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Why does one need MD — Simulations
?

- The interactions within a chemical system (Atoms,
molecules, ions ...) result basically from its electronic
structure which governs the interaction between the
particles.

- Suppose, the total energy E(x) is known as a function
of the coordinates x of all particles:

- How can one calculate thermodynmamic properties
from E 7?

- Only by numerical simulation.



Why numerical ?

- Reason 1: Integration over phase space:

- Integral over a high-dimensional weighted function

- Reason 2: Calculation of trajectories.

- analytically solvable only for E(x)=k x2:
X(t)=a sin(wt)+b cos(wt)
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Many variations:

Accurate Simple

Slow on the computer Fast

Large Systems Small Systems
Accurate Simple

Exact QM (Semi) Classical Mechanics

Approximate QM

Electrons Interaction potentials
electron densities

Atoms Continuum
Point Charges



Effectivity
A
Monte-Carlo Methods

Atoms BCA KMC Time

Molecular Dynamics
using Analytical
Potentials

QM-Methods
(DFT, TB, Hartee-Fock)

\ 4
Transferability



MD principle 3

Other Atomistic Computer Simulation Methods
are very much related to MD

Total Energy Calculations Analytical Potentials
E=min<¥|H{R"},r")|¥> E=X ®(R")

INTERATOMIC POTENTIAL
ENERGY AND FORCES

Molecular Dynamics Monte Carlo Molecular Statics
Numerical integration Random sampling Global energy
of equations of motion of the phase space minimization

for all atoms (Conjugate Grad.)



» Advantage:
One can calculate large systems
(thousands and millions of atoms).

» Disadvantage:
The potential energy function must be provided.
It's quality is crucial for the result.

Quantum- Analytical

> Brldglng th.e “hemical Potential Chgr?fcteristic
time gap (like \EEEENNITCNED Function I.equl.
the spacial

gap before):

100 particles 10° particles mesoscale
ps simulation ns simulation etc.




I Example:

Properties of Ethylene glycol in the
condensed phase

* Flexible and symmetric H-O-C-C-O-H chain
structure

» Molecular physical properties of ethylene glycol
depend on chain angles and aggregation
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A bit more detall

Intramolecular:
Bonded
*Non-bonded

o Ebond—stretch T Eangle—bend T Erotate—along—bond






Interactions between non-Bonded
Atoms

- Electrostatic

Van der Waals:

A Lennard-Jones (LJ) form is a
compromise. Powers can vary.

Electrostatic / Coulomb:
Partial charges on atoms.

| | 0 Gi 9«
E Lennard—dones = 2 electrostatic —

nonbonded : nonbonded D rik
pairs pairs




L
For EG:

« “OPLS force field” parameters from literature:
« LJ-Parameters for pair interactions of different atoms from the Lorenz—
Berthelot rules:
0; =(0; + 0;)/2 and g; = (g;)"2.
* Energies of bonds and bond angles like above (harmonic)
» Torsions:

i i i
=y ﬁ[1 +cos¢i]+ﬁ[1—cosz¢i] +5[1 + cos 3¢;]
=2 2 2

E torsion

(¢ is the dihedral angle V1, V2 and V3 are Fourier coefficients)
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B) Simulation = Trajectory

c&@el geléllﬁ!:elcr)ngvements (=trajectories x(t)) of the atoms
and have to solve (‘integrate’) their equations of motion.

- That means to calculate x(t) from

- Since E(x) is complicated, this can only be done
numerically which is, however, quite easy.



The equations of motion

- Many possibilities:
- Verlet: r(t+ot) = 2r(t) - r(t-ot) + ot2a(t)
- Leapfrog: r(t+0t) = r(t) + ot
v(t+0t/2)v(t+0t/2) = v(t-0t/2) + Ot a(t)
- Gear ...

