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Abstract 
 
Tafel slopes for multistep electrochemical reactions are derived from first principles. 
The derivation takes place in two stages. First, Dirac’s perturbation theory is used to 
solve the Schrödinger equation. Second, current-voltage curves are obtained by 
integrating the single-state results over the full density of states in electrolyte 
solutions. Thermal equilibrium is assumed throughout. Somewhat surprisingly, it is 
found that the symmetry factor that appears in the Butler-Volmer equation is different 
from the symmetry factor that appears in electron transfer theory, and a conversion 
formula is given. Finally, the Tafel slopes are compiled in a convenient look-up table. 
 
 

Dedication 
 
This article is dedicated to Professor Keith B. Oldham on the occasion of his eightieth 
birthday. 
 
 

Introduction 
 
To help celebrate the eightieth birthday of my long-time friend and colleague Keith B. 
Oldham, I thought it might be fun to present him with a table of Tafel slopes derived 
from first principles (i.e. from the Schrödinger equation). A total proof of this kind 
has been technically feasible for a number of years but —so far as I know— it has 
never been attempted before. This seems an auspicious moment to undertake this task.  
 
 
 

The Wavefunction of an Electron 
 
"The amount of theoretical ground one has to cover before being able to solve 
problems of real practical value is rather large..." 
 
P.A.M. Dirac, in "The Principles of Quantum Mechanics", Clarendon Press, Oxford, 
1930. 
 
Electrochemists want to understand how electrons interact with matter. But before 
they can even begin to construct a model, they must first specify the positions of the 
electrons. This is not as easy as it sounds, however, because the positions of electrons 
are not determined by the laws of newtonian mechanics. They are determined by the 
probabilistic laws of quantum mechanics. In particular, the location of any given 
electron is governed by its wavefunctionΨ . This is a complex-valued function that 
describes the probability amplitude of finding the electron at any point in space or 
time. Now, it is a well-known postulate of quantum mechanics that the maximum 
amount of information about an electron is contained in its wavefunction. If we accept 
this postulate as true (and we currently have no alternative) then we are forced to 
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conclude that the wavefunction is the best available parameter for characterizing the 
behaviour of an electron in space-time. 
 
It is natural to enquire how well wavefunctions do characterize electron behaviour. In 
general, the answer is “very well indeed”. For example, wavefunctions permit the 
calculation of the most probable values of all the known properties of electrons or 
systems of electrons to very high accuracy. One problem remains, however. Due to 
the probabilistic character of wavefunctions, they fail to describe the individual 
behaviour of any system at very short times. In such cases, the best they can do is 
describe the average behaviour of a large number of systems having the same 
preparation. Despite this limitation, the analysis of wavefunctions nevertheless 
provides measures of the probabilities of occurrence of various states and the rates of 
change of those probabilities. Here, following Dirac, we are happy to interpret the 
latter as reaction rate constants. 
 
 

The Uncertainty Principle   
 
This principle was first enunciated by Werner Heisenberg in 1927 [1]. The principle 
asserts that one cannot simultaneously measure the values of a pair of conjugate 
quantum state properties to better than a certain limit of accuracy. There is a 
minimum for the product of the uncertainties. Key features of pairs of conjugate 
quantum state properties are that they are uncorrelated, and, when multiplied together, 
have dimensions of energy ×  time. Examples are (i) momentum-and-location, and (ii) 
energy-and-lifetime. Thus 
 
∆p ∆x  ≥  2/h                                                                                                             (1) 
 
∆U ∆t  ≥  2/h                                                                                                             (2) 
 
Here p is momentum of a particle (in one dimension), x is location of a particle (in 
one dimension), U is energy of a quantum state, t is lifetime of a quantum state, and h  
is the Reduced Planck Constant, 
 

fs)eV(6582.0
π2

×==
h

h                                                                                       (3) 

  
The formal and general proof of the above inequalities was first given by Howard 
Percy Robertson in 1929 [2]. He also showed that the Uncertainty Principle was a 
deduction from quantum mechanics, not an independent hypothesis. 
  
As a result of the “blurring” effect of the uncertainty principle, quantum mechanics is 
unable to predict the precise behaviour of a single molecule at short times. But it can 
still predict the average behaviour of a large number of molecules at short times, and 
it can also predict the time-averaged behaviour of a single molecule over long times. 
For an electron, the energy measured over a finite time interval ∆t has an uncertainty 
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t
U

Δ
≥Δ

2
h                                                                                                                 (4) 

 
and therefore to decrease the energy uncertainty in a single electron transfer step to 
practical insignificance (< 1meV, say, which is equivalent to about 1.602 ×  10–22 
J/electron) it is necessary to observe the electron for t > 330 fs.  
 
 

 
The Quantum Mechanics of Electron Transfer 

 
As shown by Erwin Schrödinger [3], the wavefunction Ψ of a (non-relativistic) 
electron may be derived by solving the time-dependent equation 
 

Ψ=
∂
Ψ∂ H
t

i )( h                                                                                                           (5) 

 
Here, H is a linear operator known as the Hamiltonian, and h  is the Reduced Planck 
Constant ( π2/h= ). The Hamiltonian is a differential operator of total energy. It 
combines the kinetic energy and the electric potential energy of the electron into one 
composite term: 
 

Ψ−Ψ∇−=
∂
Ψ∂ V

mt
i e

2
2

2h
h                                                                                    (6) 

 
where m is the electron mass, –e is the electron charge, and V is the electric potential 
of the electric field. Note that the electric potential at a particular point in space (x, y, 
z), created by a system of charges, is simply equal to the change in potential energy 
that would occur if a test charge of +1 were introduced at that point. So –eV is the 
potential energy in the electric field. The Laplacian 2∇ , which also appears in the 
Schrödinger equation, is the square of the vector operator ∇ ("del"), defined in 
Cartesian co-ordinates by 
 

ẑ
z

ŷx̂),,(
∂
∂

+
∂
∂

+
∂
∂

=∇
ϕϕϕϕ

yx
zyx                                                                      (7) 

 
Every solution of the Schrödinger equation represents a possible state of the system. 
There is, however, always some uncertainty associated with the manifestation of each 
state. Due to the uncertainty, the square of the modulus of the wavefunction 2Ψ  may 
be interpreted in two ways. Firstly, and most abstractly, as the probability that an 
electron might be found at a given point. Secondly, and more concretely, as the 
electric charge density at a given point (averaged over a large number of identically 
prepared systems for a short time, or averaged over one system for a long time). 
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Transition Probabilities 
 
Almost all kinetic experiments in physics and chemistry lead to statements about the 
relative frequencies of events, expressed either as deterministic rates or as statistical 
transition probabilities. In the limit of large systems these formulations are, of course, 
equivalent. By definition, a transition probability is just the probability that one 
quantum state will convert into another quantum state in a single step.  
 
