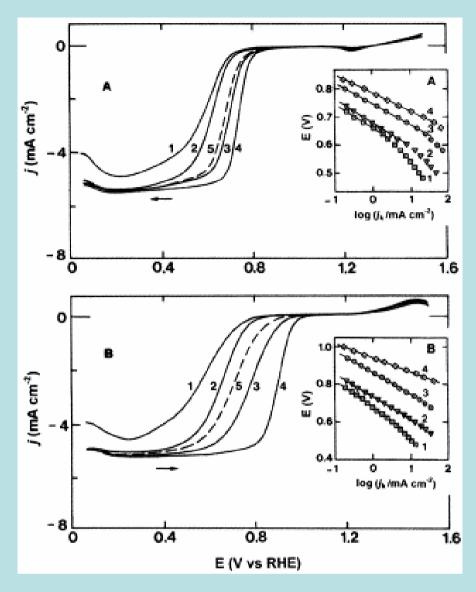
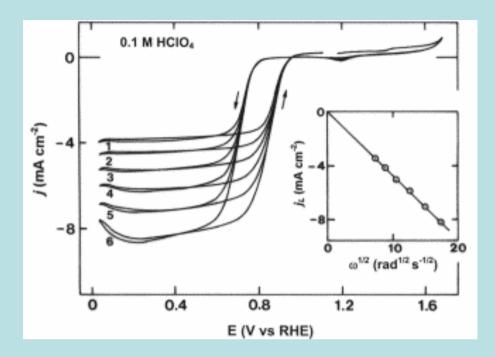


Fig. 9. AFM contact mode images of (A) bare Au and (B) Au covered by Pt deposit. $t_{Cu, dep} = 60 \text{ s}$

 $t_{\rm Pt, \ repl} = 180 \ {\rm s}$



- Au substrate. The size of the particles is about 50 – 100 nm in diameter
- and consists of agglomerated crystallites of much smaller dimensions.


Fig. 10. Cyclic voltammogram of a Pt(Cu)/Au modified electrode in oxygen-free 0.1 M HClO₄ ($dE/dt = 50 \text{ mV s}^{-1}$). $t_{\text{Cu, dep}} = 60 \text{ s}$ $t_{\text{Pt, repl}} = 180 \text{ s}$

➔ The cyclic voltammogram shows typical features for both polycrystalline gold and platinum.

Fig. 11. Current–potential curves for oxygen reduction on Pt(Cu_{xs})/Au rotating-disc electrodes in O₂-saturated 0.1 M HClO₄ (d*E*/d*t* = 20 mV s⁻¹). Rotation rate f = 1100 rpm. $t_{Cu, dep}$: (1) 3 s; (2) 10 s; (3) 40 s; (4) 60 s; (5) 120 s $t_{Pt, repl} = 180$ s

The insets show mass-transport corrected Tafel plots.

Fig. 12. Current–potential curves for oxygen reduction on Pt(Cu)/Au rotating-disc electrodes in O₂-saturated 0.1 M HClO₄ (d*E*/d*t* = 20 mV s⁻¹). Rotation frequency: f = (1) 8.33; (2) 12.5; (3) 18.33; (4) 25; (5) 33.33; (6) 50 Hz. $t_{Cu, dep} = 60 s$ $t_{Pt, repl} = 180 s$ The inset shows plot of j_L vs. $\omega^{1/2}$.

- The catalytic activity of the Pt(Cu)/Au electrode for oxygen reduction depends on the amount of copper deposited and exchanged by Pt.
 The half-wave potential increases as the amount of copper is increased, until it reaches a maximum value for 60 s of copper deposition.
- A remarkable hysteresis was observed between the forward (negative) and the backward (positive) potential scan.
 Reduced platinum clusters exhibit higher catalytic activity than oxidized platinum clusters.
- The catalytic activity of reduced Pt(Cu)/Au surface is significantly higher than the activity of reduced smooth polycrystalline Pt surface.

