Сольватированный электрон в химии:

структура, динамика, реакции

<u>Вопросы и консультации</u>: feldman@rc.chem.msu.ru

О чем пойдет речь...

- Локализация избыточных электронов в конденсированных средах
- Экспериментальное обнаружение и спектроскопические проявления гидратированного электрона
- Сольватированные электроны в других молекулярных жидкостях и стеклах
- Модели сольватированного электрона
- Динамика сольватации: "digger" or "seeker" ?
- Термодинамические и транспортные свойства е-_{аq}
- Сольватированный электрон как химический реагент
- Кинетика и механизм реакций сольватированного электрона
- Некоторые приложения (от неорганической химии до биохимии)

Немного из истории химии: щелочные металлы в жидком аммиаке

• <u>W. Weyl (1864):</u> натрий и калий растворяются в жидком аммиаке с образованием раствора *интенсивной синей окраски*

(образование солей ?)

• <u>C.A. Seely (1871):</u> обратимость (*металл восстанавливается* при испарении !)

???

• <u>C.A. Kraus (1908):</u> гипотеза об «электронном равновесии» в системе аммиак – щелочной металл

концентрированные растворы (> 8%) – *жидкие металлы* (<u>насыщенный p-p Li в аммиаке</u>: $\sigma = 1.5 \cdot 10^6$ См/м) – «свободные электроны» (?)

разбавленные растворы - электроны, «связанные с молекулами растворителя» (??)

 $M + aNH_3 \rightleftharpoons [M(NH_3)_{a-x}]^+ + e^-(NH_3)_x$

Химическая экзотика?

(Дж. Томпсон «Электроны в жидком аммиаке» М.: Мир, 1979)

Методы генерации сольватированных электронов

- 1. Радиационно-химический (действие быстрых электронов, рентгеновского излучения и др. ИИ):
 - $M \rightarrow M^{+} + e_{qf} (e_{qf} \rightarrow e_{loc} \rightarrow e_{s}) (универсально)$
- 2. Фотоионизация растворенных веществ с низкими ПИ, например Fe(CN)₆⁴⁻, амины, SO₃²⁻ (λ = 220 – 500 нм)
- 3. Гетерогенная фотоэлектронная эмиссия из металлов (фотоинжекция электронов из электродов в раствор)
- 4. Химические методы (гетерогенные реакции):
 - Na + NH₃ \leftrightarrow Na⁺ + e⁻_s
 - Na(Hg) + H₂O \rightarrow Na⁺ + e⁻_{aq}
 - $U^{3+} + H_2O \rightarrow U^{4+} + e_{aq}$

Избыточные электроны в конденсированных диэлектриках

- Избыточные (excess) электроны неравновесные носители, инжектированные в диэлектрик (путем фотоионизации, электронного удара и проч.)
- Для «квазисвободных» избыточных электронов (е-qf), не обладающих избыточной кинетической энергией:

$$\boldsymbol{E} = \boldsymbol{V}_0$$

(V₀ – основной уровень электрона в среде – отсчет от вакуума)

<u>Методы определения V₀</u>

• 1) по разности работ выхода электрона из металла в вакуум и в жидкость:

$$V_{\theta} = \boldsymbol{\varphi}_{liq} - \boldsymbol{\varphi}_{vac}$$

• 2) по разности ПИ в газе и жидкости:

$$V_{\theta} = I_g - I_{liq} - P^{+}$$

 $P^{+} = (e^2/8\pi\varepsilon_0)(1-\varepsilon_{\infty}^{-1})$

Значения V₀ и подвижность электронов в диэлектрических жидкостях

Среда	V ₀ , эВ	<i>u,</i> см² /(В⋅ с)*
Гелий	1.0	0.02
Неон	0.6	0.002
Этан	~0.2	0.014
н-Пентан	~0	0.15
н-Гексан	~0	0.09
Метан	~0	400
Бензол	- 0.14	0.1
Неопентан	- 0.43	70
Тетраметилсилан	- 0.6	100
Ксенон	- 0.65	2200
Этанол	- 0.65	0.0003
Вода	- 1.3 (?)	0.002

*u = v/E, в литературе чаще обозначается как µ

E_A = 0.02 – 0.5 эВ (для метана E_A< 0)

