ЭЛЕКТРОХИМИЧЕСКИЕ СУПЕРКОНДЕНСАТОРЫ ^и ЕМКОСТНАЯ ДЕИОНИЗАЦИЯ ВОДНЫХ РАСТВОРОВ

Вольфкович Ю.М.

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН **«Нет ничего практичнее хорошей теории»**. Густав Кирхгоф

ФУНДАМЕНТАЛЬЫЕ ОСНОВЫ ЭЛЕКТРОХИМИЧЕСКИХ СУПЕРКОНДЕНСАТОРОВ И ЕМКОСТНЫХ ДЕИОНИЗАТОРОВ:

1) ТЕОРИЯ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ

2) ФИЗИЧЕСКАЯ ХИМИЯ КАПИЛЛЯРНЫХ ЯВЛЕНИЙ В ВЫСОКОДИСПЕРСНЫХ УГЛЕРОДНЫХ НАНОМАТЕРИАЛАХ.

ДЛЯ ЕМКОСТНЫХ ДЕИОНИЗАТОРОВ ТАКЖЕ: 3) ФИЗИКО- ХИМИЧЕСКАЯ ГИДРОДИНАМИКА «ЭКОНД» Пуск двигателей автомобилей, тракторов, локомотивов, Москва стационарных и судовых двигателей и т.п. в в любых климатических условиях или от разряженной АБ

Конденсаторная система ____пуска (КСП)

Тип Bec P_{max}, C, U, Объем, I_{max.}, ИКЭ, ИКЭ, Примечания дм³ B Φ кВт A кДж/В КГ 25/1414 255 16,3 2300 11,4 27,0 Пуск двигателей легковых и грузовых автомобилей, 28 2800 40/28100 39,2 15,0 32,0 лодочных моторов, тракторов, автобусов, комбайнов, 28 38,0 60/28 160 65,3 4600 18,7 рефрижераторных вагонов. 40/64 **64** 23,0 93,8 2125 17,2 38,0 Пуск двигателей локомотивов, дизельных поездов. 96 40/96 8,50 86,4 1300 16,2 34,0

The main advantages of the DesEl System over conventional water treatment technologies are:

- 1. No sub 15 micron-filtration required.
- No sustained concentrate leading to the formation of precipitates and fouling.
- Extremely high water recoveries coupled with high ion removal efficiencies.
- 4. Long life cycle of capacitor materials.
- 5. Low maintenance.
- No continued addition of salts to treated water as with ion exchange.
- Chemically stable components preclude the introduction of foreign materials into the treatment stream.
- Readily removes problem contaminants such as nitrate, perchlorate and arsenic.
- Can be designed to preferentially remove contaminants without complete deionization of the water stream.
- Can be operated at various levels of ion removal and water recovery efficiencies.

Figure 2. DesEl Bench Scale Test Unit

Форма разрядно-зарядных гальваностатических кривых электрохимического конденсатора

Схема устройства и работы двойнослойного конденсатора (ДСК)

Двойнослойные конденсаторы. Основы

Характеристики различных перезаряжаемых устройств

Устройства	Толщина обклад- ки, нм	Удельная мощ- ность, Вт/л	Удельная энер- гия, Втч/л	Время пере- заряд а	Количест- во цик- лов
Аккумуляторы	-	10 ²	50 - 250	10³ - 10⁴	3x10 ² - 2x10 ³
Псевдоконденса- торы	-	$10^2 - 3x10^2$	10 - 50	10 ² - 10 ³	10 ⁴ -10 ⁶
Двойнослойные конденсаторы (ДСК)	0.3 – 1	10³ - 10⁴	1 - 20	10 ⁻² - 10 ⁰	10 ⁵ -10 ⁶
Электролитические конденсаторы	10 ³	10 ⁴ - 10 ⁵	3x10-2	10 ² - 10 ³	106
Бумажные конденсаторы	2x10 ⁴ -4x10 ⁴	> 10 ⁷	<10-3	< 10 ³	>10 ⁶

Диаграмма Регоне для перезаряжаемых электрохимических устройств: зависимости удельной мощности от удельной энергии

Преимущества ДСК перед аккуммуляторами :

- Практически идеальная обратимость.
- Практически неограниченная циклируемость: 100000-10000000 циклов.
- Очень высокая удельная мощность:
 - 1 10 кВт/л.
- Малое время заряда: секунды, минуты.
- Очень широкий температурный диапазон: -50оС +50оС.
- Высокая надежность. Большой срок службы: 10 лет и более.
- Полная герметичность и отсутствие необходимости обслуживания.
- Отсутствие токсичных компонентов. Экологическая чистота.
- Отсутствие драгоценных и цветных металлов, только для токоотводов.
- Определение величин оставшейся емкости из величины напряжения.