Pt-M AND Au-M BIMETALLIC ELECTROCATALYSTS

(M = Pb, Cu, Fe, Co, Ni) PREPARED BY A GALVANIC

REPLACEMENT PROCESS

G.Kokkinidis, S.Sotiropoulos

Principle of electroless replacement of metals "transmetalation"

$$M_{noble}^{n+}$$
 + n/m M \rightarrow M_{noble} +n/m M^{m+}

 $\begin{array}{cc} M_{noble}^{n+} + n \ e^{-} \leftrightarrow M_{noble} & E^{0}_{noble} & E^{0}_{noble} - E^{0} > 0 \\ M^{m+} + m e^{-} \leftrightarrow M & E^{0} \end{array}$

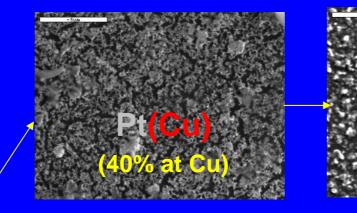
e.g.

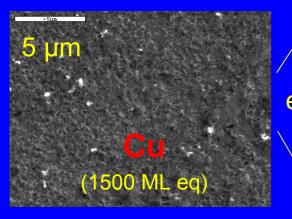
 $\begin{array}{l} \text{PtCl}_{6}^{2-} + 2 \text{ M} \rightarrow \text{Pt} + 2 \text{ M}^{2+} + 6 \text{ Cl}^{-} \\ \text{M: Pb, Cu, Co, Ni} \\ \text{2 AuCl}_{4}^{-} + 3\text{M} \rightarrow 2 \text{ Au} + 3 \text{ M}^{2+} + 8 \text{ Cl}^{-} \\ \text{PtCl}_{6}^{2-} + 4e^{-} \leftrightarrow \text{Pt} + 6\text{Cl}^{-} \text{ E}^{0} = +0.744 \text{ V} \\ \text{AuCl}_{4}^{-} + 3e^{-} \leftrightarrow \text{Au} + 4\text{Cl}^{-} \text{ E}^{0} = +1.002 \text{ V} \\ \end{array}$ $\begin{array}{l} \text{Cu}^{2+} + 2e^{-} \leftrightarrow \text{Cu} \quad \text{E}^{0} = +0.340 \text{ V} \\ \text{Pb}^{2+} + 2e^{-} \leftrightarrow \text{Pb} \quad \text{E}^{0} = -0.126 \text{ V} \\ \text{Ni}^{2+} + 2e^{-} \leftrightarrow \text{Ni} \quad \text{E}^{0} = -0.257 \text{ V} \\ \text{Co}^{2+} + 2e^{-} \leftrightarrow \text{Co} \quad \text{E}^{0} = -0.277 \text{ V} \end{array}$

favourable exchange

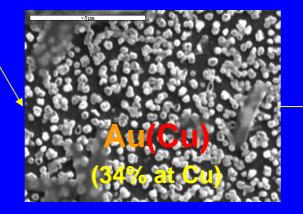
Characteristics of the presented method variant

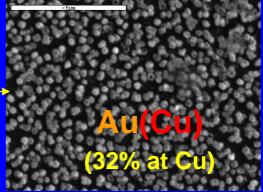
Thick electrodeposits of M (Pb, Cu, Co, Ni) are electrodeposited (equivalent of 300-1500 flat ML) on glassy carbon (GC) substrates:


- avoid complete M dissolution; ensure good GC coverage
- form Pt or Au-shell M-containing-core particles

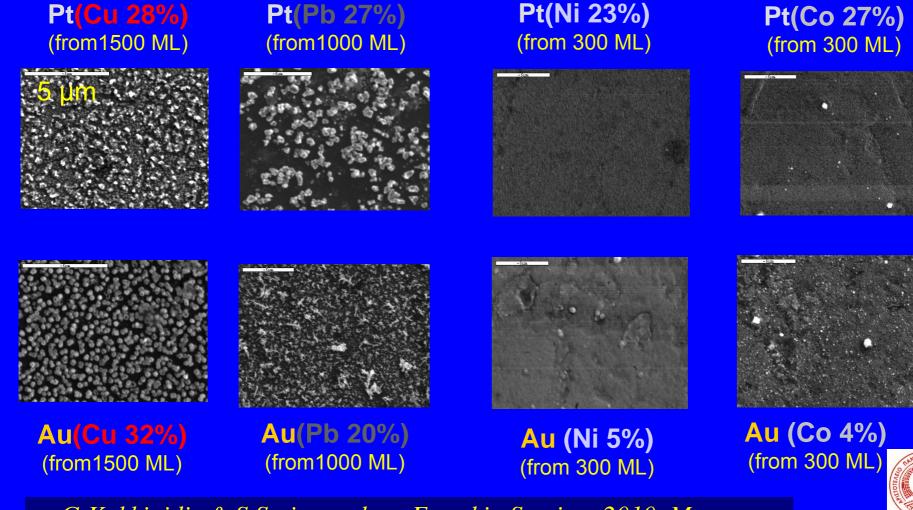

(use the method for catalysts with non-noble/noble metal interactions)