Автолокализация электронов в решетке диэлектрика. Поляроны

- Полярон <u>квазичастица</u> движущийся электрон плюс индуцированное им поляризационное поле в кристалле. Поляризация вызывает деформацию кристаллической решетки (образуется «фононное облако», сопровождающее электрон)
- Поляризационное поле «тормозит» электрон: m* > m (m эффективная масса электрона в кристалле, в общем случае m ≠ m_e)
- <u>Теория полярона</u>: *С.И. Пекар*, Л.Д. Ландау; Н. Frölich
- <u>Случай слабого взаимодействия с решеткой</u> (α <<1 константа Фрёлиха, характеризующая электрон-фононное взаимодействие):

$$lpha = rac{\sqrt{2}e^2m^{1/2}}{2\omega_l^{1/2}\hbar^{3/2}}(arepsilon_{\infty}^{-1} - arepsilon^{-1}) \qquad rac{m^*}{m} pprox 1 + rac{lpha}{6} + 0.0236lpha^2.$$

Случай сильного взаимодействия (α ≥ 5): автолокализация (r_I - ~ 1 нм) локализации)

$$\frac{m^*}{m} \approx 0.023 \alpha^4$$

- Поляроны могут захватываться дефектами
- Понятие «полярона», введенное для ионных кристаллов, распространено на молекулярные среды, полимеры, низкоразмерные системы...

Андерсоновская локализация в неупорядоченных средах

- *Р.W. Anderson* (1958; Нобелевская премия, 1977): в среде с пространственными неоднородностями распространение бегущей волны невозможно -> формирование стоячей волны, сконцентрированной в определенной области (локализация)
- Применимо к аморфным металлам, полупроводникам, *диэлектрикам*

Энергия электрона в неупорядоченной среде

Простейшая модель одномерной андерсоновской решетки («вертикальный беспорядок»

<u>Трехмерная решетка</u>: $\varepsilon_g - <u>порог подвижности</u> (для диэлектриков <math>\varepsilon_g < \varepsilon_F$)

 Предельное распределение плотности вероятности (t → ∞), если энергия принадлежит области локализованных состояний

ρ(R) ~ const при R<<L ρ(R) ~ exp(-R/L) при R>>L

<u>Андерсоновский</u> (неупорядоченный) диэлектрик:
 σ = 0 при T = 0 K; «прыжковый» механизм при T > 0

Молекулярная локализация (захват электронов)

• Захват «квазисвободных» электронов молекулами растворителя или растворенных веществ (примесей)

 $M(s) + e_{qf} \rightarrow M^{-}(s)$

(1)

(2)

- $O_2(s) + e_{qf}^- \rightarrow O_2^-(s)$
- $CO_2(s) + e_{qf}^- \rightarrow CO_2^{-}(s)$
- CH_3COCH_3 (s) + $e_{qf} \rightarrow CH_3COCH_3$ (s) (3)
- <u>Роль сольватации</u>: возможность захвата электронов молекулами с нулевым и слабо отрицательным газофазным сродством к электрону (*EA_g*≤ 0, пример 3), т. к. |∆*G_s(M*)|<< |∆*G_s(M*·)|
- Возможен захват димерами или кластерами:

$$M_n(s) + e_{qf} \rightarrow M_n(s)$$

• Во всех случаях образуются анион-радикалы с низкой подвижностью

Локализация избыточных электронов: итоги предварительного рассмотрения

- В кристаллах диэлектриков и неупорядоченных поляризуемых средах (жидкости, стекла) происходит **локализация избыточных электронов** (образование *связанных состояний*) → подвижность резко снижается
- Механизмы локализации могут быть различными
- Важную роль играют дефекты и примеси

Импульсный радиолиз

Схема установки для импульсного радиолиза Боуга и Харта (1962): 1 – ускоритель электронов, 2 – фотопластина, 3 – спектрограф, 4 – линза, 5 – ячейка, 6 – импульсная лампа, 7 – блок питания лампы, 8 – блок регулируемой задержки) τ (имп.) = 2 мкс, разрешение 5 мкс; спектральный диапазон 300 – 880 нм

> <u>Современные установки (pulse-probe)</u> : τ (имп.) = 10 пс, разрешение 1 пс (Orsay, France, 2006) τ (имп.) = 100 фс, разрешение 250 фс (Osaka, Japan, 2009)

Открытие гидратированного электрона

• J.W. Boag, E.J. Hart (1962):

Обнаружение поглощения *в красной области* оптического спектра (λ_{max} ~ 720 нм) при облучении жидкой воды импульсами быстрых электронов

Отнесено к гидратированному электрону (е-_{аq}) [т ~ 20 мкс]