Некоторые области применения суперконденсаторов:

СК силового типа

- 1. В пусковых конденсаторных системах автомобилей и тепловозов для увеличения ресурса аккумулятора.
- 2. В комбинации с двигателями внутреннего сгорания в целях рекуперации энергии торможения автомобиля и тепловоза.
- 3. В устройствах импульсной техники: электроприводы, рентгеновские аппараты, аппараты точечной сварки.

СК энергетического типа

- 4. В комбинации с топливными элементами в электромобиле.
- 5. Буферные накопители энергии для сглаживания пиковых нагрузок электрических подстанций
- 6. В источниках бесперебойного питания, например, в компьютерах.
- 7. В энергетических и информационных портативных устройствах.и др.
- 8. Замена аккумуляторных батарей в электрическом транспорте по заданному маршруту в том числе в закрытых помещениях (магазины, склады, оранжереи, животноводческие фермы и птицефермы, экологические зоны и т.п.).

$$\frac{\partial J^{+}}{\partial x} = \frac{\partial}{\partial x} \left(D^{+} \frac{\partial c}{\partial x} + D^{+} c \frac{\partial \tilde{E}}{\partial x} \right) = \frac{Si(\tilde{E})}{F}, \quad (4)$$

$$\frac{\partial J^{-}}{\partial x} = \frac{\partial}{\partial x} \left(D^{-} \frac{\partial c}{\partial x} - D^{-} c \frac{\partial \tilde{E}}{\partial x} \right) = \frac{Si(\tilde{E})}{F}.$$
 (5)

$$J^{-} = -J^{+}.$$
 (6)

$$\frac{\partial c}{\partial x} = -\left(\frac{D^+ - D^-}{D^+ + D^-}\right)c\frac{\partial \tilde{E}}{\partial x} = (t^- - t^+)c\frac{\partial \tilde{E}}{\partial x}, \qquad (7)$$

$$D^{j} = t^{j} \kappa R T / c F^{2}, \qquad (8)$$

$$2t^{+}t^{-}\kappa\frac{\partial^{2}E}{\partial x^{2}} = Si(E), \qquad (9)$$

i = Cs
$$\partial E / \partial \tau$$
,

Cs - емкость ДЭС, т - время.

Ю.М. Вольфкович, В.М. Мазин, Н.А. Уриссон, Электрохимия, 34 (1998) 825.

Разрядно-зарядные кривые,рассчитанные (1) и экспериментальные (2); (а) и(b) : 10 N KOH, (а): 0,03 и (б): 0,16 А/см2 ; (в): 1 M LiAIF4 + ГБЛ , 0,016 мА/см2.

Ю.М. Вольфкович, В.М. Мазин, Н.А. Уриссон, Электрохимия, 34 (1998) 825.

Максимальная электростатическая удельная энергия ДСК q q $Amax = \int E dq = \int q / C dq$ 0 0 $C = q / \Delta U$

∆ U, q - максимальные напряжение и,заряд

$$A = (1/2) C [(Umax)^{2} - (Umin)^{2}]$$
$$A_{max} = (1/2) C (Umax)^{2}$$

Удельная энергия в зависимости от тока разряда в электролитах: 1 - 35% H2SO2, 2 - 1N KOH, 3 - 1 M LiAIF4 + ГБЛ, I = 10 мА/см2

Ю.М. Вольфкович, В.М. Мазин, Н.А. Уриссон, Электрохимия, 34 (1998) 825.

Ионнные жидкости - электролиты ДСК

ILs where cation is ethyl-methylimidazolium (EMI) with different anions

Использование ионных жидкостей

в качестве электролита обеспечивает существенное расширение окна потенциалов и значительное увеличение удельной энергии энергетического суперконденсатора. На рисунке для сравнения приведены потенциодинамические кривые ОСУНТ для электролита в виде ионной жидкости (метил-3-бутилимидазолий тетрафторборат) и для сернкислотного электролита.

Поверхностные углеродсодержащие группы

Попытки охарактеризовать относительные количества различных функциональных групп на ОУ в связи с их нонообменными свойствами делались во многих работах. Так, в [107, 106] сделан вывод о том, что катконный обмен в водных растворах на фенолальдегидном угле, окисленном воздухом, обусловлен кислотными группами трех типов — карбоксильными, фенольными и относительно свободными ионами водорода.