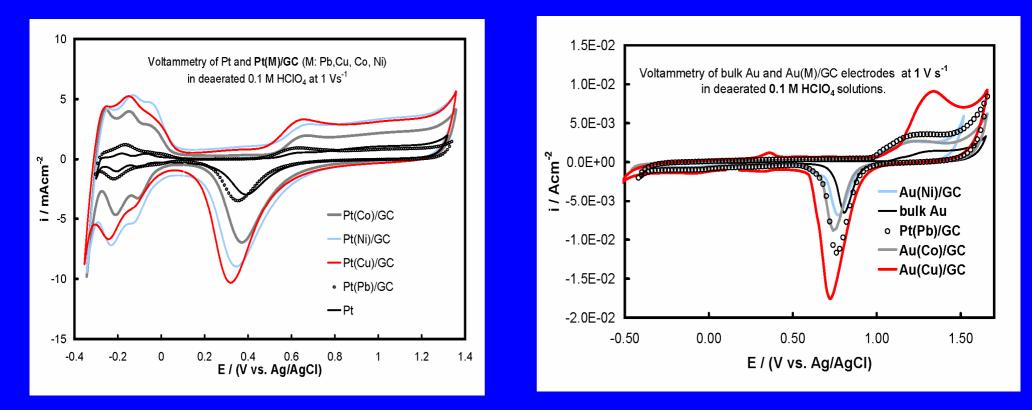
- tune the composition of the Pt-M, Au-M bi-metallic catalysts.
- Electrochemical treatment (positive potentials):
- ensure that only particles with defect-free Pt or Au shells remain
- Room temperature during all process steps (no annealing):
- skip energy and labour intensive step
- alloy formation at low temperature?