“The theory of transition probabilities was developed independently by Dirac with 
great success. It can be said that the whole of atomic and nuclear physics works with 
this system of concepts, particularly in the very elegant form given to them by Dirac.” 
 
Max Born, “The Statistical Interpretation of Quantum Mechanics”, Nobel Lecture, 
11th December 1954. 
 
 

Time Dependent Perturbation Theory 
 
It is an unfortunate fact of quantum mechanics that exact mathematical solutions of 
the time-dependent Schrödinger equation are possible only at the very lowest levels of 
system complexity. Even at modest levels of complexity, mathematical solutions in 
terms of the commonplace functions of applied physics are impossible. The 
recognition of this fact caused great consternation in the early days of quantum 
mechanics. To overcome the difficulty, Paul Dirac developed an extension of 
quantum mechanics called "perturbation theory", which yields good approximate 
solutions to many practical problems [4]. The only limitation on Dirac’s method is 
that the coupling (orbital overlap) between states should be weak.  
 
The key step in perturbation theory is to split the total Hamiltonian into two parts, one 
of which is simple and the other of which is small. The simple part consists of the 
Hamiltonian of the unperturbed fraction of the system, which can be solved exactly, 
while the small part consists of the Hamiltonian of the perturbed fraction of the 
system, which, though complex, can often be solved as a power series. If the latter 
converges, solutions of various problems can be obtained to any desired accuracy 
simply by evaluating more and more terms of the power series. Although the solutions 
produced by Dirac's method are not exact, they can nevertheless be extremely 
accurate.  
 
In the case of electron transfer, we may imagine a transition between two well-defined 
electronic states (an occupied state D  inside an electron donor D, and an 

unoccupied state A  inside an electron acceptor A), whose mutual interaction is 
weak. Dirac showed that, provided the interaction between the states is weak, the 
transition probability PDA for an electron to transfer from the donor state to the 
acceptor state increases linearly with time. Let's see how Dirac arrived at this 
conclusion. 
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Electron Transfer From One Single State to Another Single State 
 
If classical physics prevailed, the transfer of an electron from one single state to 
another single state would be governed by the conservation of energy, and would 
occur only when both states had exactly the same energy. But in the quantum world, 
the uncertainty principle (in its time-energy form) briefly intervenes, and allows 
electron transfer between states even when their energies are mismatched by a small 
amount tU Δ=Δ 2/h  (although energy conservation still applies on average). As a 
result of this complication, the transition probability of electrons between two states 
exhibits a complex behaviour. Roughly speaking, the probability of electron transfer 
between two precise energies inside two specified states increases as 2t , while the 
energy uncertainty decreases as 1–t . The net result is that the overall state-to-state 
transition probability increases proportional to t. 
 
To make these ideas precise, consider a perturbation which is "switched on" at time 
t=0, and which remains constant thereafter. In electrochemistry this corresponds to the 
arrival of the system at the transition state. The time-dependent Schrödinger equation 
may now be written 
 

Ψ+=
∂
Ψ∂ )()( 10 HH
t

ih                                                                                           (8) 

 
where ),( txΨ  is the electron wavefunction, 0H  is the unperturbed Hamiltonian 
operator, and 1H  is the perturbed Hamiltonian operator: 
 
H1(t)   =    0      for     t < 0                                                                                         (9) 
 
H1(t)   =   H1     for     t ≥  0                                                                                      (10) 
 
This is a step function with H1 being a constant independent of time at 0≥t . Solving 
Eq. (8), one finds that the probability of electron transfer between two precise 
energies UD and UA is  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
≈

h

tUU
UU

M
tUP ][cos–1

2
),( DA

2
DA

2
DA

DA                                                     (11) 

 
where the modulus symbol denotes the (always positive) magnitude of any complex 
number. This result is valid provided the “matrix element” DAM  is small. The matrix 
element DAM  is defined as 
 

vVM dADDA ∫ ΨΨ=                                                                                             (12) 
 
where DΨ  and AΨ  are the wavefunctions of the donor and acceptor states, V is their 
interaction energy, and the integral is taken over the volume v of all space. MDA is, 
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therefore, a function of energy E through the overlap of the wavefunctions DΨ  and 

AΨ , and accordingly has units of energy. 
 
In an alternative representation, we exploit the identity 
 

)2/(sin2cos–1 2 xx =                                                                                            (13) 
 
so that 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

−
≈

h2
][

sin
4

),( DA2
2

DA

2
DA

DA
tUU

UU

M
tUP                                                       (14) 

 
If we now recall the cardinal sine function 
 

sinc(x)   =   
x

xsin                                                                                                      (15) 

 
then we obtain 
 

⎟
⎠
⎞

⎜
⎝
⎛≈

hh 2
]–[

sinc),( DA2
2

22
DA

DA
tUUtM

tUP                                                        (16) 

 
To derive the asymptotic (long-time) state-to-state transition probability from this 
energy-to-energy probability we must integrate over the entire band of energies 
allowed by the uncertainty principle. This yields 
 

)–(δπ2)( DA
2

DADA UUMttP
h

=                                                                       (17) 

 
This result is wonderfully compact, but unfortunately it is not very useful to 
electrochemists because it fails to describe electron transfer into multitudes of 
acceptor states at electrode surfaces, supplied by the 108-1014 reactant molecules per 
cm2 that are typically found there. These states have energies distributed over several 
hundred meV, and all of them interact simultaneously with all the electrons in the 
electrode. They also fluctuate randomly in electrostatic potential due to interactions 
with the thermally agitated solvent and supporting electrolyte (dissolved salt ions). 
Accordingly, Eq. (17) must be modified to deal with this more complex case. 
 
