

Structural diagnostics of functional materials in action: capabilities of X-ray synchrotron techniques

Yan Zubavichus

National Research Centre «Kurchatov Institute», Moscow, Russia

Scope of the lecture

- Introduction to synchrotron radiation (SR)
- Scheme and capabilities of the Structural Materials Science beamline at the Kurchatov SR source
- Experiments aimed at techniques development
- Examples of combined structural studies of complex materials

Synchrotron Radiation

Electromagnetic radiation generated by ultrarelativistic electrons/positrons traveling along circular orbits in accelerators of light charged particles (e⁻/p⁺)

Advantages compared to standard X-ray sources

- Intensity/Brightness higher by 6-10 orders of magnitude
- Continuum spectrum from IR to hard Xrays
- High natural collimation
- Tunable polarization
- Partial coherence

Synchrotron X-ray techniques

Spectroscopy

Diffraction

Imaging

Mixed and combined techniques (anomalous scattering, microspectroscopy, etc.)

Synchrotron sources in Russia

Siberian Center for Synchrotron Radiation (Budker Institue for Nuclear Physisc, Novosibirsk) in operation since mid 1970-ies

Storage rings VEPP-3 (2 GeV, 120 mA), VEPP-4 (5 GeV, 40 mA) – both **1**st generation (ε

~300 nm·rad)

11 beamlines ssrc.inp.nsk.su

<u>Kurchatov Synchrotron Radiation Source</u> (NRC «Kurchatov Institute», Moscow) in operatiion since early 2000-ies Siberia-1 (booster, 450 MeV) – 3 VUV beamlines Siberia-2 – dedicated **2nd generation source** (2.5 GeV, 300 mA, ε ~75 nm·rad), 16 beamlines www.kcsr.kiae.ru

Zelenograd Synchrotron Radiation Facility (Lukin R&D Institute of Physical Problems), http://www.niifp.ru – under construction

Dubna Electron Synchrotron (JINR) http://wwwinfo.jinr.ru/delsy - project development

International collaboration: Russian-German beamline at BESSY II http://www.bessy.de/lab_profile/04.rglab/.RGLab Russian involvement in ESRF consortium (since July 2011) Russian participation in European XFEL project (scheduled start in 2014, **4th generation source)**

Kurchatov Synchrotron Radiation Centre

X-ray stations						
1	Protein Crystallography					
2	Precision X-ray Optics					
3	X-ray Crystallography and Physical Materials Science					
4	Medical Imaging					
6	Energy-Dispersive EXAFS					
7	Structural Materials Science (SMS)					
8	X-ray Small Angle Diffraction Cinema (bioobjects)					
9	Refraction Optics & X-ray Fluorescence Analysis					
10	X-ray Topography & Microtomography					
VUV stations						
11	X-ray Photoelectron Spectroscopy					
12	Optical spectroscopy for Condensed Matter					
13	Luminescence & Optical Investigations					
	Technological stations					
14	X-ray Standing Waves for Langmuir-Blodgett Films					
15	Molecular Beam Epitaxy					
16	LIGA					

Structural Materials Science beamline

- In the user mode since 2004
- <u>Techniques implemented</u>: XANES/EXAFS, XRD, SAXS
- <u>Mission</u>: combined multitechnique X-ray diagnostics of non-crystalline and nanostructured functional materials
- <u>Objects</u>: supported catalysts, metal/polymer hybrids, metal glasses and alloys, transition metal cluster and coordination compounds, colloidal suspensions

SMS : optical scheme

Modes of measurements

Most demanded measurements: transmission XAFS with an autosampler

Autosampler with a holder for 9 samples

Reference sample for the energy scale calibration (metal foil)

> Molecular Aspects of Electrochemistry, Dubna, 26-31 August 2012

Ionization chambers

Sample temperature control

Limited capabilities for temperature variation:

-120°C or -196°C

Cooling From 500°C down to -120°C ~ 1 hour

N₂, <u>cold gas</u> or liquid

Chromel-alumel (Type K) thermocouple

20-550°C

Thermostabilization $\pm 1^{\circ}C$

 $4 \times 350 \text{ W}$

Closed-cycle He-refrigerator

<u>The minimum temperature reached</u> 5.5K + precise temperature variation up to room temperature

Gas inlet system

- Three-component mixtures
- Inert gases: He, N₂, Ar
- Redox processing: O₂, H₂
- Catalytic substrates: CO, CH₄

Combined use of XAFS, XRD and SAXS

- **XANES** oxidation state of heavy atoms + coordination symmetry
- EXAFS local neighborhood of a given heavy atom
- **XRD** long-range order, phase composition, size of crystallites
- **SAXS** size and shape of nanoparticles or pores in a range of 1-100 nm

