Лекция III

Современные представления о кинетике реакций переноса заряда в конденсированных средах (квантово-механическая теория).

Р.Р. Назмутдинов

Казанский национальный исследовательский технологический университет

Москва, МГУ, 17.04.2015

План

- 1. Квантовые эффекты среды и внутренней сферы.
- 2. Эффективный частотный фактор.
- 3. Электронный трансмиссионный коэффициент. Два важных предельных случая.
- 4. Особенности реакций гетерогенного переноса электрона.
- 5. Перенос электрона в конфигурации СТМ.

Solvent coordinate vs Quantum effects

- decreasing of the activation barrier -> increasing rate constant
- tunneling → decreasing rate constant

Effect of solvent quantum modes

$$k = \frac{\omega_{eff}^{*}}{2\pi} \exp\left[-\frac{\Delta E_{a}^{*}}{k_{B}T}\right] \exp\left[-\sigma\right] = \frac{\omega_{eff}^{*}}{2\pi} \exp\left[-\frac{(\lambda_{s}^{*} + \Delta I)^{2}}{4\lambda_{s}^{*}k_{B}T}\right] \exp\left[-\sigma\right]$$

frequency factor $\lambda_{s}^{*} = \xi\lambda_{s}$

$$\xi = \frac{2}{\pi C} \int_{0}^{\omega^{*}} \frac{\operatorname{Im} \varepsilon(\omega)}{\omega \|\varepsilon(\omega)\|^{2}} d\omega \qquad \qquad C = \frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{st}}$$
$$\sigma = \frac{2\lambda_{s}}{\pi C} \int_{\omega^{*}}^{\infty} \frac{\operatorname{Im} \varepsilon(\omega)}{h\omega^{2} \|\varepsilon(\omega)\|^{2}} d\omega \qquad \qquad \text{Pekar factor}$$

tunneling factor

R. Buchner and co-workers (2008)

Dielectric spectra of some ionic liquids

Учёт квантовых эффектов при реорганизации внутренней сферы $(W_{i(f)} \gg k_B T)$ $k \approx \gamma \exp(\Delta E_a / k_B T)$ $\gamma \sim \left| \int \chi_i^{(0)}(q_{in}) \chi_f^{(0)}(q_{in}) dq_{in} \right|^2 = \exp \left(-\frac{\lambda_{in}}{h\omega_{eff}} \frac{1}{\dot{j}} \right)$ волновые функции ядер в основном «туннельный» фактор состоянии $w_{eff} = \frac{2w_i w_f}{w_i + w_i}$

Частотный фактор в константе скорости

$$\omega_{eff(s)}^{2} \approx \frac{2}{\pi C} \int_{0}^{\omega^{*}} \frac{\omega \operatorname{Im} \varepsilon(\omega) d\omega}{\left\| \varepsilon(\omega) \right\|^{2}}$$

обрезание по верхнему
пределу классических
мод
$$C = \frac{1}{\varepsilon_{opt}} - \frac{1}{\varepsilon_{st}}$$

Квантово-механическая теория переноса

Р. Маркус

$$\Delta E_a = \frac{(\lambda + \Delta I)^2}{4\lambda}$$

$$\Delta E_a$$
 - энергия активаци

с - энергия реорганизации В.Г. Левич

 ΔI - тепловой эффект реакции

$$k = \kappa_e \exp\left[-\frac{\left(\lambda + \Delta I\right)^2}{4\lambda k_B T}\right]$$

электронный трансмиссионный коэффициент

Р.Р. Догонадзе

прямые траектории **(i)**

прямые и обратные траектории **(ii**)

в области пересечения термов

Два случая поведения реакционной системы

Электронный трансмиссионный коэффициент, K_{ρ}

теория Ландау-Зинера

$$P_A = \exp(-2\pi\gamma_e)$$

(i)
$$\kappa_e = 1 - P_A = 1 - \exp(-2\pi\gamma_e)$$

(ii)
$$\kappa_e = \frac{1 - P_A}{1 - (1/2)P_A} = \frac{1 - \exp(-2\pi\gamma_e)}{1 - (1/2)\exp(-2\pi\gamma_e)}$$

Ландау-зинеровский фактору

Два важных предельных случая:

$$\gamma_e << 1 \Rightarrow \kappa_e \approx \gamma_e$$
 (неадибатический)
 $\gamma_e >> 1 \Rightarrow \kappa_e \approx 1$ (адиабатический)