 

Electron Transfer into a Multitude of Acceptor States 
 
To deal with this more complex case it is necessary to define a probability density of 
acceptor state energies )(φA U . Accordingly, we define )(φA U  as the number of 
states per unit of energy, and note that it has units of joule–1. If we further assume that 
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there is such a high density of states that they can be treated as a continuum, then the 
transition probability between the single donor state D  and the multitude of 

acceptor states A  becomes 
 

UU
tUUtM

tP D d)(φ
2

]–[
sinc)( A

2
2

22
DA

DA ⎟
⎠
⎞

⎜
⎝
⎛≈ ∫

∞

∞− hh
                                   (18) 

 
Although this equation appears impossible to solve, Dirac, in a tour de force [5], 
showed that an asymptotic result could be obtained by exploiting the properties of a 
"delta function" such that 
 

( ) ( ) ( )00 d–δ     xFxxFxx =∫
∞+

∞−
                                                                          (19) 

 
and 
 

( ) ( )x
a

ax δ1δ =                                                                                                        (20) 

 
By noting the identity 
 

∞→t
lim  ( )D

D UU
t

tUU
–δπ2

2
]–[

sinc2 h

h
=⎟

⎠
⎞

⎜
⎝
⎛                                                          (21)  

 
and then extracting the limit ∞→t , Dirac found that (!) 
 

)(φπ2)(lim DA
2

DADA UMttP
t h

≈
∞→

                                                                        (22) 

 
where DU , the single energy of the donor state, is a constant. As we gaze in 
amazement at Eq. (22), we remark only that )(φ DA U  is not the full density of states 
function )(φA U  which it is sometimes mistakenly stated to be in the literature. It is, 
in fact, the particular value of the density of states function at the energy DU .  
 
Upon superficial observation, it may appear that the above formula for )(DA tP  is 
applicable only in the limit of infinite time. But actually it is valid after a very brief 
interval of time 
 

U
t

Δ
>Δ

2
h                                                                                                              (23) 

 
This time is sometimes called the Heisenberg Time. At later times, Dirac’s theory of 
the transition probability can be applied with great accuracy. Finally, in the ultimate 
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simplification of electron transfer theory, it is possible to derive the rate constant for 
electron transfer ket by differentiating the transition probability. This leads to Dirac's 
final result 
 

)(φπ2
DA

2
DAet UMk

h
=                                                                                      (24) 

 
A remarkable feature of this equation is the absence of any time variable. It was 
Enrico Fermi who first referred to this equation as a "Golden Rule" (in 1949 — in a 
university lecture!) and the name has stuck [6]. He esteemed the equation so highly 
because it had by then been applied with great success to many non-electrochemical 
problems (particularly the intensity of spectroscopic lines) in which the coupling 
between states (overlap between orbitals) was small. Because the equation is often 
referred to as “Fermi’s Golden Rule”, the ignorant often attribute the equation to 
Fermi. This is a very bad mistake. 
 
Despite its successful application to many diverse problems, it is nevertheless 
important to remember that the Golden Rule applies only to cases where electrons 
transfer from a single donor state into a multitude of acceptor states. If electrons 
originate from a multitude of donor states —as they do during redox reactions in 
electrolyte solutions— then the transition probabilities from all the donor states must 
be added together, yielding  
 

DDD– DA
2

DAet d)(φ)(φπ2 UUUMk ∫
∞+

∞
=

h
                                                  (25) 

 
There is, alas, nothing golden about this formula. To evaluate it, one must first 
develop models of each of the probability densities, and then evaluate the integral by 
brute force. 
 
The density of states functions )(φA U  and )(φD U  are dominated by fluctuations of 
electrostatic potential inside electrolyte solutions, even at thermodynamic equilibrium. 
According to Fletcher [7], a major source of these fluctuations is the random thermal 
motion (Brownian motion) of electrolyte ions. The associated bombardment of 
reactant species causes their electrostatic potentials to vary billions of times every 
second. This, in turn, makes the tunnelling of electrons possible, because it ensures 
that any given acceptor state will sooner-or-later have the same energy as a nearby 
donor state.  
 
 

Electrostatic Fluctuations at Equilibrium 
 
The study of fluctuations inside equilibrium systems was brought to a high state of 
development by Ludwig Boltzmann in the nineteenth century [8]. Indeed, his methods 
are so general that they may be applied to any small system in thermal equilibrium 
with a large reservoir of heat. In our case, they permit us to calculate the probability 
that a randomly selected electrostatic fluctuation has a work of formation .GΔ  
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A system is in thermal equilibrium if the requirements of detailed balance are 
satisfied, namely, that every process taking place in the system is exactly balanced by 
its reverse process, so there is no net change over time. This implies that the rate of 
formation of fluctuations matches their rate of dissipation. In other words, the 
fluctuations must have a distribution that is stationary. As a matter of fact, the 
formation of fluctuations at thermodynamic equilibrium is what statisticians call 
strict-sense stationary. It means that the statistical properties of the fluctuations are 
independent of the time at which they are measured. As a result, at thermodynamic 
equilibrium, we know in advance that the probability density function of fluctuations 

)(φA U  must be independent of time.  
 
