Лекция I

Молекулярное моделирование межфазных границ: различные подходы к описанию поверхности твёрдых тел

Р.Р. Назмутдинов

Казанский национальный исследовательский

технологический университет

Москва, МГУ, 15.04.2015

План

- 1. Модель свободного электронного газа.
- 2. Модель «желе».
- 3. Кластерный подход к описанию поверхности твёрдых тел.
- 4. «Периодические» расчёты.
- 5. Примеры моделирования различных межфазных границ.
- 6. Проблемы моделирования заряженной поверхности.

"Свет этот – порожденье тьмы ночной, Он отнял силы у нее самой. Он с ней не сладит, как бы ни хотел, Его удел – поверхность твердых тел…"

Goethe «Faust»

работа выхода электрона

$$\Psi(x)$$
; $\exp\left[-\frac{1}{h}\sqrt{2mW_e} \times x\right]$

Модель свободного электронного газа: сфера с потенциальной стенкой

Плотность электронных состояний

$$\rho(\varepsilon) = \frac{dN}{d\varepsilon}$$

Модель свободного электронного газа

Уровень Ферми

Результаты «периодических» расчётов методом функционала плотности

Fig. 2.2. Densities of state for the d band and the sp band at the Ag(111) surface. Their integrals has been normalized to unity, and the Fermi level has been taken as the energy zero.

Модель «желе»

Функции Смита:

$$n(x) = \frac{n_{+}}{2} \exp[-\beta x], \quad x > 0$$

$$n(x) = n_{+} \exp(1 - \frac{1}{2} \exp[\beta x], \quad x < 0$$

 $E_{el}(n(x)) \rightarrow \min$

$$E_{_{\kappa u H}} = A\beta - \frac{B}{\beta}$$

$$E_{\kappa y \pi} = -\frac{C}{\beta^3}$$

«Периодические» расчёты vs модель «желе»

Грани Ад	β (a.u. ⁻¹)
(111)	0.80 (1.111)#
(110)	0.67 (1.12)
(100)	0.65 (1.125)
# расчёты «желе»	в рамках модели

Заряд-изображение: статический эффект

Заряд-изображение: динамический эффект (взаимодействие с поверхностными плазмонами)

Два основных квантово-химических подхода к описанию поверхности твёрдых тел

Slabs

Преимущества кластерного подхода:

- 1. Гибкость.
- 2. Возможность использования широкого арсенала методов квантовой химии, созданного для расчётов электронной структуры молекул.
- 3. Прозрачная интерпретация результатов расчётов; молекулярно-орбитальный язык.
- 4. Возможность моделирования заряженных систем.

Основные модели поверхности металла в рамках кластерного подхода

модель молекулярного кластера

модель погруженного кластера (embedded cluster)

модель «окунувшегося" кластера (dipped cluster)

«Врождённые пороки» кластерной модели поверхности:

"...Surprisingly, however, cluster calculations remain very popular in the literature." R. Masel.

- 1. Проблема сходимости (зависимость результатов расчёта от размера кластера).
- 2. Невозможность моделирования «коллективных» эффектов (фриделевских осцилляций заряда и др.)
- 3. Наличие «щели» между валентной зоной и зоной проводимости в металлических кластерах.
- 4. Невозможность моделирования поверхностной релаксации.

Энергия адсорбционной связи атома водорода, рассчитанная для различных кластеров никеля.

Кластер	Ni ₄ (3+1)	Ni ₁₇ (3+7+7)	Ni ₄₀ (21+13+6)	эксп.
ΔE_{ads} /ккалмоль-1	8.3	22.5	-10.5	23.

$$\varphi_k^{(i)} = \sum_G c_k(G) e^{i(k+G)r}$$

 $k = (k_1, k_2, k_3)$

і – номер электронного состояния

Условие обрезания ряда:

$$E = \frac{\mathsf{h}^2}{2m} (k+G)^2 \le E_{\min}$$

Контроль за качеством расчётов

Представление псевдопотенциалов (ЕСР)

$$\hat{U}(r) = U_L(r) + \sum_{l=0}^{L} (U_l(r) - U_L(r)) \hat{P}_l$$
$$\hat{P}_l = |l| > < l |$$

$$U_l(r) \approx \sum_k d_k r^{n_k} \exp(-\xi_k r^2)$$

Характеристики: нелокальность, «мягкость», «жесткость»

Условие: coxpaнeниe нормы (norm conserving ECP)

l

OUTPUT:

- 1. Полная энергия системы => энергии связи
- 2. Распределение электронной плотности.
- 3. Оптимизированная геометрия.
- 4. Поверхностный скачок потенциала, работа выхода.
- 5. Плотности состояний.

Проекция плотности состояний на орбиталь
$$\longrightarrow
ho_a(\mathcal{E}) = \sum_i \left\langle \varphi_i \varphi_a \right\rangle^2 \delta(\mathcal{E} - \mathcal{E}_i)$$
адсорбата

6. Коэффициент поверхностного натяжения.

Результаты, полученные в рамках «периодических» расчётов методом функционала плотности

Грани серебра	W _e /eV	σ /J m ²
(110)	4.48 (4.52) ^{&}	0.74
(100)	4.63 (4.64)	1.2
(111)	4.93 (4.74)	0.83

[&] ЭКСП.

