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Overview

• introduction to SOFC
• fuel cell applications and their requirements
• fuel cell problems and development goals 
• materials development for SOFC
• understanding fuel cell degradation
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What is a ‘fuel cell’ and what does it do?
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Potential of SOFC in the Future Energy System

• fuel flexibility (H2, CH4, CnHm, CO, diesel, petrol ...)
• minimal need for fuel processing for small residential CHP, 

portable units, APU etc.
• high electrical efficiency up to 60% (system, net)
• role in transition strategies from fossil feedstock 

to renewables and to hydrogen (including bio-fuels of various 
origin, liquid or gaseous, and hydrogen)

• fuel impurity tolerance
• applications range from small scale residential CHP, APU and 

portable (SOFC) to large units in industrial CHP and bulk 
power production (SOFC and MCFC)
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European SOFC Stack Technologies

AIRVariety of manufacturers and 
design types

• planar stacks 
- higher performance
- compact design
- mechanically robust
- simple manifolding
- lower cost

• tubular stacks
- resistant to high temperature 
gradients (*)

- mechanically robust (*)
- low power density

(*) thermo-mechanical stability greatly depends on SIZE, not so 
much on concept
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Variety of SOFC Cell Concepts
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SOFC Applications

stationary

portable
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Performance of ‚Conventional‘ Products

Service life
• vehicles  >10 years (5.000 to 10.000 operating hrs)
• heating boilers (residential power) >10 years 

(20.000 to 40.000 hrs, frequent cycles possible)
• power generating equipment 10 – 30 years (40.000 

to 200.000 operating hours)

Other
• vibration and shock (road vehicles)
• acceleration (aircraft)
• simple coupling to natural gas supply 

(boilers/engines)
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SOFC Development Challenges

• improved durability under static, transient and cycling conditions
- redox stability
- thermal cycling capability

• stack lifetime in excess of 40.000 hrs. (stationary & large units, 
loss of power at end of life <20%) 

• high performance, high efficiency
• arbitrary switch-off and start-up cycles (several 100 to 1000)
• tolerance against fuel impurities
• operation without external water supply 
• robustness to vibration and mechanical shock
• design of large units and hybrid power plants
• lower cost, increased system compactness, simplification of 

technology

topics in joint 
materials, 

design and 
systems 

development
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HEXIS: Comparison of ZIP Stack Generations (2000/2002)
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Real-SOFC Stack Generations: Progress by Materials 

700°C
LSCF
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Materials development for SOFC
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Increased Performance through Improved Materials

• low ASR through
* low cathode overpotential -> high oxygen ion transfer rates
* high conductivity of electrodes
* thin layers

• electrolytes with higher conductivity
• hermetic separation of layers 

-> thinner layers of highly active but reacting materials
-> interdiffusion barriers

• mechanically stable contact layers with high electric conductivity
• higher performance at lower temperatures ->  less degradatoin
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Materials for Increases in Performance
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Materials Processing: Diffusion Barrier for LSFC Cathodes

YSZ
CGO

EB-PVD of CGO layer at  
target temperature 800°C

1  m

1  m

CGO, 
800 °C

YSZ

EB - PVD layers: thin, dense, gas tight structure, 
strong bonding of YSZ & CGO layer
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Thermal Cycling Requirements 
• thermal cycles: 

- ‘cold start’ 20°C … 200°C, ‘warm start’ >400°C  up to 600 … 750°C
• goals: 

- no gas leakages from stack (safe operation)
- rapid start-up (30 minutes for road APU)

768air
_in

air
_in

air
_out

fuel
_out

fuel
_in

fuel
_in

measured 
temperatures

minimal calculated temperature

808.5

FEM-simulation of this part

795°C

highest tensile stress

leakages

solutions:
• strong sealings
• robust design
• compliant design

achievement:
• 100 to 250 cycles > 25°C
(JÜLICH, ElringKlinger)
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Strengthened Glasses

1. Fiber reinforcement of Ba-Ca-
Silicate glass matrix by YSZ fibers

• Reduced crystallization kinetics
of matrix

• Low porosity of the joint
• Minimal interactions of fibers
Linear correlation between thermal 
expansion and amount of filler

2. Doping of glass with ductile 
material (e.g. silver)

• increased strength
• but also increased conductivity

YSZ fibers

Residual Glass Phase
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Redox Cycling Requirements 
• redox cycles: 

- after stack shut-down air will flow to the fuel electrode
- Ni in Ni-YSZ anode will re-oxidise to NiO2
- NiO2 has higher volume and will cause mechanical damage to cell

• goals: 
- no gas leakages from stack (safe operation)
- rapid start-up (30 minutes for road APU)

Elektrolyte

Anode

Substrate solutions:
• system control of 

temperature and fuel flow
• robust cells
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Anode Redox Stability – SrTi Anode
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disadvantage:
low electrochemical performance 
due to low electrical conductivity
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Consolation of Conflicting Properties

low degradation high performance

good handling and 
processing propertiesimproved 

robustness
(cost)

for instance: 
redox stable materials (SrTi, LSMC), 

with low conductivity and brittle structure
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Interaction of Materials Developers and Manufacturers

‚improved‘ or ‚promising‘ material

processing properties

modified ‚compromise‘ material

processing ‚tricks‘

composite materials

functional ‚improved‘ component

building a bridge from materials research to component manufacturing
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Outlook