Энергия молекулярных орбиталей в H_2^+

Влияние резонансного расщепления реакционных термов на величину активационного барьера (гомогенный перенос электрона)

$$E(q) = \frac{1}{2} \left[U_i(q) + U_f(q) - \sqrt{\left(U_f(q) - U_i(q)\right)^2 + 4H_{if}^2} \right]$$

$$U_i(q) = \lambda q^2 \qquad 0.1$$

$$U_f(q) = \lambda (q-1)^2 \qquad \bigoplus_{i=1}^{\infty} 0.0$$

$$-0.1$$

$$\Delta I = 0$$

$$\Delta I = 0$$

$$U_i(q) = \lambda (q-1)^2 \qquad \bigoplus_{i=1}^{\infty} 0.0$$

$$-0.1$$

$$-0.1$$

$$U_i(q) = \lambda (q-1)^2 \qquad \bigoplus_{i=1}^{\infty} 0.0$$

$$-0.1$$

$$-0.1$$

$$U_i(q) = \lambda (q-1)^2 \qquad \bigoplus_{i=1}^{\infty} 0.0$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

$$-0.1$$

Гетерогенный перенос электрона

$$U_{i}(q,\varepsilon) = \lambda q^{2} + \varepsilon \qquad U_{f}(q,\varepsilon) = \lambda (q-1)^{2} + \varepsilon + \Delta I$$
$$\varepsilon = \varepsilon_{1}, \ \varepsilon_{2}, \ \varepsilon_{3}$$

Множество пересекающихся поверхностей свободной энергии

плотность электронных состояний

«Эффективный» трансмиссионный коэффициент

 $\kappa_e^* \approx \rho(\varepsilon_F) k_B T \kappa_e$

 плотность электронных состояний на уровне Ферми

 $\kappa_{P}^{*} \approx \rho(\varepsilon_{F}) \delta \varepsilon \kappa_{e}$

Множество пересекающихся поверхностей энергии

Адиабатический предел

 $k \approx \exp\{-\Delta E_a^* / k_B T\}$

«Безбарьерный разряд» вместо инвертированной области

 $\int j(\varepsilon)\rho(\varepsilon) f_{FD}(\varepsilon) \approx g(\varepsilon_F) \cdot \delta\varepsilon$

 $0.4 \ \Im B < \delta \varepsilon < 1.1 \ \Im B$

$$\left[\mathbf{Fe}(\mathbf{CN})_{6}\right]^{3} + \overline{e} = \left[\mathbf{F} \cdot \mathbf{e} \left(\mathbf{CN}\right)_{6}\right]^{4}$$

Моделирование методом Монте-Карло (случайное блуждание по узлам двумерной решётки)

A non-successful trajectory

🗁 🛛 (workUlm			
ent Direct	tory		× 5	Command Window
\MATLA	normal			
l Files	3			parcd =
adial. adia2.	Open			0.0270
adia3. dial.m dia2_3 dn.m dn_bac	View Help			>>
	Import Data			
	New Rename	•		
	Delete			
	Source Control	•		
	Cut		irectory	
ımand Hi	Copy Paste		× 5	

A successful trajectory

🛎 🕹	workWim		
ent Directo	Command Window		
\MATLAB	normal		
l Files			parcd =
adial.m adia2.m	Open		0.0030
adia3.m	kun View Help		>>
dial.m	Open as Text		
dia2_3.	Import Data		
dn.m dn_bact	New •		
	Rename		
	Delete		
	Source Control		
⊻Wor⊦	Cut	ectory	
nmand Hisl	Сору	× 5	
;	Paste		

Электронный трансмиссионный коэффициент в зависимости от плотности состояний (моделирование методом Монте-Карло при различных значениях ландау-зинеровского фактора)

Схема переноса электрона в конфигурации СТМ

Модель иглы СТМ

играет важную роль

Model STM contrast

Cysteine adsorption on Au(110) elecrode (in situ STM images)

18.5
17.5
16.6
15.6
14.7
13.7
12.8
11.8
10.9
9.9
9.

Rate constant of electron transfer (statistical averaging)

$$k \approx \frac{\omega_{eff}}{2\pi} \int \kappa_e(\mathbf{r}) \exp[-W_i(\mathbf{r})/k_B T] \exp[-\Delta E_a(\mathbf{r})/k_B T] dv$$

$$\Delta E_a(\mathbf{r}) = \frac{(\lambda(\mathbf{r}) + W_f(\mathbf{r}) - W_i(\mathbf{r}) + \Delta I)^2}{4\lambda(\mathbf{r})k_B T}$$

heterogeneous ET

$$k \approx \frac{\omega_{eff}^{*}}{2\pi} \int k_{e}^{\prime}(x) \exp[-W_{i}^{\prime}(x)/k_{B}T] \exp[-\Delta E_{a}^{\prime}(x)/k_{B}T] dx$$

$$k_{e}^{\prime} W_{i}^{\prime} \Delta E_{a}^{\prime} \quad \text{are averaged over orientations}$$