DIFFRACTION STUDIES OF ULTRAFINE POWDERS AND NANOSTRUCTURED MATERIALS

S.V.Tsybulya

Boreskov Institute of Catalysis SB RAS Novosibirsk State University

CLASSIFICATION OF NANOSTRUCTURES (Siegel R.W. In Proc. of. NATO ASI, 1993. V.233, P.509)

- 0D Nanostructures
- 1D Nanostructures
- 2D Nanostructures
- 3D Nanostructures

X-ray diffractin analysis of nanocrystals

- 1. Atomic structure of nanoparticles (nanoblocks).
- 2. Shape of nanoparticles (nanoblocks).
- 3. Average particle size and size distribution parameters
- 4. Nanostructure: stacking of blocks and structure of boundaries

The fundamental equations of X-ray structural analysis of polycrystals (model of an infinite perfect crystal)

 $2d_{hkl}\sin\theta = n\lambda$ $I_{hkl} = kLPGF_{hkl}^2$

The experimental and calculated (solid line) X-ray diffraction patterns of MgO. R_p=7.2%.

Nanoparticles with cubic spinel structure: thin plate and cylinder

Experimental diffraction patterns of boehmite and pseudo boehmite AlOOHnH $_2$ 0

Calculations

Debye Equation

$$I(s) = N\left[\sum_{j} f_{j}^{2} + 2\sum_{j \neq k} \sum_{k} f_{j} f_{k} \cos(2\pi \vec{sr})\right]$$

Pair Distribution Function Method

$$I(s) = N[f^2(s) + \int_0^\infty 4\pi r^2 \rho(r) \frac{\sin(sr)}{sr} ds]$$

$$4\pi r^2 \rho(r) = 4\pi \rho_0 + \frac{2r}{\pi} \int_0^\infty si(s) \sin(sr) ds$$

PAIR DISTRIBUTION FUNCTION

Synthesis of nanostructured iron oxide

Experimental and Calculated Diffraction Patterns (Hematite model)

Pair Distribution Functions of Fe₂O₃ samples

Crystalline phases of iron oxide

ferrihydrite Fe₂O₃·nH₂O (n ≤ 1,8)

 $P 6_3 m c$

a = b = 6 Å c = 9.1Å $\alpha = \beta = 90$ $\gamma = 120$

R -3 c

a = b = 5Å c = 13.7Å $\alpha = \beta = 90$ $\gamma = 120$ F d -3 m

$$a = b = c = 8.4 \text{ Å}$$

 $\alpha = \beta = y = 90$

PDF of ferrihydriteFe2O3·nH2O:

experimental (black) and calculated (red) curves

EFFECT OF RANDOMLY DISTRIBUTED STACKING FAULTS

X-ray diffraction patterns of metallic hexagonal Co :

- a nanoparticles with regular crystal structure
- b nanoparticles with stacking faults (20% concentration)

Diffraction from 1D distorted system

$$i_{hk}(s) = i_{hk}G(\mathcal{E}_h, \mathcal{E}_k)$$

$$I_{hk}(s) = \frac{1}{4\pi s^2} \int_A i_{hk}(\mathbf{s}) dA$$

Parameters of statistical model (Markov chain)

- N number of layers
- S, G short order parameters in layers position and shift

$$S=0$$
 w_A, w_B, w_C Probability of presence of A, B, C layers $S=1$ $w_{AA}, w_{AB}, w_{BA}, w_{BC} \dots$ Probability of layers appearance
after each other $S=2$ $w_{AAA}, w_{AAB}, w_{ABA}, \dots$ Probabilities of appearance of A-layer
after AA pair, B-layer after AA pair, etc.

Experimental and calculated x-ray diffraction patterns of turbostratic carbon

Структура модифицированного гидроксида магния

1D nanostructers

Planar Defects in hematite

1D nanostructure in metallic Co

microdomains in $\label{eq:La} La_{0.45}Ca_{0.55}FeO_{3-\delta}~.$

Calculated and experimental x-ray diffraction patterns

2Θ

КОГЕРЕНТНЫЕ 3D НАНОСТРУКТУРЫ:

низкотемпературные формы оксида алюминия

X-ray diffraction patterns of different alumina polymorphs γ -Al₂O₃ from pseudoboehmite а γ -Al₂O₃ b from boehmite η -Al₂O₃ χ -Al₂O₃ d

Nanostructure of η -Al₂O₃ prepared from bayerite

<u>0</u> nm

Side view of the platelet crystals

η-Al₂O₃: 111 peak

γ -Al₂O₃ from boehmite: *shape of 111 reflection*

Experimental and calculated (blue) diffraction patterns for γ -Al₂O₃ prepared from pseudoboehmite (R₁=9.5%)

Structural hierarchy in low temperature alumina polymorphs

The regular spinel structure

The model of stacking faults

X-ray diffraction analysis of nanocrystals: basic methods

- 1. Rietveld method and modified algorithms based on the model of an infinite crystal
- 2. Debye Function Method
- 3. The calculation of the diffraction patterns from 1D distorted systems
- 4. Pair Distribution Function Method