 $H_{2}O --// -→ H_{2}O +, H_{2}O *, e^{-}$ $H_{2}O + H_{2}O → H_{3}O^{+} + OH^{-}$ $e^{-} → e^{-}_{aq}$ $H_{2}O * → H + OH^{-} (?)$

Аргументы:

- (1) спектроскопические: другие частицы в системе (H⁻, ⁻OH, H₂O₂, H₃O⁺, OH⁻) *не могут* поглощать в *красной* области
- (2) Химические (подавление поглощения в присутствии акцепторов электрона : O₂, CO₂,N₂O)

J.W. Boag, E.J. Hart, *Nature*, 1963, **197**, 45; независимо J.P. Keene, *Nature*, 1963, **197**, 47

Спектроскопические характеристики е-аq

Гидратированный электрон:
 z = -1, S = ½

(заряженная парамагнитная частица – анион-радикал)

- Оптический спектр (298 К): λ_{max} = 715 нм (E_{max} = 1.73 эВ) ε_{max} = 1.85 · 10⁴ М ⁻¹см⁻¹ ΔE_{1/2} = 0.93 эВ

 F ≈ 0.7 (разрешенный переход)*
- Сигнал ЭПР (283 К, жидкость) Синглет g = 2.00043 (близко к g_e)
 ∆B < 0.01 mT (динамически сужен ?)

*)F – сила осциллятора, характеризует нормированную вероятность перехода; $F = 4.315 * 10^{-9} \int \epsilon dv (v = 1/\lambda)$

Оптический спектр ЭПР е-_{aq} при 296 К (Jeevarandan & Fessenden J. Phys. Chem., 1989, **93**, 3511) – in situ фотолиз сульфита Спектры не зависят от метода генерации

Сольватированные электроны в других молекулярных жидкостях

<u>Общее обозначение: е́</u>

Среда	λ_{max} , HM	Е _{тах} , эВ	μ, D	3
Метанол	630	1.96	1.67	33.6
Этанол	700	1.77	1.70	25.1
Изопропанол	820	1.5	1.65	19
Этиленгликоль	580	2.1	2.28	38
ΤΓΦ	~2100	~0.6	1.63	7.3
н-гексан	> 1600	< 0.8	0.08	1.89
Аммиак (225 К)	1400	0.89	1.44	22
Вода	715	1.73	1.83	80

E_{max} – оптическая глубина ловушки (характеристика энергии связи *e⁻_s*) <u>Нет прямой корреляции</u> между *E_{max}* и *молекулярными* (дип. момент) или *макроскпопическими* (*ε_{cm}*) характеристиками жидкостей

Жидкости, в которых *не* образуется сольватированный электрон

1. Соединения, реагирующие с электроном по механизму простого или диссоциативного захвата:

 $CH_3COCH_3 + e^- \rightarrow CH_3COCH_3^-$ RX + $e^- \rightarrow R^- + X^-$ (X = CI, Br, I,...)

(образуются малоподвижные анион-радикалы и анионы)

2. Жидкости, состоящие из квазисферических молекул:

CH₄, (CH₃)₄C, (CH₃)₄Si

(сохраняется высокая подвижность, характерная для «квазисвободных» электронов)

Сольватированные (стабилизированные) электроны в молекулярных стеклах при 77 К

Стекла – переохлажденные жидкости, микроструктура «жидкоподобная», динамика и кинетика – «твердоподобная» ($\eta_{cm} / \eta_{\pi} \sim 10^{15} - 10^{30}$) Стабилизированные электроны в стеклах обозначают e_{tr}^{-1}

Среда	λ _{max} , нм	Е _{тах} , эВ	<i>∆В,мТл (ЭПР</i>)
Метанол	520	2.38	~1.4
Этанол	540	2.28	~1.2
Изопропанол	645	1.92	~1.0
Этиленгликоль	500	2.41	~1.5
2-ΜΤΓΦ	1250	1,0	0.4
3-метилпентан	1650	0.75	0.3
Вода (лед)*	630	1.96	~1.5

Время жизни τ (e_{tr}) $\rightarrow \infty$

Спектральные параметры e_s^- и e_{tr}^- близки. E_{max} (e_{tr}^-) > E_{max} (e_s^-) ($\Delta E \sim 0.2-0.4$ эВ). ΔB растет с ростом E_{max} (определяется величиной констант СТВ неспаренного e^- с протонами матрицы и конфигурацией ловушки)