Boltzmann discovered a remarkable property of fluctuations that occur inside systems 
at thermal equilibrium: they always contain the "Boltzmann factor", 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−
Tk
W

B
exp                                                                                                             (26) 

 
where WΔ  is an appropriate thermodynamic potential, kB is the Boltzmann constant, 
and T is the thermodynamic (absolute) temperature. At constant temperature and 
pressure, WΔ  is the Gibbs energy of formation of the fluctuation GΔ . Given this 
knowledge, it follows that the probability density function )(φA V  of electric 
potentials (V), must have the stationary form 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−
=

Tk
GAV

B
A exp)(φ                                                                                      (27) 

 
where A is a time-independent constant. In the case of charge fluctuations that trigger 
electron transfer, we have 
 

Λ
Δ

=Δ=Δ
2

2 )(
2
1)(

2
1 VVCG                                                                                  (28) 

 
where C is the capacitance between the reactant species (including its ionic 
atmosphere) and infinity, and Λ  is the elastance (reciprocal capacitance) between the 
reactant species and infinity. Identifying 2/2eΛ  as the reorganization energy λ  we 
immediately obtain 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

Tk
eVeV

AV
B

2
A

A λ4
)(

exp)(φ                                                                        (29) 

 
which means we now have to solve only for A. Perhaps the most elegant method of 
solving for A is based on the observation that )(φA V  must be a properly normalized 
probability density function, meaning that its integral must equal one: 
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1d
λ4

)(
exp

B

2
A =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∫

∞+

∞−
V

Tk
eVeV

A                                                                         (30) 

 
This suggests the following four-step approach. First, we recall from tables of 
integrals that 
 

1d)exp(
π

1 2 =−∫
∞+

∞−
xx                                                                                        (31) 

 
Second, we make the substitution 
 

Tk
eVeVx
B

A

λ4
−

=                                                                                                      (32) 

 
so that 
 

1d
λ4

)(exp
λ4π

1

B

2
A

B

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∫

∞+

∞−
V

Tk
eVeV

Tk
e                                                      (33) 

 
Third, we compare the constant in the equation with the constant in the integral 
containing A, yielding 
 

Tk
eA

B

2

πλ4
=                                                                                                        (34) 

 
Fourth, we substitute for A in the original expression to obtain 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

Tk
eVeV

Tk
eV

B

2
A

B
A λ4

)(
exp

πλ4
)(φ                                                         (35) 

 
This, at last, gives us the probability density of electrostatic potentials. We are now 
just one step from our goal, which is the probability density of the energies of the 
unoccupied electron states (acceptor states). We merely need to introduce the 
additional fact that, if an electron is transferred into an acceptor state whose electric 
potential is V, then the electron's energy must be –eV because the charge on the 
electron is –e. Thus, 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

Tk
eVeV

Tk
eV

B

2
A

B
A λ4

)(
exp

πλ4
1)(–φ                                                     (36) 
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or, writing U = –eV,  
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

Tk
UU

Tk
U

B

2
A

B
A λ4

)(
exp

πλ4
1)(φ                                                               (37) 

 
where U is the electron energy. This equation gives the stationary, normalized, 
probability density of acceptor states for a reactant species in an electrolyte solution. 
It is a Gaussian density. We can also get the un-normalized result simply by 
multiplying )(φA U  by the surface concentration of acceptor species. Finally, we note 
that the corresponding formula for )(φD U  is also Gaussian 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
=

Tk
UU

Tk
U

B

2
D

B
D λ4

)(
exp

πλ4
1)(φ                                                               (38) 

 
where we have assumed that λλλ DA == . 
 
 

Homogeneous Electron Transfer  
 

As mentioned above, Dirac’s perturbation theory may be applied to any system that is 
undergoing a transition from one electronic state to another, in which the energies of 
the states are briefly equalized by fluctuations in the environment. If we assume that 
the relative probability of observing a fluctuation from energy i to energy j at 
temperature T is given by the Boltzmann factor exp(–ΔGij/kBT), then 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=

Tk
G

Tk
Hk

BB

2
DAet

*–exp
πλ4

1π2
h

                                                                 (39) 

 
where ket is the rate constant for electron transfer, HDA is the electronic coupling 
matrix element between the electron donor and acceptor species, kB is the Boltzmann 
constant, λ  is sum of the reorganization energies of the donor and acceptor species, 
and *GΔ  is the “Gibbs energy of activation” for the reaction. Incidentally, the fact 
that the reorganization energies of the donor and acceptor species are additive is a 
consequence of the statistical independence of )(φA U  and )(φD U . This insight 
follows directly from the old adage that “for independent Gaussian random variables, 
the variances add”. The same insight also collapses Eq. (25) back to the Golden Rule, 
except that the separate density of states functions must be replaced by a joint density 
of states function that describes the coincidence of the donor and acceptor energies. 
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Fig. 1. Gibbs energy diagram for homogeneous electron transfer between two 
non-interacting species in solution. At the moment of electron transfer, energy is 
conserved, so the reactants and the products have the same Gibbs energy at that 
point. The symmetry factor β  corresponds to the fractional charge of the 
fluctuation on the ionic atmosphere of the acceptor at the moment of electron 
transfer. After Fletcher [7]. 
 
 
Referring to Fig. (1) it is clear that *GΔ  is the total Gibbs energy that must be 
transferred from the surroundings to the reactants in order to bring them to their 
mutual transition states. This is simply 
 

λ4
)λ( 20

* GG Δ+
=Δ                                                                                               (40) 

 
which implies that 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+
=

Tk
G

Tk
Hk

B

20

B

2
DAet λ4

)λ(–exp
πλ4

1π2
h

                                                     (41) 

 
We can also define a symmetry factor β  such that 

λβ2* =ΔG                                                                                                             (42) 

and 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+=

Δ
Δ

=
λ

1
2
1

d
dβ

0

0

* G
G
G                                                                                    (43) 

 
Evidently 1/2β =  approximately if 0GΔ  is sufficiently small (i.e. the electron transfer 
reaction is neither strongly exergonic nor strongly endergonic), and 1/2β =  exactly 
for a self-exchange reaction )0( 0 =ΔG . From the theory of tunnelling through an 
electrostatic barrier, we may also write 
 

)γexp(–0
DADA xHH =                                                                                            (44) 

 
where γ  is a constant proportional to the square root of the barrier height, and x  is 
the distance of closest approach of the donor and acceptor.  
 

Heterogeneous Electron Transfer 
 
In the case of electron transfer across a phase boundary (e.g. electron transfer from an 
electrode into a solution), the law of conservation of energy dictates that the energy of 
the transferring electron must be added into that of the acceptor species, such that the 
sum equals the energy of all the product species. At constant temperature and pressure 
the energy of the transferring electron is just its Gibbs energy. 