SEM and EDS of indicative M, Pt(M) and Au(M) deposits



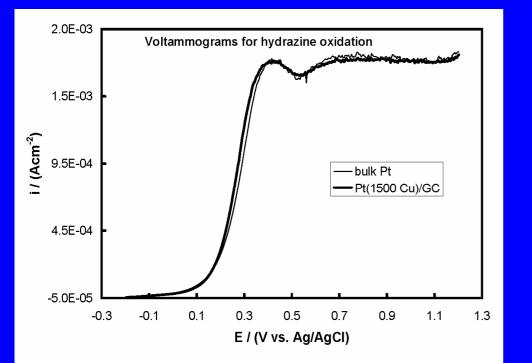
exchange

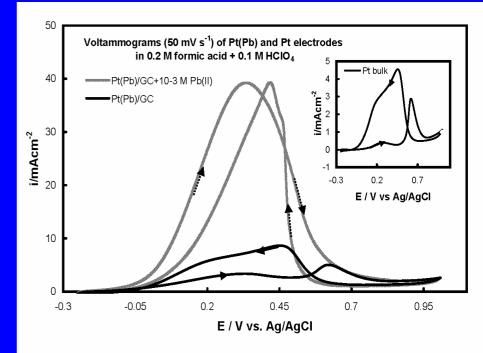




SEMs of M, Pt(M) and Au(M) tested

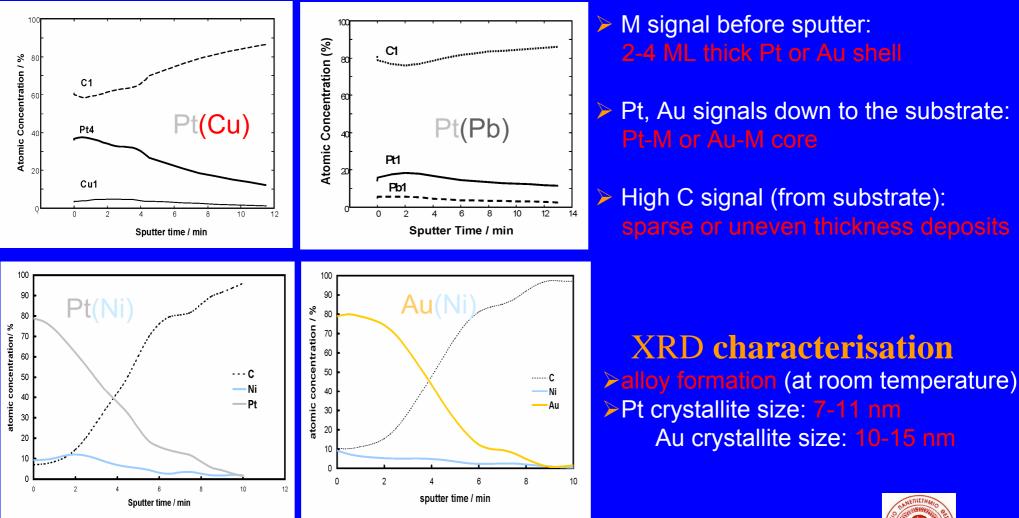
Electrochemical characterisation-I




Surface electrochemistry same as of bulk Pt and Au: only Pt or Au on the surface

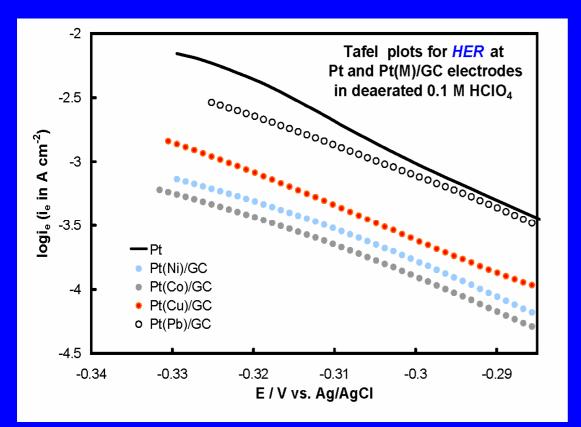
Electroactive surface areas: 2-8 - fold increase from geometric area

Electrochemical characterisation-II


Hydrazine oxidation on Pt(Cu)

Formic acid oxidation on Pt(Pb)

Cu UPD would hinder hydrazine oxidation: Cu does <u>not re-deposit</u> from the core to the Pt shell
 Pb UPD would catalyze formic oxidation: Pb does not re-deposit from the core to the Pt shell



Sputter-etch AES characterisation

Hydrogen evolution reaction (HER)

unaffected HER at Pt(Pb):

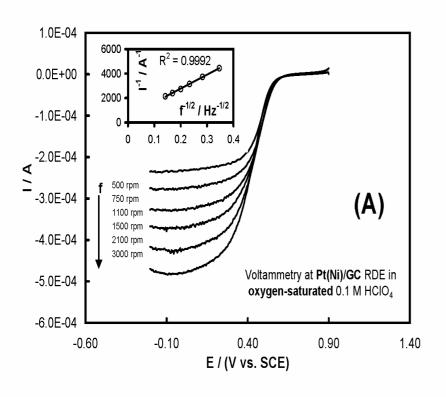
no DFT predictions; lower Wegner-Scheizer radius but higher Pauling electronegativity suppression of HER at Pt(Co), Pt(Ni) and Pt(Cu): weakening of the Pt(M)-H_{ads} bond strength

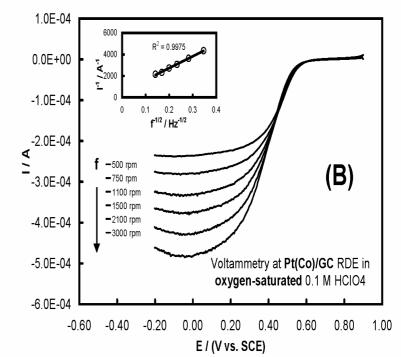
~ d-band center (ϵ_d) lowering due to strain and ligand effects

