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• The idea of different time scales for electron transfer and 
solvent reorganization is inherent in the Marcus theory

• The characteristic time for different processes is:

Electron transfer ≈ 1  fs

Solvent reorganization ≈ 1  ps    (103 fs)

Diffusion across the interface ≈ 0.1 ns (105 fs)

Time-Resolved Kinetics
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The Marcus Theory of Charge Transfer

• Symmetrical electron transfer 

( )[ ] ( )[ ] +−+ →+ 2
2

3
2 mn OHFeeOHFe

• The energy of the system as a whole does not change
BUT: immediately following electron transfer, both
ions find themselves in an unstable position, hence
the total energy of the system will increase:

( )[ ] ( )[ ] ++ 3
2

2
2 and mn OHFeOHFe

Fe2+ with a solvation shell of Fe3+ and vice versa
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Time-Resolved Kinetics

• Common wisdom:  An unstable intermediate can be
stabilized by adsorption

• Example:  Fe2+ + e → Fe+
ads

• Problem:  There are two processes taking place

– Fe2+ + e → Fe+
soln ≈ 1 fs

– Fe+
soln → Fe+

ads ≈ 105 fs

• Problem: Although Fe+ may be stabilized by 
adsorption, it must  first be formed in solution, where      
it is highly unstable
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Formation of Adsorbed Intermediate
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Metal surface OHP
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Charge Transfer in Metal 
Deposition-Dissolution

• The common wisdom:  Charge is carried across  
the interface by electrons

• Two problems:

– Highly unstable neutral atoms would be formed on the 
solution side of the interface

– There is no driving force for neutral atoms to cross the 
interface

• Conclusion: Charge is carried across the

interface by ions
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Proof for ion transfer mechanism

( )[ ] ( )[ ]0
solnn2cryssolnn2 OHAgeOHAg →++

[ ][ ] ( )OHnAgOHAg 2
0
soln

0
solnn2 +→

Reductio Ad Absurdum
Assume that electron transfer does occur:

≈ 1   fs

≈ 103 fs

≈ 105 fs0
crys

0
soln AgAg →
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The Fate of the Neutral Species 
Formed by Electron Transfer

The neutral atoms  could:

1. Be incorporated in the metal     

2. Diffuse away into the solution

3. Interact with the solvent to form  H2

The last two processes would decrease the 

Faradaic efficiency

( )−+ ++→+ OHHAgOHAg 22
1

soln2
0
soln
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Metal surface OHP
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The Energy of a Neutral 
Atom in Solution

0
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≈

≈

=Δ+

The difference between the Gibbs energies of a 
neutral atom and a hydrated ion in solution is 
roughly equal to the energy of sublimation. 
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Silver as an Example

For silver one finds ΔGsubl = 2.55 eV.  

For the reaction:
0
solncryssoln AgeAg →++

E0 = - 2.55 V vs. Ag+/Ag = - 1.75 V vs. SHE
This reaction could not occur at or near the 
Ag+/Ag  reversible potential.
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A sobering thought  

• “In metal deposition charge is carried across the 
interface by ions, not by electrons”.

• D.C. Graham 1955
• K. Vetter 1967
• V.V Losev 1972
• N. Sato 2002

• Non of these scientist took the next obvious step of 
realizing that the mechanism of ion transfer can be 
radically different from that of electron transfer. 
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The Marcus theory of electron transfer (ii)

The Gibbs energy of 
activation is given by

( )20
0

4
#

G
G

λ

λ

+ Δ
Δ =

Replacing the the Gibbs energy by the
electrochemical Gibbs energy yieldsyields

( )20
0 0
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The quantities involved in determining the 
energy of activation

 Total Reaction Coordinate

ΔGo#

ΔGo

E
ne

rg
y

λ

Vertical electron transfer 
leads to an increase of the
total energy of the system 
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Calculated reversible potentials

• METAL:  Fe       Ni        Cu      Zn        Sn Ag
• ΔG/n    -1.92    -1.99    -1.55   -0.50   -1.39   -2.55   eV
• E0(1) -0.41    -0.23   +0.34  -0.76   -0.14   +0.80 V/SHE
• E0(2)    -2.33    -2.22   -1.21   -1.26   -1.53   -1.75  V/SHE

(1) Mz++ ze- → M0
crys   (tables)

(2) Mz++ ze- → M0
soln (hypothetical)
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Metal deposition is too fast!

• The rate constants for metal deposition are comparable 
to those for outer-sphere charge transfer.

• They should not be!  
• For a divalent metal ΔG0 ≈ 20 eV and for outer-sphere 

charge transfer  λ = 1-2 eV.
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Comparison between rates of outer sphere
charge transfer and metal deposition on Hg

Reaction k (cm/s) j0  (A/cm2)
(1 mM)

Pb2+/Pb 2.0 0.38
[Cr(CN)6]-3/-4 0.9 0.18
Tl+/Tl 1.8 0.34
[Fe(CN)6]-3/-4 0.09 0.018
Cd2+/Cd 1.0 0.19
Fe3+/Fe2+ 5x10-3 1.0x10-3

Bi3+/Bi 3x10-4 6x10-5

V+4/V+3 1x10-3 2x10-4
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What is the mechanism of charge 
transfer for metal deposition?