В работах Бема и сотрудников, обобщенных в [57], для характеристики поверхностных групп угли титровали основаниями различной силы — NaHCO₃, Na₃CO₃, NaOH и C₂H₃ONa, считая, что бикарбонат натрия нейтралязует наиболее сильнокислотные центры, сода — их же и слабокислотные карбоксильные группы, щелочь — вдобавок и фенольные, тогда как этилат натрия может взаимодействовать даже с еще менее кислыми кислородосодержациями группами, например спиртовыми гидроксилами. На основании анализа этих данных, в сочетании с результатами химического анализа, был сделан вывод о существовании на OУ по крайней мере четырех типов поверхностных структур:

Авторы считали, что при недостатке воды при окнсленни вероятнее всего будет образовываться группировка (а), главной частью которой является своеобразный поверхностный ангидрид карбоновой кислоты (см. также [64, 8], 82]). В результате гидратации группировка (а) переходит в структуру (б), включающую карбоксильную группу, фенольные гидроксилы и четырехчленное лактонное кольцо, которое при соответствующих условиях, например под действием соды, может разыкаться с перегруппировкой в хиноидную структуру и образованием еще одной карбоксильной группы. Этому обстоятельству авторы приписывают, в частности, неодинаковую кислотность поверхностных карбоксильных групп. И, наконец, структуры (е) и (г) содержат типичные карбоксильные и фенольные кислотные группировки, более или менее ионизированые. И. А. Кузин и его сотруданки [79, 80, 212] тоже показали, что

и. А. Кузин и его сотрудники (19, 80, 212) тоже показали, что на ОУ содержатся фенольные и карбоксильные группы и сильнокислотные группировки, причем относительное количество их зависит от способа и степени окисления.

В работах [15, 93] даются похожие, но несколько иные схемы поверхностных группировок ОУ:

Приведенные схемы основаны на большом и разнообразном экспериментальном материале по изученню химической природы поверхности окисленных углеродных материалов, но они в общем не могут считаться вполне определенными и окончательными. Хотя основной структурный элемент всех углей, как уже упоминалось, представляет собой систему конденспрованных ароматических колец и связанных с ними цепочек линейно полимеризованного углерода, несущих разнообразные функциональные группы, все же на углях нельзя выделить регулярные образования, подобные элементарной ячейке синтетической ионообменной смолы и пока нет способов, позволяющих достоверно определить взаимное расположеиме разлечные далее (например, на стр. 131), схемы могут рассматриваться лишь как более или менее вероятные приближения к истинной картине поверхности окисленных углей.

При исследовании ионообменников количество и качество отдельных типов функциональных групп, способных к обмену ионов, чаще всего оценивают на основании анализа кривых титрования. По виду этих кривых (pH раствора как функция количества добавленной щелочи или кислоты, зависимость количества поглощенных иоков — абсолютного или относительного — от pH) можно при-

26

27

Плотный ДЭС (Гельмгольца)

Зависимости тока от потенциала для: а) псевдоконденсатора; б) идеального ДСК

Двойнослойная емкость и фарадеевская псевдоемкость АУ в конц. серной кислоте

А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия. 44 (2008) 1343.

Механизмы малообратимого и обратимого процессов (C6H):

А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия. 44 (2008) 1343.

Схематичное изображение структуры глубоко заряженного угольного электрода

АВТОМАТИЗИРОВАННЫЙ ЭТАЛОННЫЙ ПОРОМЕР, Porotech, Canada

Yu. M. Volfkovich, I.A. Blinov, V.E. Sosenkin, US Patent 6,298,711, 2001.

Зависимость емкости, полученной из данных импеданса, от частоты при потенциалах, В (о.в.э.): *1* – -0,1; *2* – 0,0; *3* – 0,1; *4* – 0,2; *5* – 0,3; *6* – 0,4; 7 – 1,0.

А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия, 43, (2007) 1273.

Лестничная эквивалентная схема

А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия, 43, (2007) 1273.

Структура углеродных однослойных нанотрубок (СЭМ)

Обратимость процесса заряжения ДЭС в углеродных наноматериалах

Структура графенов (ТЭМ)

Псевдоконденсаторы. Вольтамперограммы для плёнки RuO₂ в 1M H₂SO₄

Псевдоконденсаторы. Циклическая вольтамперограмма для полианилина в 1N H2SO4

Композитные ДСКпсевдоконденсаторы

Composite PAn- base – MWNT

SEM images of powder of (a) pure EB powder and (b) EB–MWNT composite.

