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Why does one need MD – Simulations 
?

• The interactions within a chemical system (Atoms, 
molecules, ions ...) result basically from its electronic 
structure which governs the interaction between the 
particles. 

• Suppose, the total energy E(x) is known as a function 
of the coordinates x of all particles:

• How can one calculate thermodynmamic properties 
from E ? 

• Only by numerical simulation.



Why numerical ?

• Reason 1: Integration over phase space:

• Integral over a high-dimensional weighted function

• Reason 2: Calculation of trajectories.

• analytically solvable only for E(x)=k x2 :
X(t)=a sin(wt)+b cos(wt)
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MD principle 2

Many variations:



CC & Molecular Simulations

CC principle 4



MD principle 3

Other __________________________________
are very much related to MD



Advantage: 
One can calculate large systems
(thousands and millions of atoms).

Disadvantage:
The potential energy function must be provided.
It‘s quality is crucial for the result.

Bridging the
time gap (like
the spacial 
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Example:

EG

• Flexible and symmetric H-O-C-C-O-H chain 
structure

• Molecular physical properties of ethylene glycol 
depend on chain angles and aggregation

Properties of Ethylene glycol in the 
condensed phase



AA) Interaction energy
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A bit more detail

bondalongrotatebendanglestretchbondbonded EEEE −−−− ++=

Intramolecular:
•Bonded
•Non-bonded
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Interactions between non-Bonded 
Atoms

• van der Waals
• Electrostatic ticelectrostaWaalsdervanbondednon EEE += −−−
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Van der Waals: 
A Lennard-Jones (LJ) form is a 
compromise. Powers can vary.

Electrostatic / Coulomb: 
Partial charges on atoms.



For EG:



• We need the movements (=trajectories x(t)) of the atoms 
and have to solve (‘integrate’) their equations of motion.

• That means to calculate x(t) from 

• Since E(x) is complicated, this can only be done 
numerically which is, however, quite easy.

BB) Simulation = Trajectory 
calculation



The equations of motion
• Many possibilities:
• Verlet: r(t+δt) = 2r(t) - r(t-δt) + δt2a(t)
• Leapfrog: r(t+δt) = r(t) + δt

v(t+δt/2)v(t+δt/2) = v(t-δt/2) + δt a(t)
• Gear …

• Velocity verlet algorithm:
r(t+δt) = r(t) + δt v(t) + δt2a(t)
v(t+δt) = v(t) + δt [a(t) + a(t+δt)]/2



Equilibration :

NVE ensemble 
at 298 K. 

512 EG 
molecules.



Typical protocol:
• 512 EG molecule in cubic periodic box.

•• 1) 1) Equilibration in NVE ensemble at 298K for 5 ps.
• Time step of 0.5 fs. 

•• 2) 2) Equilibration in NVT ensemble at 298K for 5 ps with a 
weak-coupling Nose-Hoover thermostat(=modified EOMs).

• Simulation time 500 ps.

•• 3) 3) Production run in NVT at 298K for 4 ns.
• Time step of 1 fs.
• Trajectory recording frequency of 2.



Thermodynamic averages
Analysing the trajectories

‘normal’ averages – just statistics:

Average over timesteps (and within a timestep)
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CC) Analysis



Thermodynamic averages
Analysing the trajectories

Example:

Other example: Diffusion constant

Average value of dipole moment

T (K) 200 250 298 350 400

Dipole
moment (D) 2.40 2.37 2.48 2.59 2.80

Experiment 2.25



The radial distribution function
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The radial distribution functionDistribution functions:



Work mode – computer related
1) 

• Perform simulation, create trajectory file

• Calculate properties timestep by timestep

2)

• Perform simulation, create trajectory file

• Copy it all (as some kind of object, possibly in chunks) to memory

• Calculate properties by filtering operations.

CC def 2



Angular distributions are similar: 

O-C-C-O

CC def 3

Distribution of the 
O-C-C-O dihedral angle. 



Dynamical properties:

CC def 2

• Properties as a function of time.
H6-O3-C2-C1 



O-C-C-O

H-O-C-C

a) 1.4% b) 0.8%

c) 4.3% d) 4.5%

NPT ENSEMBLE AT 200K

    T



O-C-C-O

H-O-C-C

NPT ENSEMBLE AT 298K

a) 20.3% b) 16.8%

c) 11.7% d) 10.1%

    T



O-C-C-O

H-O-C-C

NPT ENSEMBLE AT 400K

a) 25.0% b) 21.7%

c) 15.9% d) 17.7%

    T



• General idea: Standard procedure:

• Can be combined with another tool: nD histograms:

CC def 3

    T

• A continuous distribution is discretized into (G and T)

• This frees up one dimension for analysing / visualizing it 
(‘Histogram’)



• DISTRIBUTION OF THE (static) CORRELATION BETWEEN THE 2 H-O-C-C  
DIHEDRAL ANGLES:

CC def 3

T

NPT ENSEMBLE AT 400K

• For  O-C-C-O in G, the probability of finding one  H-O-C-C in trans 
conformation is slightly larger. 

• Both in trans are unlikely.
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• D) Visualisation of MD results

• Serious science: Extracting information of high-dimensional data
• One good program: VMD

CC def 3



In our EG – work:
• Extremely difficult problem: 

Undrstanding the H-bond network over space 
and time.

• Our own program:
VISH (W. Benger et al.)

CC def 3



DD) The interesting issues in 
electrochemistry

• Solvated molecules that can have different oxidation 
states

• S2O8
2- + e  S2O8

3-  SO4
2- + SO4

-

• Interesting are the reorganisation energies:
2 2
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Oxidation / redaction reactions
water EG

S2O8
2- S2O8

3- S2O8
2- S2O8

3-

Coordination 
number 25 26 13 12

Distance of 
first minimum 
of RDF (nm)

0.58 0.56 0.673 0.638

• From the RDFs
of S2O8 in EG / H2O …

• … one can calculate the solvent reorganisation energies:

• The increase of the average  s for EG means that a dynamic 
solvent effect modulates the ET.

x(EG)
 

 s (red)
 

 s (ox)  s (avg)

kcal mol-1
0 22.4 54.5 33.2

1.0 38.3 32.2 34.9



Thank you Thank you ……


	MD Simulations: 	Introduction�and Ethylene Glycol as Example
	Why does one need MD – Simulations ?
	Why numerical ?
	 CC & Molecular Simulations
	A) Interaction energy
	A bit more detail
	Interactions between non-Bonded Atoms
	For EG:
	B) Simulation = Trajectory calculation
	The equations of motion
	Equilibration :
	Typical protocol:
	Thermodynamic averages�				Analysing the trajectories
	Thermodynamic averages�				Analysing the trajectories
	The radial distribution function
	The radial distribution function
	Work mode – computer related
	Dynamical properties:
	D) The interesting issues in electrochemistry
	Oxidation / redaction reactions
	Thank you …