(DFT predictions by Nørskov and coworkers; experimental evidence)

hydrogen binding energy trends

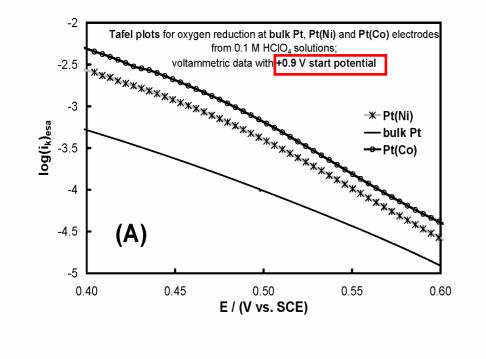
(DFT predictions by Mavrikakis and coworkers)


candidates for hydrogenation reactions


(intermediate M-H bond strength)

Oxygen reduction reaction (ORR)

Pt(Ni) /GC

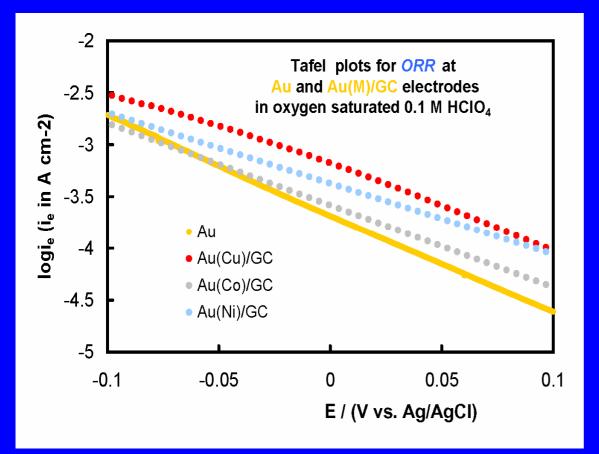


Pt(Co) /GC

Oxygen reduction reaction (ORR)

* Depending on start potential and the amount of oxides initially present; when +1.2 is used, a slight decrease is observed. **promotion* of ORR** at Pt(Co), Pt(Ni):

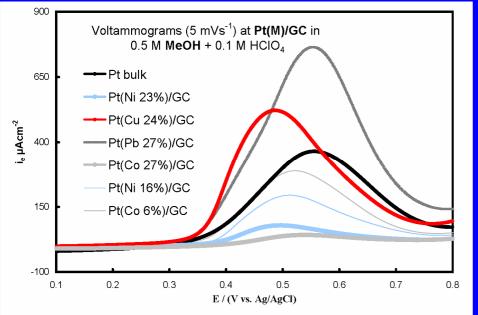
// extensive literature on similar Pt-shell/Pt₃M **alloy** catalysts (both experimental and DFT results)


Pt ϵ_d down-shift due to larger ligand and strain effects by **non-alloyed M** regions in the core

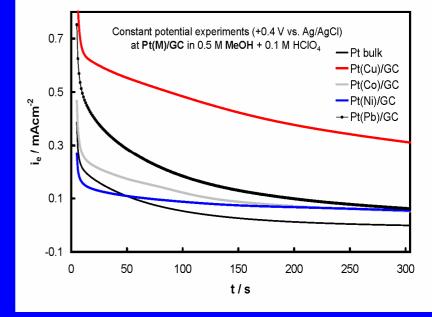
- Markovic, Adzic, Mavrikakis: decrease of Pt-O strength.
- Watanabe, Sotiropoulos:

increase of O-O scission.

Oxygen reduction reaction (ORR)

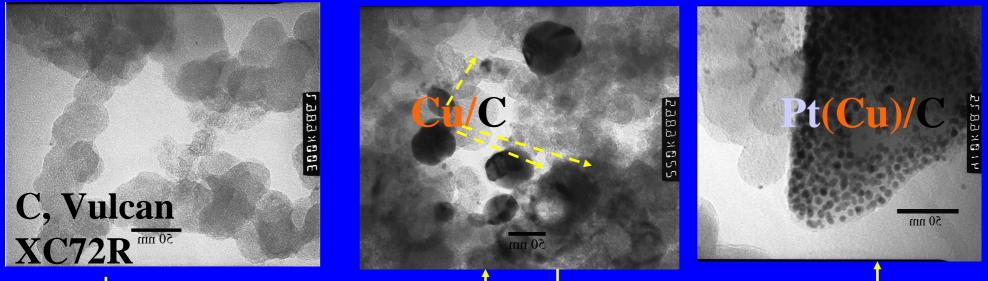


enhancement of ORR at Au(Cu), Au(Ni) and Au(Co):


extraordinary properties (increased molecular oxygen adsorption) of very small particles or very thin films of Au