* в присутствии инертных солей

Как устроен сольватированный электрон: модели

- Классы моделей:
- 1. Континуальные (связь с макроскопическими характеристиками непрерывной среды): поляронная модель, модель полости.
- 2. Конфигурационно-континуальные (полуконтинуальные)
- 3. Molecular dynamics simulation

Экспериментальные данные для верификации моделей:

- энергия связи (оптическая глубина ловушки)
- оптический спектр поглощения (форма)
- ? магнитно-резонансные характеристики (ЭПР) наиболее чувствительны к геометрическим деталям

Поляронная модель (до 1960)

- А. С. Давыдов (1948, на основе поляронной теории С.И. Пекара):
- Потенциал: $V = -\beta e^2/r$ ($\beta = \varepsilon^{-1} \varepsilon^{-1}$)
- Оптический переход: 1s → 2p

$$E_{\max}(\Im B) = \Delta E = E_{2p} - E_{1s} \approx 1.93\beta^2 \frac{m^*}{m}$$

- Оптимальные значения m*/m: 1.5 (аммиак); 2.7 (вода) (реалистичные ?)
- (-) нет ясной физической интерпретации m*
- (-) не объясняется зависимость E_{max} (*T*, *p*)
- (-) не объясняется форма спектра
- (-) предсказательная сила отсутствует

неудовлетворительно

Модель полости

Jortner et al. (1964): электрон локализуется в «полости» радиусом R₀

• Потенциал: $V = -\beta e^2/r$ $(r > R_0)$ $V = -\beta e^2/R_0$ $(r < R_0)$

Получены выражения для энергии перехода 1s \rightarrow 2p с использованием подгоночных параметров. <u> E_{max} растет с уменьшением R_0</u>

- Для аммиака *R₀* = 0.30 0.34 нм (оценка из объемного расширения при растворении щелочных металлов в жидком NH₃)
- Для воды (нет прямых экспериментальных данных) оптимизировано *R₀ = 0.14 – 0.15 нм*
- Модель качественно объясняет для е-_{аq} :
- *dE_{max}/dT* = 2.9 · 10⁻³ эВ/ К (<0, термическое расширение полости)
- *dE_{max}/dp* = 8 · 10⁻⁷ эВ/ кПа (>0, барическое сжатие полости)
- Корреляцию *Е_{тах}* (оптика) с *∆В* (ЭПР)

Наиболее распространенная – по существу, эмпирическая. Микроскопический смысл ?

Конфигурационно-континуальные (геометрические) модели

- Определенная геометрическая конфигурация первой координационной сферы («ловушка») + неперерывная среда: (X_n^{-.})_{solv}
- Аргументы:
- наблюдение метастабильных кластеров типа (H₂O)_n⁻.
 в газовой фазе
- данные импульсных магнитных измерений (электронное спиновое эхо, ЭСЭ) в стеклах

Наиболее вероятные n (данные ЭСЭ): *n* = 6 (вода), *n*= 4 (метанол), *n* = 3 (МТГФ)

Геометрия е⁻_{tr} в стеклообразных матрицах при 77 К по данным ЭСЭ

Реконструкция геометрической структуры сольватированного электрона в воде и 2-МТГФ по данным ЭСЭ (L. Kevan, Acc. Chem. Res., 1981, **14**, 138)

Современные «молекулярно-динамические» модели

- Статистический расчет локализации избыточного электрона: матрица «моделируется» (*simulated*) путем задания большого «нежесткого» кластера (200 – 1000 молекул)
- <u>Результаты</u>: хорошо описана форма оптического спектра е-s в воде и метаноле
- Магнитно-резонансные параметры?
- Влияние температуры и давления ?
- Смешанные растворители ?

Динамика сольватации электрона: "digger" or "seeker" ?

- **Digger**: электрон сам «выкапывает» себе ловушку за счет ориентации молекул растворителя в сильном локальном электростатическом поле
- Seeker: электрон «ищет» подходящую ловушку (конфигурацию диполей), изначально существующую в полярной жидкости (preexisting trap, pre-trap)
- <u>Первое прямое наблюдение динамики сольватации электрона:</u> (J.H. Baxendale, P. Wardman, *Nature*, 1971, **230**, 449)
 Спирты (этанол, 1- и 2-пропанол, бутанол при T = 150 – 180 K)

e⁻_{loc}(ИК, λ_{max}>1350 нм) → e⁻_s (λ_{max}= 700 – 800 нм)

е-_{loc} – локализованный электрон (захваченный в «мелкую» ловушку)

- <u>Время сольватации</u>: этанол $\tau_{s} = 3$ нс (166 К)
- 1- пропанол $\tau_{\rm S}$ = 5 нс (178 K); 60 нс (152 K)
 - 2-пропанол: $\tau_{s} = 6$ нс (186 К)
 - 1-бутанол : $\tau_{\rm S}$ = 4 нс (184 К) **1** нс = 10⁻⁹с

... both "digger" and "seeker" ?