• It cannot be electron transfer because
• (a) It would form an unstable intermediate
• (b) Some of the neutral atom would diffuse into the

solution, never reaching the electrode
• (c) It is too fast

• Conclusion:
• Charge must be transferred by the cations
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Field-induced ion transfer

• It is proposed that the high electrostatic field in the 
double layer is the driving force.  Example:

cmV5x10  nm0.6V0.3δηE 8===

But what about the field at η = 0?
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The gradient of η is proportional to that of 
the electrochemical potential

( )
Fn , nF

x x

μ ημ η
∂ Δ ∂

Δ = =
∂ ∂

zFΔμ = Δμ + Δφ

But when an overpotential is applied, the
chemical potential is not changed, hence

μ
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Variation of the electrochemical potential 
with the reaction coordinate
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Influence of the overpotential
The barrier is lowered by the gradient of η
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Comparison with experiment

• For the deposition of a divalent metal, one often finds 
bc = 0.12V; ba = 0.04V,    (αc = 0.5; αa = 1.5)

• For ion transfer, the rate equation is

( )0j= j exp βnFη RT−

In Fig.2,    βc = 0.25, hence αc = 0.5
•
Also, βa = 0.75, hence αa = 1.5
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How can we explain the high rate 
constants?

• The solvation shell is removed in many small steps, each 
requiring a very small solvent rearrangement energy.

• The effective charge also changes in small increments.  
Transfer of a full electron is not assumed along the 
reaction coordinate.

• There is a break-before-make mechanism. Interaction 
with the surface starts well before there is physical 
contact
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Conclusions

• In metal deposition charge is carried across the interface 
by the positive ions, not the electrons

• In outer-sphere charge transfer, charge is carried across 
by electrons

• The above two processes are physically different and 
cannot be treated by the same formalism

• A mechanism of ion transfer assisted by the electrostatic 
field is proposed

• A full theory of ion transfer is yet to be developed. 
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Final Conclusion

IN ORDER TO CREATE 
ONE MUST FIRST 

QUESTION THAT WHICH EXISTS 
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The New Challenge: are all interpretations 
of Electrode Kinetics Wrong?

• There are some types of electrode kinetic 
where the notion of adsorbed intermediates 
seems to fit the experimental results:

1. The hydrogen evolution reaction
2. Oxygen evolution
3. Oxidation of large anions
4. Organic oxidation or reduction (e.g. Kolbe)
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Application to Hydrogen Evolution

• Common wisdom: Formation of Hads as an 
intermediate is assumed.

H3O+ + e → Hads + H2O
• This may be correct, since:

– The surface is solvated.
– The ion is solvated (as [H3O(H2O)n]+ )
– There are initially hydrogen atoms in contact with the 

surface

– Electron transfer may lead to formation of Hads by 
redistribution of charges, without significant 
movement of atoms
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Details of formation of Hads

OHOHOH

OHHeOH adsads

23

2

2→+

+→+

+−

−−

An electron is added to an adsorbed species, 
not one in the OHP
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• Common wisdom: Formation of  OHads as

intermediate is assumed

OH- → OHads + ecrys

• This may be correct, for the same reasons as for Hads

Application to Oxygen Evolution
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Details of formation of OHads

OHHOOHOH

eOHOH

adsads

adsads

22

22

+→+

+→

−+

−+

An electron is removed from an adsorbed 
species, not one in the OHP
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Consider the reaction Br-→ Brads + e

• This is an intermediate case
– If the anion is “contact adsorbed” (having replaced 

water from the surface), the above equation is correct

– If there is a layer of water on the surface, it may be 
necessary to write the above equation in two steps, 
since the Br- ion will have to move after electron 
transfer

Discharge of Large Anions
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Details of formation of Brads

−−

−−

+→+
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eBrBrBr

eBrBr

adsads

adsads

2

An electron is removed from an adsorbed 
species, not one in the OHP
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H2O
Br-

Ag+

IHP OHP
Oxidation of Anions
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• Metal deposition and dissolution occur by ion transfer, 
not by electron transfer

• A reaction in which both electrons and ions are 
transferred across the interface cannot be considered as 
a single step

• The formation of unstable intermediate following electron 
transfer cannot  be justified by adsorption.

• Exceptions may be where the species is already 
adsorbed, before electron transfer has occurred 

Conclusions (1)
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Conclusions (2)

• Steps in electrode kinetics may involve
– Electron transfer
– Proton transfer
– Heavy ion transfer

• Such steps occur on widely different time scales
• Changes in the Gibbs energy must be regarded 

for each step individually
• New ways of analyzing electrode kinetics must 

be found.
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