Methanol oxidation reaction (MOR)

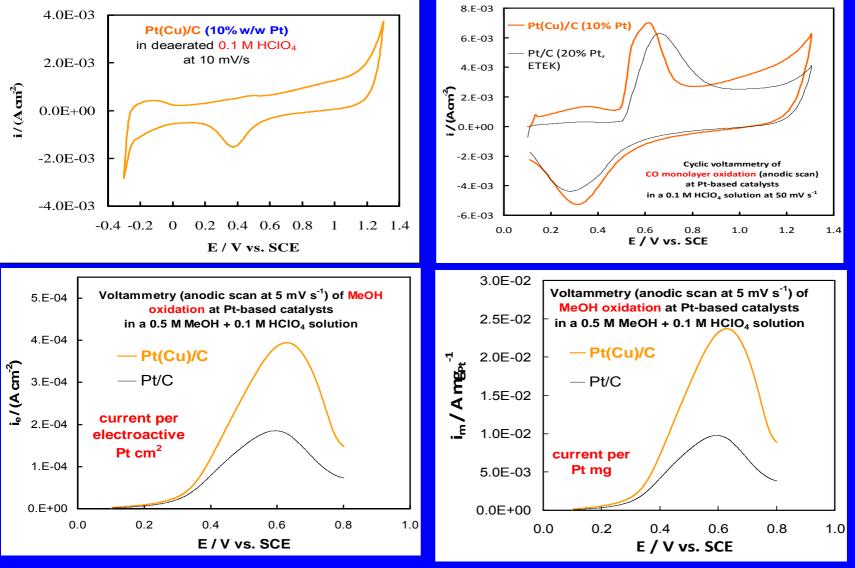
- enhancement of MOR at Pt(Cu), Pt(Pb)
- decrease at Pt(Ni), Pt(Co)
- (*≠*literature for alloys)


 enhancement of MOR short term stability at Pt(Cu), Pt(Pb), Pt(Ni), Pt(Co)
 (~literature for tolerance to CO poisoning)

Interplay between CO poisoning and MeOH chemisorption

Pt(Cu) : moderate ε_{d} downshift and adsorption affinity \rightarrow best performance

Towards the application of the method to practical catalysts


Impregnation-Wet reduction (NaBH₄) **Transmetalation** (K₂PtCl₆)

TEM micrographs of Vulcan XC72R carbon, Cu/C precursor catalyst,

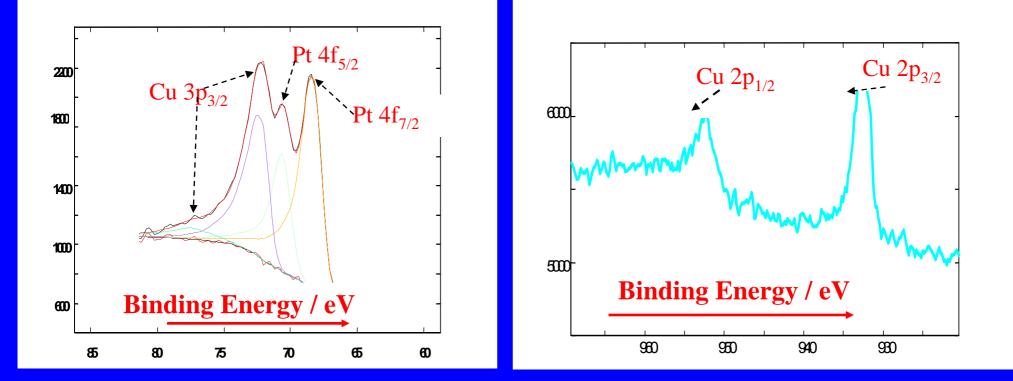
and Pt(Cu)/C catalyst.