Let us denote by superscript bar  the Gibbs energies of species in solution after the 
energy of the transferring electron has been added to them (see Fig. 2). We have 

qEGG += reactantreactant                                                                                          (45) 

eEG –reactant=                                                                                           (46) 

where e is the unit charge and E is the electrode potential of the injected electron. For 
the conversion of reactant to product, the overall change in Gibbs energy is 

reactantproduct
0

– GGG =Δ                                                                                        (47) 

)–(– reactantproduct eEGG=                                                                            (48) 

eEGG += )–( reactantproduct                                                                            (49) 

eEG +Δ= 0                                                                                                    (50)  

In the “normal” region of electron transfer, for a metal electrode, it is generally 
assumed that the electron tunnels from an energy level near the Fermi energy, 
implying FeEeE ≈ . Thus, for a heterogeneous electron transfer process to an acceptor 
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species in solution, we can use the Golden Rule directly 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Δ+
=

Tk
eEG

Tk
Hk

B

2
F

0

B

2
DAet λ4

)λ(–exp
πλ4

1π2
h

                                              (51) 

where λ  is the reorganization energy of the acceptor species in solution, and eEF is 
the Fermi energy of the electrons inside the metal electrode. Or, converting to molar 
quantities 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Δ+
=

RT
FEG

RT
NHk

m

2
F

0
mm

m

A2
DAet λ4

)λ(–exp
πλ4

π2
h

                                         (52) 

 
where etk  is the rate constant for electron transfer, h  is the reduced Planck constant, 

DAH  is the electronic coupling matrix element between a single electron donor and a 
single electron acceptor, AN  is the Avogadro constant, mλ  is the reorganization 
energy per mole, 0

mGΔ  is the difference in molar Gibbs energy between the acceptor 
and the product, and )(– FFE  is the molar Gibbs energy of the electron that tunnels 
from the Fermi level of the metal electrode into the acceptor.  
 
Equation (52) behaves exactly as we would expect. The more negative the Fermi 
potential FE  inside the metal electrode (i.e. the more negative the electrode potential), 
the greater the rate constant for electron transfer from the electrode into the acceptor 
species in solution. 

 

Fig. 2. Gibbs energy diagram for heterogeneous electron transfer from an 
electrode to an acceptor species in solution. The superscript bar indicates that the 
Gibbs energy of the injected electron has been added to that of the reactant. 
After Fletcher [7]. 
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Some notational simplification is achieved by introducing the definition 
 

F

0
mη– E

F
G

+
Δ

≡                                                                                                   (53) 

 
where η  is called the “overpotential”. Although the negative sign in this equation is 
not recommended by IUPAC, it is nevertheless sanctioned by long usage, and we 
shall use it here. With this definition, increasing overpotential η  corresponds to 
increasing rate of reaction. In other words, with this definition, the overpotential is a 
measure of the “driving force for the reaction”. The same inference may be drawn 
from the equation 
 

F
G

0
m–η Δ

≡                                                                                                            (54) 

 
An immediate corollary is that the condition 0η =  corresponds to zero driving force 
(thermodynamic equilibrium) between the reactant, the product, and the electrode 

)0(
0
m =ΔG . 

 
By defining a molar Gibbs energy of activation, 
 

m

2
F

0
mm*

m
λ4

)λ( FEGG +Δ+
=Δ                                                                                   (55) 

 

m

2
m

λ4
)η–λ( F

=                                                                                                 (56) 

 
we can conveniently put Eq. (52) into the standard Arrhenius form 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ
=

RT
G

RT
NHk

*
m

m

A2
DAet

–exp
πλ4

π2
h

                                                                 (57) 

 
We can further simplify the analysis by defining the partial derivative 

)η(–/
*
m FG ∂Δ∂  at constant 0

mGΔ  as the symmetry factor β , so that  
 

m
2*

m λβ=ΔG                                                                                                          (58) 
 
where 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
Δ∂

=
m

*
m

λ
η–1

2
1

)η(–
β F

F
G                                                                                    (59) 

 
This latter equation highlights the remarkable fact that electron transfer reactions 

require less thermal activation energy )(
*
mGΔ  as the overpotential η)(  is increased. 

Furthermore, the parameter β  quantifies the relationship between these parameters. 
 
Expanding Eq. (56) yields  
 

m

22
m

2
m*

m
λ4

ηηλ2–λ FFG +
=Δ                                                                               (60) 

 
which rearranges into the form 
 

η
4

1β2–
4
λm*

m FG ⎟
⎠
⎞

⎜
⎝
⎛ +

=Δ                                                                                      (61) 

 
Now substituting back into Eq. (57) yields 
 

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛=

RT
F

RTRT
NHk

4
η)12β(exp

4
λ–exp

πλ4
π2 m

m

A2
DAet

h
                                      (62) 

 

⎟
⎠
⎞

⎜
⎝
⎛ +

=
RT

Fk
4

η)12β(exp0                                                                                     (63) 

 
At thermal equilibrium an analogous equation applies to the back reaction, except that 
β  is replaced by β)–(1 . Thus for the overall current-voltage curve we obtain 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +

=
RT

F
RT

FII
4

η)β2–3(–exp–
4

η)1β2(exp0                                                  (64) 

 
where 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

mλ
η–1

2
1β F                                                                                                       (65) 

 
Eq. (64) is the current-voltage curve for a reversible, one-electron transfer reaction at 
thermal equilibrium. It differs from the “textbook” Butler-Volmer equation [9,10] 
namely 
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⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

RT
F

RT
F

II
ηβ–

exp–
ηβ

exp bf
0                                                                  (66) 

 
because the latter was derived on the (incorrect) assumption of linear Gibbs energy 
curves. The Butler-Volmer equation is therefore in error. However, its outward form 
can be “rescued” by defining the following modified symmetry factors 
 

4
1β2β f

+
=                                                                                                             (67) 

 
and 
 

4
β2–3βb =                                                                                                            (68) 

 
so that 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m
f 2λ

η–1
2
1β F                                                                                                 (69)                                 

 
and 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

m
b 2λ

η1
2
1β F                                                                                                 (70) 

 
Using these revised definitions we can continue to use the traditional form of the 
Butler-Volmer equation — provided we don’t forget that we have re-interpreted fβ  
and bβ in this new way! 
 