Преимущества «периодических» расчётов:

- 1. Корректное описание поверхности твёрдых тел, отсутствие «граничных» эффектов.
- 2. Возможность моделирования реконструкции поверхности и «коллективных» эффектов.

3. No BSSE.

Недостатки:

- 1. Невозможность «простого» расчёта заряженных систем.
- 2. Использование исключительно метода функционала плотности.
- 3. Теряется (или усложняется) молекулярно-орбитальный язык.

Примеры расчётов

Adsorption of water monomers on electrode surfaces

A. Michelides, Appl. Phys. A 85, 415 (2006)

 $\label{eq:Adsorption energies: -0.1 eV to -0.4 eV} $$ Interaction strength: Au<Ag<Cu<Pd<Pt<Ru<Rh } $$$

Isosurfaces of the charge density difference $\Delta \rho = \rho(H_2O/Pt(111)) - (\rho(H_2O) + \rho(Pt(111)))$

Blue: electron depletion, yellow: electron accumulation

Water bilayer structures

H-down water bilayer on Pt(111)

 $\mathsf{E}_{\mathrm{ads}}^{\mathrm{H_2O}} = \textbf{-487} \ \mathsf{meV}$

H-up water bilayer on Pt(111)

 $E_{\rm ads}^{\rm H_2O}=\text{-}450~\text{meV}$

Water-induced work function change

$E_{\mathrm{ads}}^{\mathrm{H_2O}}$	= -487 meV	
$\Delta \Phi$	= -0.23 eV	

 $E_{ads}^{H_2O} = -450 \text{ meV}$ $\Delta \Phi = -2.27 \text{ eV}$

2 eV difference in work function change between H-down and H-up bilayers, but both bilayers lead to a reduction in the work function of Pt(111), although dipole moments of the two free bilayers have opposite signs

Pt(111) covered by water bilayers

Yoshihiro Gohda, Sebastian Schnur, Axel Groß, Faraday Diss. 140, in press.

Electronic structure

Pt(111) local *d*-band density of states

Electronic structure of Pt(111) hardly changed by the adsorption of water

Cluster model/DFT

Hydrophilicity row: Ga > Hg ≥ Bi(111)

Эффект упрочнения водородных связей в слое адсорбированных молекул воды играет важную роль.

H adsorption in the presence of a water overlayer

A. Roudgar and A. Groß, Surf. Sci. 597, 42 (2005)

Water structures on Pd/Au(111)

H adsorption energies

 $E_{ads}^{H_2O}$ $E_{ads}^{\mathrm{H}\,fcc}$ $E_{ads}^{\mathrm{H}\,hcp}$ $\theta_{\rm H_2O}$ 1/4-0.308-0.634-0.5921/3-0.606-0.610-0.295 1/2-0.582-0.602-0.4191 +3.1353/4 -0.465-0.561-0.596**2/3**(b) -0.528-0.6332/3(c)-0.4992/3(d)-0.327-0.690-0.6550

H₂O structure: a) monomer and dimer, b) H-down bilayer (ice lh), c) H-up bilayer, d) half-dissociated bilayer $\rm H_2O$ adsorption energies in eV/H_2O and H adsorption energies ($\theta_{\rm H}=1/3)$ in eV/atom on Pd/Au(111)

H adsorption energies only slightly changed by the presence of water

Варьируемая конфигурация реакционного слоя в реакциях переноса электрона

SAM

Осаждение моноатомных слоёв

In situ STM data

tert-butanethiol / Au(111)

Results of model calculations

 $\Delta E_{ads} = -1.6 \ eV$

In situ STM data

1-butanethiol / Au(111)

34 nm

8.0 nm

Results of model calculations

In situ STM data

2-methyl-1-butanethiol / Au(111)

Results of model calculations

Three different forms of L-cysteine

Experimental data: Cysteine adsorption on Au(110) elecrode (in situ STM images)

- sub-molecular resolution level

Three different forms of L-cysteine

The most stable structure of a monolayer of L-Cys molecules adsorbed on Au(110)

Reconstruction of charged surfaces: Pt(110) and Au(110)

A.Y. Lozovoi and A. Alavi, Phys.Rev. B 245416, (2003)

Explicit consideration of counter ions

E. Skúlason, J. Rossmeisl, J.K. Nørskov et al., PCCP 9, 3241 (2007).

Change of electrode potential by varying the number of protons/electrons in the double layer

Excess H atoms are included in the water layer which results in the formation of solvated protons in the water layer and transfer of electrons to the metal

Problem: only one water bilayer, protons confined to the first water bilayer, electrode potential can vary along reaction paths

Specific adsorption of ions

Adsorption of I⁻ from aqueous solution at Pt(111) (MD simulations; Perera and Berkowitz, 1994) Рекомендуемая литература:

- 1. Axel Gross "Theoretical Surface Science. A Microscopic Perspective", Second Edition. Springer, Berlin, 2009.
- 2. Jorge Kohanoff "Electronic Structure Calculations for Solids and Molecules. Theory and Computational Methods". Cambridge University Press, UK, 2006.