Towards the application of the method to practical catalysts

Summary / Potentialities

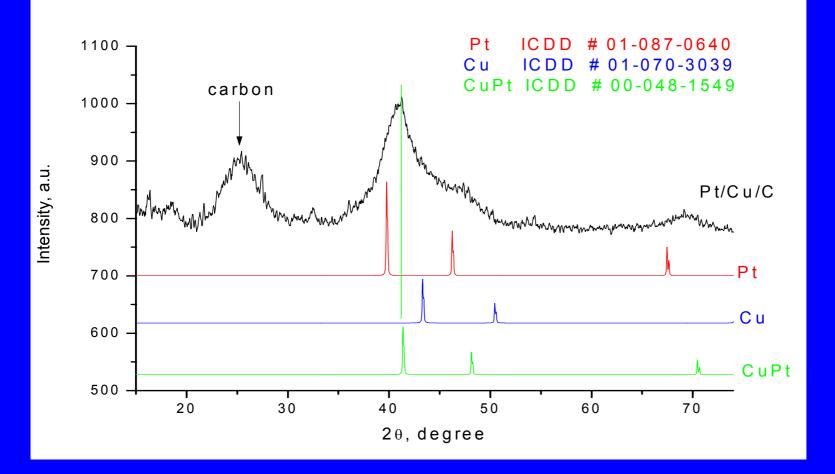
Transmetalation can be used for the production of catalysts with a **Pt (or Au) shell** and a **bimetallic Pt-M (or Au-M) core** (M: Pb, Cu, Co, Ni,...)

- Two step, low temperature modification of GC support electrodes
- One-step, low temperature modification of carbon powders

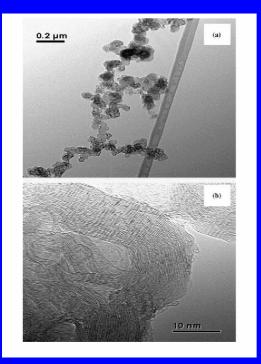

Pt(M) and Au(M) showed modified catalytic activity even without annealing

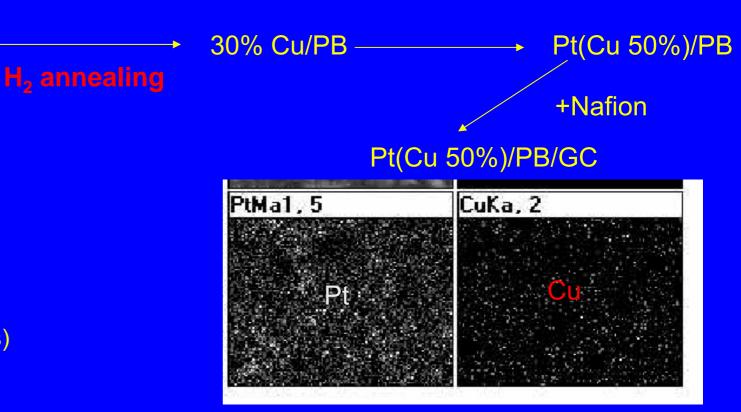
- Pt(M) suppresed HER (potential for hydrogenation reactions)
- Pt(M) enhanced ORR
- Pt(M) improved CO tolerance for MOR (especially Pt(Cu))
- Pt(M) improved BOR ; Pt-Au(M) mixed catalysts possible

SUPPLEMENTS



XPS spectra of the Pt(Cu)/C catalyst in the low and high energy ranges.




XRD spectrum of the Pt(Cu)/C catalyst.

Towards the application of the method to practical catalysts

Pure Black Carbon (PB) (Barsukov and co-workers)

G.Kokkinidis & S.Sotiropoulos, Frumkin Session, 2010, Moscow

Impregnation

Pt and Au shell - bimetallic core (Pt-M, Au-M) electrocatalysts Towards the application of the method to practical catalysts 20 Voltammetric response (at 5 mV s⁻¹) of a Pt(Cu)/Pure Black C electrode at +0.4 V vs. Ag/AgCl Voltammetry of Pt(Cu)/Pure Plack Carbon 3 in 0.5 M MeOH +0.1 M HCIO₄ in deaerated acid at 10 mV s⁻¹ 15 2 i_g / mAcm⁻² 1 i /mAcm⁻² 10 0 10 mA mg⁻¹ Pt -1 5 -2 -3 -4 0.1 0.3 0.5 0.7 -0.35 0.15 0.65 1.15 E / V vs Ag/AgCl E / V vs Ag/AgCI 5 Chronoamperometric response of a Pt(Cu)/Pure Black C electrode at +0.4 V vs. Ag/AgCl in 4 0.5 M MeOH +0.1 M HCIO₄ i_g / mAcm⁻² З 2 1 0 0 50 100 150 200 250 300

t/s