- Velocity verlet algorithm:
r(t+ot) = r(t) + ot v(t) + ot2a(t)
v(t+ot) = v(t) + ot [a(t) + a(t+dt)]/2



Equilibration :

Energy, kcal/mol
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Typical protocol:

- 512 EG molecule in cubic periodic box.

° 1) Equilibration in NVE ensemble at 298K for 5 ps.
- Time step of 0.5 fs.

° 2) Equilibration in NVT ensemble at 298K for 5 ps with a
weak-coupling Nose-Hoover thermostat(=modified EOMSs).

- Simulation time 500 ps.

E 3) Production run in NVT at 298K for 4 ns.
- Time step of 1 fs.
- Trajectory recording frequency of 2.
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C) Analysis

Thermodynamic averages

Analysing the trajectories

‘normal’ averages — just statistics:

(A)=1im= JA(t)dt—Ilm ZA

t—o0 M—>c0

Average over timesteps (and within a timestep)



Thermodynamic averages

Analysing the trajectories

Example:

Average value of dipole moment

T (K)

Dipole
moment (D) Mﬂﬂ

Other example: Diffusion constant



Distribution functions radial distribution function
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Figure 6. Typical radial distribution functions for (a) a liquid, (b) an ideal solid, (c) an RN
ideal gas, and (d) a real gas. '



Distribution functions radial distribution function

RDF
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Work mode — computer related

1)

- Perform simulation, create trajectory file

- Calculate properties timestep by timestep

2)

- Perform simulation, create trajectory file

- Copy it all (as some kind of object, possibly in chunks) to memory

- Calculate properties by filtering operations.




Angular distributions are similar:

O-C-C-O

O-C-C-0 angular distribution during the simulation
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Distribution of the
O-C-C-0O dihedral angle.



Dynamical properties:

- Properties as a function of time.

H6-03-C2-C1
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numher of changes from left to right

NPT ENSEMBLE AT 200K
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NPT ENSEMBLE AT 298K

b) 16.8%
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NPT ENSEMBLE AT 400K
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I General idea: Standard procedure:

» A continuous distribution is discretized into (G and T)

llllllll

« This frees up one dimension for analysing / visualizing it
(‘Histogram’)

- Can be combined with another tool: nD histograms:



CCdef 3

DISTRIBUTION OF THE (static) CORRELATION BETWEEN THE 2 H-O-C-C
DIHEDRAL ANGLES: NPT ENSEMBLE AT 400K
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« For O-C-C-Oin G, the probability of finding one H-O-C-C in trans
conformation is slightly larger.
* Both in trans are unlikely.



CCdef 3

DISTRIBUTION OF THE (static) CORRELATION BETWEEN THE 2 H-O-C-C
DIHEDRAL ANGLES: NPT ENSEMBLE AT 400K
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« For O-C-C-Oin G, the probability of finding one H-O-C-C in trans
conformation is slightly larger.
* Both in trans are unlikely.



- D) Visualisation of MD results

« Serious science: Extracting information of high-dimensional data
* One good program: VMD




CCdef3

In our EG — work:
« Extremely difficult problem:

Undrstanding the H-bond network over space
and time.

e Our own program:
VISH (W. Benger et al.)




D) The interesting issues in
electrochemistry

- Solvated molecules that can have different oxidation
states

S,0% +e S,08% SO,%+S0,

- Interesting are the reorganisation energies:

A =E_ (5,07)- E. (S,057)

noneq

A =E_ (50))- = (S,0.7)

noneq



Oxidation / redaction reactions

. __water | ___EG____
From the RDFs S,02 S,0° S,02 S0

of S,04in EG/H,0 ...
number 25 26 13 12

Distance of
ol 058 056 0.673  0.638

of RDF (nm
- ... one can calculate the solvent reorganisation energies:

kcal mol-?
54.5 33.2

“ 38.3 32.2 34.9

- The increase of the average . for EG means that a dynamic
solvent effect modulates the ET.



Thank you ...
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