X-ray diffractograms of powder materials of EB, EB–MWNT and MWNTs.

Current collector

Сопоставление расчетной (1) и экспериментальной (2) разрядных кривых для соли ПАНВF4 1 M Li BF4 в ГБЛ, I = 2 мА/ см2.

Yu. M. Volfkovich, A. G. Sergeev, T. K. Zolotova, O.N. Efimov, E.P. Krinichnaya, Electrochim. Acta, 44 (1999) 1543.

Конденсатор на основе производных политиофена (Лос Аламосская лаб. США)

Figure 4. Pulsed discharge performance of a single-cell PFPT ultracapacitor: variation of cell voltage during 2.7×10^6 eycles of 5 ms discharge pulse at 100 mA/cm² followed by 10 mA/cm² charging to 2.8 V and holding the voltage for 100 ms.

Гибридный суперконденсатор: C/ H₂SO₄/ PbSO₄ ЗАО «ИНКАР» - ИЭЛ РАН

- 3 токоотвод отрицательного электрода,
- 4 отрицательный электрод,
- 5 положительный электрод,
- 6-пористый сепаратор

Yu.M. Volfkovich, P. Shmatko, US Patent 6,628,504 (2003).

Основные характеристики гибридного конденсатора ЗАО «ИНКАР» - ИЭЛ РАН

- Удельная весовая энергоемкость: 15 20 Втч/кг.
- Максимальное напряжение разряда: 2,2 В.
- Внутренннее сопротивление:3 5 мОм.
- Цклический ресурс:10000 циклов
- Время заряда: 20- 30 мин.
- Диапазон рабочих температур:
- -40 ÷ +60 °C

Емкостной деионизационный метод опреснения и очистки воды

The Water Crisis

Serious shortages now in Middle East and Africa. World Bank projects 2.5 billion people by year 2025 will not have access to clean drinking water.

Основные применяемые способы деионизации водных растворов:

- Дистилляция

- Электродиализ

- Обратный осмос

Емкостное деионизационное обессоливание водных растворов

Shematic representation of adsorption – regeneration capacitive deionisation set

Fig. 12. Schematic representation of an electrochemical adsorption-regeneration cell. Reprinted with permission from Farmer et al. [48] and the American Chemical Society.

Установка Samsung Electronics для деионизации водных растворов

Модель динамической ячейки для деионизации водных растворов

Наша модель для деионизационной ячейки Samsung Electronics Co.

The model 2D

Typical Charge-Discharge Curve

Уравнения для динамической ячейки

$$C_{s} \frac{\partial \Phi - \Phi_{c}}{\partial t} = \frac{\partial}{\partial x} \left(k_{E} \frac{\partial \Phi}{\partial x} \right) + \frac{\partial}{\partial x} \left(k_{E} (t_{+} - t_{-}) \frac{RT}{F} \frac{\partial \log c}{\partial x} \right)$$
$$\mathcal{E}_{E} \frac{\partial c}{\partial t} + v_{y} \frac{\partial c}{\partial y} = D_{E} \frac{\partial^{2} c}{\partial x^{2}} - \frac{C_{s}}{F} A_{E} \frac{\partial \Phi - \Phi_{c}}{\partial t} - k_{A} c$$

Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009.

Учет пористой структуры

Интегральные порограммы ^{Fig. 1} угольных электродов

$$\varepsilon \frac{\partial \mathbf{c}}{\partial \mathbf{t}} = \mathbf{D} \Delta \mathbf{c} - \mathbf{v} \nabla \mathbf{c} \dots$$
Электроадсорб.....

$$\rho = \frac{1}{9} \int \frac{d9}{dr} r^2 dr$$
$$K = \xi 9 \rho$$
$$j_c = -c \frac{K}{\mu} \frac{dp}{dx}$$

$$k = \varepsilon^n k_0 \qquad D = \varepsilon^n D_0$$

n=2 -3 ; Соотношение Арчи

Двойной электрический слой в порах разных диаметров

Ионная электропроводность в порах электродов

K = Kv (C) + SKs (1)

К - суммарная ионная электропроводность в порах

КV (C) - электропроводность ионов в объеме поры

C(x,y,t) – концентрация ионов в объеме поры

S – удельная поверхность

Ks - поверхностная проводимость = продольная электропроводность ДЭС

$$Ks = KsG + Ks(E)$$
 (2)

KSG - поверхностная проводимость поверхностных групп Ks (E) - продольная электропроводность ДЭС, обусловленная электростатикой