 $e_{qf} \rightarrow e_{loc} \rightarrow e_{s}$ seek dia

2-я стадия: «непрерывная» ориентационная поляризация (углубление ловушки – "digging") или прыжковый (либо туннельный) перенос между ловушками ?

Корреляция между временем сольватации и молекулярной динамикой жидкости

Времена сольватации электрона в спиртах при 300 К (G.A. Kenney-Wallace, 1982)

Спирт	τ_{S}, nc	$\tau_{2,}, nc^*$	η, сПз
Метанол	11	12	0.55
Этанол	18	20	1.10
1-пропанол	24	22	2.00
1-бутанол	30	27	2.60
1-октанол	45	39	8.95
1-деканол	51	48	14.1

*время вращательной релаксации мономерных молекул

τ_S ~τ₂ ("digging" ?) (вероятно, характеризует релаксацию второй сольватной сферы) нет корреляции с вязкостью

 $\tau_{s}(e_{aq}^{-}) = 0.54 \ \pi c \ (Yoshida \ et \ al., \ 2010)$

 $1 nc = 10^{-12}c$

Термодинамические свойства е-аq

- E⁰ = 2.87 B
- ∆G⁰ = -157 кДж/ моль
- $\Delta H^0 = -136.4$ кДж/ моль
- S⁰ = 69.8 Дж/ (моль[.] К)
- ΔS^0_{hydr} = 49 Дж/ (Моль·К)

 $\frac{Pacчet \Delta G^{0} (e_{aq}^{-})}{e_{aq}^{-} + H_{aq}^{+} \rightarrow \frac{1}{2} H_{2 (aq)}}$

- $\frac{1}{2}$ H_{2 (aq)} $\rightarrow \frac{1}{2}$ H_{2 (g)}
- $\frac{1}{2} \operatorname{H}_{2(g)} \rightarrow \operatorname{H}_{g}$

•
$$H_g \rightarrow e_g^- + H_g^+$$

•
$$H^+_g \rightarrow H^+_{aq}$$

$$e_{aq} \rightarrow e_{g}$$

Транспортные свойства е-_{аq}

Предельная ионная электропроводность:

Электрическая подвижность

Коэффициент диффузии

$$D (e_{aq}) = 4.96 \cdot 10^{-5} \text{ cm}^2 / \text{ c}$$

(существенно выше, чем у тяжелых анионов → «смешанный» механизм подвижности)

Сольватированный электрон как химический реагент

Гидратированный электрон – уникальный *«чистый» одноэлектронный* восстановитель (более эффективный, чем атом H, не дает «побочных» продуктов)

Основные типы реакций е-ас

Восстановление катионов металлов • e_{aq}^{-} + $M^{n+} \rightarrow M^{(n-1)+}$ (k \geq k_{diff}) $e_{ag}^{-} + Ni^{2+} \rightarrow Ni^{+}$ $e_{aa}^{-} + Ag^{+} \rightarrow Ag^{0}$ e_{aa}^{-} + Cu^{+} \rightarrow Cu^{0} Реакции с неорганическими анионами $e_{aa}^{-} + NO_{3}^{-} \rightarrow NO_{3}^{2-}$ e_{aq}^{-} + MnO₄⁻ \rightarrow MnO₄²⁻ Реакции присоединения к нейтральным молекулам $e_{a0}^{-} + O_2 \rightarrow O_2^{-}$ e_{ad}^{-} + CH₃COCH₃ \rightarrow CH₃COCH₃⁻⁻ $e_{ac}^{-} + C_6 H_6 \rightarrow C_6 H_6^{-}$ Реакции диссоциативного присоединения: $e_{aa}^{-} + N_2 O \rightarrow N_2 + O^{-}$ e_{aa}^{-} + RBr \rightarrow R + Br

Кинетика реакций е-аq

 Измерено > 1500 констант скорости различных бимолекулярных реакций е-аq (с ионами, молекулами, макромолекулами, биомолекулами...)