 
Tafel Slopes for Multi-Step Reactions 

 
As shown above, the current-voltage curve for a reversible, one-electron transfer 
reaction at thermal equilibrium may be written in the form 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

RT
F

RT
F

FACkI
ηβ–

exp–
ηβ

exp bf
0                                                         (71) 

 
which corresponds to the reaction 
 

−+ eA     B                                                                                                            (72) 
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In what follows, we seek to derive the current-voltage curves corresponding to the 
reaction 
 
 −+ eA n     Z                                                                                                        (73) 
 
In order to keep the equations manageable, we consider the forward and backward 
parts of the rate-determining step independently. This makes the rate-determining step 
appear irreversible in both directions. For the most part, we also restrict attention to 
reaction schemes containing uni-molecular steps (so there are no dimerization steps or 
higher-order steps). The general approach is due to Roger Parsons [11].  
 
We begin by writing down all the electron transfer reactions steps separately: 
 
   −+ eA       B            [pre-step 1]  
   −+ eB        C            [pre-step 2] 
    :                     :                : 
    :                     :                : 
   −+ eQ       R            [pre-step np] 
    
   −+ eR qn      S            [rds] 
 
   −+ eS        T             [post-step 1] 
   −+ eT        U             [post-step 2]       
    :                     :                 : 
    :                     :                 : 
   −+ eY        Z            [post-step nr]                                                                     (74) 
    
Next, we adopt some simplifying notation. First, we define np to be the number of 
electrons transferred prior to the rate-determining step. Then we define nr to be the 
number of electrons transferred after the rate-determining step. In between, we define 
nq to be the number of electrons transferred during one elementary act of the rate-
determining step. (This is a ploy to ensure that nq can take only the values zero or one, 
depending on whether the rate-determining step is a chemical reaction or an electron 
transfer. This will be convenient later.)  
 
Restricting attention to the above system of uni-molecular steps, the total number of 
electrons transferred is  
 

rqp nnnn ++=                                                                                                      (75)  
 
We now make the following further assumptions. (i) The exchange current of the rate-
determining step is at least one hundred times less than that of any other step, (ii) the 
rate-determining step of the forward reaction is also the rate-determining step of the 
backward reaction, (iii) no steps are concerted, (iv) there is no electrode blockage by 
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adsorbed species, and (v) the reaction is in a steady state. Given these assumptions, 
the rate of the overall reaction is 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ += η]β[–exp–η]β[exp bqrfqp0total RT

Fnn
RT
FnnII  

 
                       )]ηα(–exp–)/ηα([exp bf0 RTFRTFI /=                                         (76) 
 
In the above expression fα should properly be called The Transfer Coefficient of the 
Overall Forward Reaction, and correspondingly bα should properly be called The 
Transfer Coefficient of the Overall Backward Reaction. But in the literature they are 
often simply called Transfer Coefficients.  
 
It may be observed that nr does not appear inside the first exponential in Eq. (76). This 
is because electrons that are transferred after the rate-determining step serve only to 
multiply the height of the current/overpotential relation and do not have any effect on 
the shape of the current/overpotential relation. For the same reason, np does not 
appear inside the second exponential in Eq. (76). 
 
Although Eq. (76) has the same outward form as the Butler-Volmer Equation (Eq. 
(66)), actually the transfer coefficients fα  and bα  are very different to the modified 
symmetry factors fβ  and bβ , and should never be confused with them. Basically, fα  
and bα  are composite terms describing the overall kinetics of multi-step many-
electron reactions, whereas fβ  and bβ  are fundamental terms describing the rate-
determining step of a single electron transfer reaction. Under the assumptions listed 
above, they are related by the equations 
 

fqpf βα nn +=                                                                                                         (77) 
 
and 
 

bqrb βα nn +=                                                                                                         (78) 
 
A century of electrochemical research is condensed into these equations. And the key 
result is this: if the rate-determining step is a purely chemical step (ie. does not 
involve electron transfer) then 0q =n  and the modified symmetry factors fβ  and bβ  
disappear from the equations for fα  and bα . Conversely, if the rate-determining step 
is an electrochemical step (ie. does involve electron transfer), then 1q =n  and the 
modified symmetry factors fβ  and bβ  enter the equations for fα  and bα . Also, in 
passing, we remark that fα  and bα  differ from fβ  and bβ  in another important 
respect. The sum of fβ  and bβ  is 
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1ββ bf =+                                                                                                               (79) 
 
whereas the sum of fα and bα is 
 

n=+ bf αα                                                                                                              (80) 
 
That is, the sum of the transfer coefficients of the forward and backward reactions is 
not necessarily unity. This stands in marked contrast to the classic case of a single-
step one-electron transfer reaction, for which the sum is always unity. Furthermore, in 
systems where the rate-determining steps of the forward and backward reactions are 
not the same —a common occurrence— the sums of fα and bα have no particular 
diagnostic value.  
 
Regarding experimental measurements, the analysis of Tafel slopes [12] is generally 
performed by evaluating the expression 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

η
log2.303αorα bf

I
F

RT               I > 0I                                                     (81) 

 
Such an analysis should be treated with great caution, however, since both precision 
and accuracy require the collection of data over more than two orders of magnitude of 
current, with no ohmic distortion, no diffusion control, and no contributions from 
background currents. The kinetics should also be in a steady state. Accordingly, no 
experimental "Tafel slope" should be believed that has been derived from less than 
two orders of magnitude of current. 
 
The theoretical analysis of multi-step reactions is also difficult. On one hand, the 
number of possible mechanisms increases rapidly with the number of electrons 
transferred, which makes the algebra complex. On the other hand, the assumption that 
the exchange current of the rate-determining step is one hundred times less than that 
of all other steps is not necessarily true, and hence there is always a danger of over-
simplification. To steer a course between the Scylla of complexity and the Charybdis 
of over-simplification we here restrict our attention to quasi-equilibrated reduction 
reactions for which the number of mechanistic options is small. To simplify our 
analysis further we write fβ  in the form  
 

)–1(½
2λ
η–1

2
1β

m
f Δ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

F                                                                               (82) 

 
We also write mV60303.2 ≈FRT at 25°C. (Actually the precise value is 59.2 mV.) 
 