X-ray absorption spectroscopy: basics

XANES probes the energy distribution of certain symmetryallowed MOs or DOS features above the Fermi level

Fermi's golden rule: $\mu \sim |\langle f | V | i \rangle|^2$, f, i – wave functions of the final and initial Molecular Aspects of Electrochemistry, states, V – dipole moment operat@ubna, 26-31 August 2012

Initial state: electron on the core level Final state: outgoing photoelectron wave

Local-structrure parameters of the central atom can be retrieved from EXAFS

$$\chi(k) = \sum_{j} \frac{S(k)N_{j}}{kr_{j}^{2}} \Big| f_{j}(k,\pi) \Big| \sin(2kr_{j} + \varphi_{j}(k)) e^{-2\sigma_{j}^{2}k^{2}} e^{-2r_{j}/\lambda(k)}$$

- χ normalized background-subtracted EXAFS-signal
- *k* photoelectron vector modulus ($\equiv 2\pi/\lambda$)
- S Extrinsic loss coefficient (0.7-1.0)
- N- coordination number in the j-th coordination sphere
- r interatomic distance
- f- backscattering amplitude
- ϕ phase shift
- σ Debye-Waller factors
- λ -photoelectron mean-free path

Techniques development

- Complementary utilization of XAFS, SAXS and XRD in structural diagnostics of complex poorly ordered materials
- Structural diagnostics of functional materials in situ under operational conditions
- Online structural monitoring of dynamical processes (phase transitions, chemical reactions)
- Local-sensitive microbeam techniques applied to microheterogeneous specimens

Experiments aimed at techniques development

- Time-resolved diffraction
- Spatially resolved diffraction
- XAFS monitoring of chemical reactions in aqueous solutions

Pd acetate reduction with molecular hydrogen

Pd K-edge XANES

Morphology of LTSC Nb₃Sn-wires

(in a collaboration with Prof. E.A. Dergunova, et al., VNIINM)

X-ray Tomographic reconstruction (R.A. Senin, A.S. Khlebnikov)

l, a.u.

26

X-ray diffraction mapping of the heterogeneous sample (beamsize ~150 µm)

Spot 2

The use of anomalous diffraction to emphasized the contribution of Nb-phases

30

Low-temperature diffraction study

, a.u.

No structural phase transition cubic →tetragonal

APPLIED PHYSICS LETTERS 99, 122507 (2011)

Evidence that the upper critical field of Nb₃Sn is independent of whether it is cubic or tetragonal

Jian Zhou, Younjung Jo,^{a)} Zu Hawn Sung, Haidong Zhou, Peter J. Lee, and David C. Larbalestier^{b)}

Redox chemistry of Br-containing aqueous solutions from Br K-edge XANES

Dubna, 26-31 August 2012

Composition of the mixture: linear combination fit

34

Examples of combined studies of complex materials

- Pd/Cu catalysts for the mild CO oxidation
 - Water-soluble Al activated with Ga₈₅In₁₅
 eutectic alloy

$(Pd,Cu)Cl_x/\gamma-Al_2O_3$ catalysts for the mild CO oxidation

(in a collaboration with L.G. Bruk)

Series of samples studied

- Starting reagents CuCl₂ 2H₂O and PdCl₂
- Impregnation solutions CuCl₂ and CuCl₂-PdCl₂
- Pure support γ -Al₂O₃
- Model systems $CuCl_2/\gamma$ -Al_2O₃, PdCl₂,KCl/ γ -Al₂O₃
- Actual catalyst $PdCl_2$, $CuCl_2/\gamma$ - Al_2O_3 "as is"
- Catalyst PdCl₂,CuCl₂/γ-Al₂O₃ under action of CO (only CO, CO+H₂O, CO+H₂O+O₂)

Problems addressed by the structural study

- The chemical nature of active sites
- The mechanism explaining the synergism in the Cu and Pd catalytic activity

The genesis of active sites: XRD

 Cu^{2+} is adsorbed on γ -Al₂O₃ from $CuCl_2$ aqueous solutions as polycrystalline paratacamite $Cu_2Cl(OH)_3$

Palladium is "diffraction-silent"