При C = 0 K = SKs (3)

Conductivity of a solution in pores is a sum of volume and surface conductivity. The surface conductivity K_s is a longitudinal conductivity of EDL: $K = K_v + SK_s$. $K_v = nC$, C - ion concentration, S - surface area In end of deionization process $K_v \sim 0$ and $K \sim SK_s$

Циклические вольт- фарадные кривые. Зависимости емкости ДЭС от потенциала

Изменение средней концентрации раствора в процессе стадий адсорбции и десорбции ионов

Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009

Concentration field (v=0.2 cm/s, Ls=0.04cm, T=5s)

Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009

Concentration field (v=0.2 cm/s, Ls=0.04cm, T=99s)

Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009

Сравнение расчетной и экспериментальной зависимостей тока от времени адсорбции

Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009

Composition of water solution

Na⁺, Ca²⁺, Mg²⁺, HCO₃⁻, Cl⁻, SO₄²⁻

Average concentrations : from 0.01N до 0.0002 N

Specific conductivity: from 1.9 to 0.04 mS/cm

Список основных публикаций и соавторов

- 1. Ю.М. Вольфкович, В.М. Мазин, Н.А. Уриссон, Электрохимия, 34 (1998) 825.
- 2. Yu.M. Volfkovich, P. Shmatko, US Patent 6,628,504 (2003).
- 3. Ю.М. Вольфкович, Т.М. Сердюк, Электрохимия, 38 (2002) 1043.
- 4. Ю.М. Вольфкович, И.А. Блинов, В.Е. Сосенкин, Патент РФ № 1686918 (1999).
- 5. Yu.M.Volfkovich, A.Yu. Rychagov, N.A. Urisson, P.A. Shmatko, US Patent 6,706,079 (2004).
- 6. Yu.M. Volfkovich, V.S. Bagotzky, V.E. Sosenkin, In: Colloid and Surfaces. 187 (2001) 349.
- 7. A. I. Belyakov, Yu.M. Volfkovich, at al., US Patent 6,195,252 B1 (2001).
- 8. V.I. Vasechkin, Yu.M. Volfkovich, P.A. Shmatko at al., US Patent 6,335,858 (2002).
- 9. V.I. Vasechkin, Yu.M. Volfkovich, P.A. Shmatko, US Patent 6,426,862 (2002).
- 10. Yu. M. Volfkovich, A. G. Sergeev, T. K. Zolotova, S.D. Afanasiev, O.N. Efimov, E.P. Krinichnaya, Electrochimica Acta, 44 (1999) 1543.
- 11. Yu. M. Volfkovich, I.A. Blinov, V.E. Sosenkin, US Patent 6,298,711, 2001.
- 12. Yu. M. Volfkovich, P. Shmatko, US Patent 6,466,429 (2002).
- 13. Y. M. Volfkovich, A.Y. Rychagov, N. A. Urisson, T. M. Serdyuk. US Patent No. 7,006,346.
- 14. Y.M. Volfkovich, A.V. Sakars, A.A. Volinsky. International Journal of Nanotechnology (IJNT), Volume 2 , Issue 3, 2005, p.192-302.
- 15. Yu. M. Volfkovich, I.A. Blinov, V.V., V.E. Sosenkin, CA Patent 2276380, 2000.
- 16. Yu. M. Volfkovich, I.A. Blinov. CA Patent 2473293, 2005.
- 17. V.I. Vasechkin, Yu.M. Volfkovich, P.A. Shmatko, O.G. Dashko. EP 1043743, 2006.
- 18. А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия. 44 (2008) 1343.
- 19. А.Ю. Рычагов, Ю.М. Вольфкович, Электрохимия, 43, (2007) 1273.
- 20. Ю.М. Вольфкович, Т.М. Сердюк, Электрохимическая энергетика, 1 (2001) 14
- 21. Ю.М. Вольфкович, А.Ю. Рычагов, В.Е.Сосенкин, А.В. Крестинин, Электрохимическая энергетика, 8 (2008) 106.
- 22. Y. Volfkovich, D.A. Bograchev, A.Y. Rychagov, D. Park. Book of Intern. Membrane Conference. Tuapse. 2009.
- 23. О.А. Хазова, Н.А. Майорова, Е.К. Тусеева, Ю.М. Вольфкович, В.Е. Сосенкиин, А.В. Крестинин, Г.И. Зверева, Электрохимия 45 (2009)

БЛАГОДАРЮ ЗА ВНИМАНИЕ !