In what follows the rate-determining step is indicated by the abbreviation “rds”. Steps 
that aren't rate-determining are labelled "fast" (though of course in the steady state all 
steps proceed at the same rate). As a shorthand method of uniquely identifying 



 22

)–1(
120

Δ
  mV decade–1 

)–1(
120

Δ
  mV decade–1 

component steps of reaction schemes, we also adopt the following notation: E 
indicates an electrochemical step, C indicates a chemical step, D indicates a 
dimerization step, and a circumflex accent (^) indicates a rate-determining step. 
 

 
Example 1 

                                                            ( Ê ) 
                                                       
     −+ eO        R         rds 
         
In this case 0p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  )–1(½ Δ≈  and 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (83) 

  
 
This is the classical result for a single step one-electron transfer process. Note that fast 
chemical equilibria before or after the rate-determining step have no effect on the 
Tafel slope, as the next two examples confirm. 
 
 

Example 2 
( ÊC ) 

 
                                 O       I           (rearranges)    fast  
 
                                              −+ eI       R          rds 
 
In this case 0p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  )–1(½ Δ≈  and      
   

 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (84) 

 
  

Example 3 
 ( CÊ ) 

 
                                           −+ eO       I          rds 
     
                                                                 I       R       (rearranges)  fast  



 23

)–1(
120

Δ
  mV decade–1 

60  mV decade–1 

∞   mV decade–1 

    
In this case 0p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  )–1(½ Δ≈  and      
  

 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (85) 

 
 

Example 4 
( ĈE ) 

 
                                           −+ eO       I          fast 
     
                                                                 I      R       (rearranges)   rds   
    
In this case 1p =n , 0q =n , 0r =n  
so that fqpf βα nn +=  = 1 and 
 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                           independent of fβ .                  (86) 

 
 

Example 5 
EĈ  
 

                                 O       I           (rearranges)    rds  
 
                                              −+ eI        R           fast 
 
In this case 0p =n , 0q =n , 1r =n  
so that fqpf βα nn +=  = 0 and 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                         independent of fβ .                     (87) 

 
Note: the current is independent of potential, and is known as a kinetic current. 
 
 

Example 6 
( EÊ ) 
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)–1(
120

Δ
  mV decade–1 

)
3

–1(

40
Δ

  mV decade–1 

 
                                    −+ eO       I            rds 
  
                                      −+ eI       R         fast    
 
In this case 0p =n , 1q =n , 1r =n  
so that fqpf βα nn +=  )–1(½ Δ≈  and 
 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (88) 

  
 

Example 7 
( ÊE ) 

 
                                    −+ eO        I           fast                                  
 
                                     −+ eI         R          rds                        
 
In this case 1p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  )–1(½1 Δ+≈  and 
 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (89) 

  
 

 
 

Example 8 
( ĈEE ) 

 
                                   −+ eO       I         fast                                
 
                                    −+ eI       I′         fast                                                  
 
                                                      I′       R         (rearranges) rds 
 
In this case 2p =n , 0q =n , 0r =n  
so that fqpf βα nn +=  = 2 and 
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==
∂
∂

F
RT

I fα
303.2

log
η      30 mV decade–1        independent of fβ .                     (90) 

 
 

Example 9 
( EĈE ) 

 
                                   −+ eO       I         fast                                
 
                                              I      I′       (rearranges)  rds                          
 
                          –eI +′       R       fast 
 
 
In this case 1p =n , 0q =n , 1r =n  
so that fqpf βα nn +=  = 1 and 
 

==
∂
∂

F
RT

I fα
303.2

log
η      60 mV decade–1        independent of fβ .                    (91) 

 
 
Note:  60 mV decade–1 Tafel slopes are very common for the reduction reactions of 
organic molecules containing double bonds, because as soon as the first electron is 
“on board” there are many opportunities for structural rearrangement compared with 
inorganic molecules.  This rearrangement is usually rate determining. 
 
 

Example 10 
( ÊEC ) 

 
                                   −+ eO       I         fast                                
 
                                              I      I′       (rearranges)  fast                          
 
                          –eI +′       R       rds 
 
In this case 1p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  )–1(½1 Δ+≈  and 
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)
5

–1(

24
Δ

  mV decade–1 

)
3

–1(

40
Δ

  mV decade–1 

 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (92)  

  
 

 
 

Example 11 
( ĈEEE ) 

 
−+ eO       I         fast 

 
   −+ eI       I′         fast 

 
   −+′ eI       I ′′         fast 

 
                                                           I ′′       R        (rearranges) rds 
 
In this case 3p =n , 0q =n , 0r =n  
so that fqpf βα nn +=  = 3 and 
 

==
∂
∂

F
RT

I fα
303.2

log
η      20 mV decade–1        independent of fβ .                    (93) 

 
 

Example 12 
( ÊEE ) 

 
−+ eO       I         fast 

 
  −+ eI       I′         fast 

 
−+′ eI       R         rds 

 
In this case 2p =n , 1q =n , 0r =n  
so that fqpf βα nn +=  ≈  2 + )–1(½ Δ  and 
 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (94) 
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)–1(
120

Δ
  mV decade–1 

 
Example 13 

( DÊC ) 
 
                                                  H+                       (H+)ads        fast 
 
                                     (H+)ads   +   e–                   (H•)ads         rds 
 
                                             2(H•)ads                      H2            fast   
 
In this case, np = 0, nq = 1, 0r =n , but the presence of the follow-up dimerization step 
means that the total number of electrons per molecule of product n = 2(np + nq) + nr = 
2. However, the dimerization step has no effect on the rate of the reaction, so that 
 

fqpf βα nn +=  )–1(½ Δ≈  and 
 
 

≈=
∂
∂

F
RT

I fα
303.2

log
η                                                                                            (95) 

  
 
Notes: 
 
(i) This is a candidate model for hydrogen evolution on mercury.  
 
(ii) The formation of (H•)ads is slow and the destruction of (H•)ads is fast. Hence the 
electrode surface has a low coverage of adsorbed hydrogen radicals.  
 