The genesis of active sites: Cu K-edge EXAFS

Sample	Coord. sphere	Ν	R, Å	σ^2 , Å ²	ΔE , eV	$R_{\rm f}$
CuCl ₂ ·2H ₂ O	Cu-O	2	1.95 (1.94)*	0.0045	2.5	0.030
	Cu-Cl	2	2.27 (2.28)	0.0035		
	CuCl	2	2.86 (2.93)	0.0148		
Solution 1 (CuCl ₂)	Cu-O _{eq}	4	1.97	0.0043	0.6	0.021
	Cu-O _{ax}	2	2.29	0.0210		
Solution 2 (CuCl ₂ , PdCl ₂)	Cu-O _{eq}	4	1.97	0.0044	0.7	0.018
	Cu-O _{ax}	2	2.30	0.0203		
Cu/γ - Al_2O_3	$Cu-O_1$	2	1.99 (1.98)	0.0026	0.4	0.016
	Cu-O ₂	3	2.05 (2.11)	0.0266		
	CuCl	1	2.85 (2.79)	0.0065		
	$CuCu_1$	4	3.09 (3.06)	0.0186		
	CuCu ₂	2	3.47 (3.41)	0.0093		
$Cu,Pd/\gamma-Al_2O_3$	$Cu-O_1$	2	1.99 (1.98)	0.0028	1.2	0.016
	Cu-O ₂	3	2.09 (2.11)	0.0400		
	CuCl	1	2.89 (2.79)	0.0072		
	$CuCu_1$	4	3.09 (3.06)	0.0157		
	CuCu ₂	2	3.47 (3.41)	0.0116		

The genesis of active sites: Pd K-edge EXAFS

PdCl

CuCl_a, PdCl_a

 $|FT(k^{3}\chi(k))|$

(aq. solution) — Cu,Pd/γ-Al ₂ O ₃						
Sample	Coord. sphere	Ν	R, Å	σ^2 , Å ²	$\Delta E, eV$	$R_{\rm f}$
PdCl ₂	Pd-Cl	4	2.29 (2.30-2.31)*	0.0027	4.5	0.007
	PdPd	4	3.28 (3.28-3.33)	0.0146		
	PdCl	1	3.37 (3.34)	0.0013		
	$PdPd_2$	1	3.72 (3.77)	0.0040		
	Pd-Cl-Pd-Cl	2	4.57 (4.60-4.62)	0.0026		
Solution 2 (CuCl ₂ , PdCl ₂)	Pd-Cl	4	2.28	0.0022	4.85	0.030
	Pd-Cl-Pd-Cl	2	4.56	0.0050		
Cu,Pd/γ-Al ₂ O ₃	Pd-Cl ₁	3	2.26	0.0015	2.9	0.019
	Pd-Cl ₂	1	2.36	0.0015		

Pd is adsorbed on γ -Al₂O₃ from aqueous solutions of PdCl₂ as isolated square-planar [PdCl₄]²⁻ anions No specific interactions Cu...Pd are observed

Low-temperature EXAFS study

In-situ reduction of the catalyst in humid CO (at RT): Pd K-edge XANES

Molecular Aspects of Electroch Dubna, 26-31 August 20

Linear combination fitting pdbruk5_17.dat 2 in norm(E) ... done!

In-situ reduction of the catalyst in humid CO (at RT): XRD

In-situ reduction of the catalyst in humid CO (at RT): Cu K-edge XANES and EXAFS

Only 10-15% of copper in the catalyst undergoes chemical modification Cu²⁺ – Cu⁺ (spatial proximity effect of Pd)

Activated AI for the small-scale hydrogen energetics

Diffraction data

Dubna, 26-31 August 2012

I, усл. ед.

Ga K-edge XANES/EXAFS data

1 – Ga foil, 2 – Ga-In eutectic alloy, 3 – activated Al, 4 - active Al after H_2O , 5 – deactivated A

Imaging (X-ray microscopy + tomography)

Cross-section corresponding to the geometrical centre of the sample

<u>Activation mechanism</u>: bulk diffusion of Galneutectics along intergrain boundaries promoted by the emergence of (Al-Ga-In) solid solution in the subsurface layers of Al crystallites

Deactivation mechanism: decomposition of the eutectic alloy giving rise to a partial oxidation of Ga and crystallisation of In

Conclusions

- Синхротронное излучение мощный инструмент структурной диагностики сложных слабоупорядоченных материалов
- Станция «Структурное материаловедение» в числе других станций КИСИ готова к проведению рутинных исследований (и обладает уникальными в масштабах России опытом и техническими возможностями)
- Мы открыты к сотрудничеству с любыми группами как в вопросах проведения измерений, так и реализации новых методик / модернизации оборудования

<u>Laboratory for structural studies of non-crystalline materials, Kurchatov NBICS</u> <u>center, NRC «Kurchatov Institute»</u>: Olga Beliakova, Aleksey Veligzhanin, Elena Guseva, Vadim Murzin, Evgeniy Khramov, Alfred Chernyshov, Aleksandra Shulenina

Dubna, 26-31 August 2012