Классификация реакций:

- быстрые (диффузионноконтролируемые)
- - «сверхбыстрые»
- - медленные

Молекула или ион	<i>k, М⁻¹с^{-1*}</i>
Cd(II)	5.1·10 ¹⁰
Ag (I)	3.9 ·10 ¹⁰
Cu(II)	3.5 ·10 ¹⁰
MnO ₄ -	3.3·10 ¹⁰
Хлороформ	3·10 ¹⁰
O ₂	1.9 ·10 ¹⁰
N ₂ O	9.1·10 ⁹
CO ₂	7.7·10 ⁹
Ацетон	6.6 ·10 ⁹
Бензол	1.2 ·10 ⁷ (pH=11- 13)
Метанол	< 10 ⁴

*рН = 7, если не оговорено особо

Диффузионно-контролируемые реакции е-_{аq}:

 <u>Диффузионно-контролируемые</u>) реакции А + В: k ≈ k_{dif} (реакция происходит при каждом столкновении)

$$k_{dif} = \frac{4\pi r D N_A}{1000} (t \to \infty)$$

 $r = R_A + R_B; D = D_A + D_B$

(для реакций с нейтральными молекулами)

$$k_{dif} = \frac{4\pi r_{eff} DN_A}{1000} \quad r_{eff} = \left[\int_{r}^{\infty} \frac{\exp(U/kT)}{x^2} dx\right]^{-1}$$

(для реакций с заряженными частицами, с учетом потенциала взаимодействия)

В случае реакций гидратированного электрона $k_{dif} \sim 10^{10} \, M^{-1} c^{-1}$

Большинство реакций е-_{аq} лимитируются диффузией «Диффузионный» радиус е-_{аq} (из ур-ния Смолуховского) R ~ 0.25 нм

Кинетика реакций е-ад: другие случаи

• <u>2. Медленные реакции</u>: **k << k**_{dif}

 $e_{aq}^{-} + C_6 H_6 \rightarrow C_6 H_6^{-}$ (k = 1.2 · 10⁷ M⁻¹ c⁻¹)

 e_{aq}^{-} + CH₃ OH \rightarrow CH₃ O⁻ + H $(k < 10^4 M^{-1} c^{-1})$

Сложные реакции, вероятно, включают обратимую стадию

•<u>3. Сверхбыстрые («сверхдиффузионные» реакции)</u>: **k > k**_{dif}

e⁻_{aq} + CHCl₃ → CHCl₂ + Cl⁻ (k = 3 ·10¹⁰ M⁻¹c⁻¹) Формальный радиус реакции r > R_A + R_B (до 1 – 1.5 нм) → перенос на расстоянии (вклад *туннелирования электрона*)

Сольватированный электрон: приложения в неорганической химии

- Изучение механизмов неорганических реакций, протекающих с переносом электрона
- Получение и исследование ионов металлов в необычных степенях окисления: Cd(I), Zn(I), Hg(I), In (II), Eu (II), Yb (II), Sm (II), Am (II) и другие
- Исследование спектральных характеристик нейтральных атомов в растворах: охарактеризованы *Pb⁰*, *Ag⁰*
- Исследование строения и свойств нестабильных неорганических радикалов

Сольватированный электрон: приложения в органической и биоорганической химии

- Изучение механизмов органических реакций с переносом электрона
- Получение и прямое исследование структуры и реакционной способности органических радикалов, анион-радикалов и карбанионов (в воде и органических растворителях)
- Препаративное восстановление органических соединений (селективно)
- Моделирование биологических процессов с переносом электрона, реакций переноса электрона в организованных системах (мицеллы), ферментативных реакций, действия радиопротекторов

Сольватированный электрон: проблемы и перспективы

- Динамика сольватации в субпикосекундном диапазоне (вода, ЭГ)
- Микросольватация (организованные системы)
- Сольватированные электроны в сверхкритической воде
- Структура и динамика сольватации электрона в ионных жидкостях
- Механизмы «сверхбыстрых» и «медленных» реакций
- Роль гидратированного электрона в биологических процессах

Оптический спектр e_{aq}^{-} в сверхкритической D_2O при различных *р* (*Jay-Gerin et al., JCP, 2008*, **129**, 141511)

Оптический спектр е-_{aq} в ионной жидкости R4NNTf2 (*Wishart & Neta, JPC B, 2003,* **107**, 7261)