(iii) For simplicity we have written the hydrogen ion H+ instead of the hydronium ion 

+ΟΗ 3 .  
 
(iv) In the last stage of the reaction we have assumed that (H•)ads is mobile on the 
electrode surface, so the mutual encounter rate of (H•)ads species is fast. 
 
(v) At low rates of reaction the H2 produced is present in solution as H2(aq). At high 
rates of reaction the H2 nucleates as bubbles and evolves as a gas. 
  
(vi) This mechanism is not one of the textbook mechanisms. The closest textbook 
mechanism is the “Volmer mechanism”, which assumes a concerted electron transfer 
and proton transfer: 
                                    −+ + eH        (H•)ads                                               (96)  
 
Recall that two reactions are said to be concerted if the overall rate of reaction 
through their merged transition state is faster than the rate through their separate 
transition states. Because the Volmer mechanism posits simultaneous electron and 
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nuclear motions it violates the Frank-Condon principle. However, this is not to say 
that it doesn't occur in reality, because H+ has a low rest mass compared with all other 
chemical species. 
 

Example 14 
( D̂CE ) 

 
                                                 H+                        (H+)ads         fast 
 
                                     (H+)ads  +  e–                     (H•)ads         fast 
   
                                             2(H•)ads                      H2              rds 
 
In this case np = 1, nq = 0, 0r =n , but the presence of the rate-determining 
dimerization step means that the total number of electrons per molecule of product n 
= 2(np) + nq + nr = 2. The overall rate of reaction now depends on the square of the 
concentration of (H•)ads, so that 
 

fqpf β)(2α nn +=  = 2 and  
 

==
∂
∂

F
RT

I fα
303.2

log
η      30 mV decade–1        independent of fβ .                    (97) 

 
Notes: 
 
(i) This is a candidate model for hydrogen evolution on palladium hydride. 
 
(ii) This mechanism is known in the literature as "The Tafel Mechanism".  
 
(iii) A low coverage of the electrode is assumed again. However, on this occasion, 
such an assumption possibly conflicts with the fact that the formation of (H•)ads may 
be fast and the destruction of (H•)ads may be slow. If that occurs, a more complex 
reaction scheme has to be considered to take into account the coverage by 
intermediates. 
 
(iv) The hydrogen evolution reaction exemplifies the Metal Electrode Material Effect. 
This effect occurs when an electrode surface stabilizes an intermediate that is unstable 
in solution, and thus enhances the overall rate (i.e. decreases the overpotential). In the 
present case, the palladium surface strongly stabilizes H• and so its hydrogen 
overpotential is very low. By contrast, the mercury surface only weakly stabilizes H• 
and so its hydrogen overpotential is very high. [The instability of H•(aq) is evident 
from the standard potential of its formation from H+, about –2.09V vs SHE, so free 
H•(aq) never appears at "normal" potentials between 0 and –2.0V vs SHE.] 
 
(v) An alternative formulation of the metal electrode material effect is the following: 
If the same overall reaction occurs faster at one electrode material than another, then 
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the faster reaction necessarily involves an adsorbed intermediate. This is, in fact, a 
very clever way of “observing” short-lived intermediates without using fancy 
apparatus! However, to be certain that a reaction genuinely involves an adsorbed 
intermediate, the overpotential of the faster case should be at least ekT  (25.7mV) 
less than that of the slower case, to ensure that the difference is not due to minor 
differences in the density-of-states at the Fermi energy of the electrodes. 
 
(vi) At low rates of reaction the H2 produced is present in solution as H2(aq). 
 

 
Summary 

 
Reaction 
Scheme 

Tafel Slope b 
(mV decade–1) 

EĈ  ∞  
EDĈ  ∞  

Ê  120/(1–Δ ) 
EÊ  120/(1–Δ ) 
EEÊ  120/(1–Δ ) 
CÊ  120/(1–Δ ) 

CEÊ  120/(1–Δ ) 

ÊC  120/(1–Δ ) 

DÊC  120/(1–Δ ) 

ĈE  60 exactly 

EĈE  60 exactly 

ÊE  40/(1– 3/Δ ) 
EÊE  40/(1– 3/Δ ) 
ÊEC  40/(1– 3/Δ ) 

ĈEE  30 exactly 

D̂CE  30 exactly 

ÊEE  24/(1– 5/Δ ) 
ĈEEE  20 exactly 

 
Table 1. Tafel slopes for multistep electrochemical reactions. Notation: E 
indicates an electrochemical step, C indicates a chemical step, D indicates a 
dimerization step, and a circumflex accent (^) indicates a rate-determining step. 
The word “exactly” is intended to signify “a result independent of β ”. 

 
 

Conclusions 
 
Tafel slopes for multistep electrochemical reactions have been derived from first 
principles (Table 1). Whilst no claim is made that individual results are original 
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(indeed most of them are known), their derivation en masse has allowed us to identify 
the assumptions that they all have in common. Thus the four assumptions of standard 
electrochemical theory that emerge are: (1) there is weak orbital overlap between 
reactant species and electrodes, (2) the ambient solution never departs from 
thermodynamic equilibrium, (3) the fluctuations that trigger electron transfer are 
drawn from a Gaussian distribution, and (4) there is quasi-equilibrium of all reaction 
steps other than the rate-determining step.  
 
Finally, we reiterate that the Butler-Volmer equation fails at high overpotentials. The 
rigorous replacement is Eq. (64), although traditionalists may prefer to retain the old 
formula by applying the corrections given by Eqs. (67) and (68). 
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Figure Captions 
 

Fig. 1. Gibbs energy diagram for homogeneous electron transfer between two species 
in solution. At the moment of electron transfer, energy is conserved, so the reactants 
and the products have the same Gibbs energy at that point. The symmetry factor β  
corresponds to the fractional charge of the fluctuation on the ionic atmosphere of the 
acceptor at the moment of electron transfer. After Fletcher [7]. 

Fig. 2. Gibbs energy diagram for heterogeneous electron transfer from an electrode to 
an acceptor species in solution. The superscript bar indicates that the Gibbs energy of 
the injected electron has been added to that of the reactant. After Fletcher [7]. 
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Fig. 2 
 
 
 

 