Materials
currently best performing materials have already been known 
for many years (no surprises)
optimisation is necessary with respect to processing and cost
Lifetime is still insufficient (but: trade-off with cost)
breakthroughs are nevertheless necessary (new materials 
integrated with processing and manufacturing)

RTD challenges
purpose-designed materials incl. ab-initio understanding
low-cost, standardised, mass-production oriented 
manufacturing 
extended lifetime of components, robustness
sufficient testing capacity for reliably & rapidly predicting 
materials performance (optimisation loops!)
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Project N-KATH

cooperation between FZ-Juelich, MSU and BIC, 
and company HC Starck
‘design’ of cathode perovskite material according to 
theoretical considerations and models
synthesis of materials
verification in SOFC cell experiments

La2CuO4 Pr2CuO4Pr1.6Sr0.4CuO4

Layered perovskites: which structure blocks are necessary for good O-conductivity?  
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Understanding fuel cell degradation
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Stack repeating unit

SOFC repeating unit components to be addressed and details of the specific 
layers that interface with each other
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Variety of Degradation Phenomena
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The quantification and prediction of single contributions with respect to their 
behaviour over time is the key expected outcome of this project

Single effect  
experimental isolation, 

sensitivity matrix

Description of changes in properties
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Prediction
&

Correlation

Pe
rf

or
m

an
ce

Time

segmented cells

Choice of testing conditions
Correlation

Single effect  
experimental isolation, 

sensitivity matrix

Description of changes in properties

X = f ( t, T, i, p(O2), uF, …)
Y = f ( t, T, i, p(O2), uF, …)

Electrochemical model

EMF = F (X, Y, t, T, …)

Prediction
&

Correlation

Pe
rf

or
m

an
ce

Time

segmented cells

Choice of testing conditions
Correlation

Understanding degradation
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Degradation types

1. continuous, steady degradation
- initialisation phase (sintering, saturation)
- constant slope phase
- progressive degradation phase (EoL)

2. degradation after ‚events‘
- thermal cycle
- redox cycle

3. degradation after ‚incidents‘
- malfunction of BoP components
- malfunction of control
- external influence (shock, grid outage etc.)



Slide 31/43
Dubna 2012

Cathode Materials: Stability

(La,Sr)MnO3

(La,Sr)FeO3

(La,Sr)CoO3

(La,Sr)(Co,Fe)O3

source: Yokokawa, EMPA

thermodynamical stability and kinetics:
perovskites ABO3

(La0.9,Sr0.1)MnO3

(La0.7,Sr0.3)MnO3

(La0.7,Sr0.3)0.99MnO3

(La0.7,Sr0.3)MnO3±δ

(La1-xSrx)yFe1-z(Ni,Cu)zO3-δ
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Cathode Materials: Volatility

source: Tietz/Mai

gas flow

Sr deposition
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K.S. Lee et al. / J. Solid State 
Electrochem. 11 (2007)1295

Anode Substrate: Particle Agglomeration

• temperature-induced tendency of metals to decrease free energy, 
i.e. to minimize the surface area and agglomerate

• examples: anode substrate Ni-YSZ cermet

10 µm

heated up for 4000 h
at 1000°C in 

Ar/4%H2/4%H2O

Ni: white
YSZ: grey
pores: black

new cermet
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Three-Dimensional Characterisation

J.R. Wilson et al. / Nature Materials 5(2006)541

• FIB/TEM analysis
• reconstruction of 

3-D structure 
from ‚slices‘
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LSM/YSZ

(CrMn)3O4 
(spinel)

electrolyte 
(YSZ)

Chromium Poisoning: Microscopic Findings
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Sulphur Poisoning – The Phenomenon
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Sulphur Poisoning: Microscopic Findings

bulk material
deposition
► Reduction of porosity
► Elimination of 

catalytically active Ni

surface
deposition
► Elimination of 

catalytically 
active Ni
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Coking – Carbon Buildup in Internal Reforming
carbon build-up due to hydrogen and oxygen stochiometry mismatch 
(Boudouard Reaction)

figures courtesy of Jörger & He 



Slide 39/43
Dubna 2012

Cyclic Oxidation of Ferritic Steel Crofer 22 APU in Air at 900°C
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grain boundary oxidation front

etched sampleJS-3

CroFer22APU 1st

glass remains

150h
H2/H2O

optimal matching of steel 
and sealing materials is
vital:
- good adhesion = chemical interaction
- but: no excessive corrosion

Interaction of Glass Sealant and Ferritic Interconnect
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High Degradation due to Contacting problems
Contact trace on cathode

2 mm

880 mV - 298 mA/cm²770 mV - 336 mA/cm²820 mV - 336 mA/cm²

high local current due to narrow contacting ‚ridge‘
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cut

air intake air outlet

G`1002-03
Thermo-Mechanics

low strength of 
steels at high 
temperatures
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Conclusions

materials development is crucial in improving the  
performance of electrochemical devices (like fuel cells)
developments have to be coordinated with practical 
aspects of technology
the understanding of materials behaviour is just as 
important as the development of ‘new’ materials
microscopy and tomography are essential tools in 
doing so
lifetime modelling can help in developing accelerated 
testing and prediction methods for materials and 
components
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