

### Studies of electrocatalytic systems using X-ray absorption spectroscopy

**Dr Stephen Price** 

MolE, Dubna

27 August 2012

s.w.t.price@soton.ac.uk

#### Overview





- Introduction
  - XAS theory, processing, analysis Systems being studied
- Recent studies:
  - Dynamic Ru on Pt/C
  - Underpotential deposition (upd) of Cu on Au/C



#### X-ray absorption spectroscopy



#### Origin of XAS effect



EXAFS - Extended x-ray absorption fine structure- Geometric information, e.g. coordination number, distance

XANES - X-ray absorption near edge spectroscopy- Electronic information



#### Data processing





## Modelling EXAFS data



 $f_{j}(k)$  and  $\delta_{j}(k)$  are photoelectron scattering properties of the neighbouring atom (**determined theoretically**).

If these are known we can determine the following by **modelling** the data:

 $N_i$  coordination number of neighbouring atom

 $\mathbf{R}_{\mathbf{j}}$  distance to neighbouring atom

 $\sigma_{i}$  mean-square disorder of neighbour distance

#### Data Analysis

- Demeter package (Athena/Artemis) Bruce Ravel
- Build structural model based on identity and distance of scattering atoms

Per-atom average

٠



B. Ravel, M. Newville, *J. Synchrot. Radiat.* **2005**, *12*, 537-541 http://cars9.uchicago.edu/ifeffit/Demeter



## Technique comparison

#### XRD

- Long range order
- Crystalline only
- Not element specific
- Able to distinguish different crystallographic sites and phases
- Averages different elements in the 
  same crystallographic sites

Data collected from perspective of both elements Allows core shell and alloy structures to be determined

#### XAS

- Short range structure
- Crystalline and amorphous
- Element specific
- Averages over all sites and phases
- Able to distinguish different elements in the same crystallographic sites (dopants)



#### In situ XAS

- · Versatile environments- solid, liquid, gas
- · Operating conditions

Deposition/corrosion processes Potential dependence of structure Stability Temperature Pressure

· Can be combined with other techniques

XRD, IR, Raman, electrochemistry

Time-resolved studies

### Synchrotrons





Diamond Light Source, UK





#### Electrocatalytic systems

#### PEM fuel cells



| he Honda FCX Clarity                     |
|------------------------------------------|
| $O_2 + 4H + 4e = > 2H_2O$                |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
| Anode/ PEM Cathode/<br>Catalyst Catalyst |
|                                          |

Figure: US DOE website http://www1.eere.energy.gov/hydrogenandfuelcells/f c\_animimation\_process.html



TEM images of Pt/C catalysts

# $Ru_{0.75 ML}/Pt/C$

![](_page_12_Picture_2.jpeg)

- Ru location as a function of potential
- Oxide shell  $\rightarrow$  metallic alloy
- Ru migrates into particle
- Dynamic nature of surface previously neglected by theoretical models

![](_page_12_Figure_7.jpeg)

![](_page_12_Figure_8.jpeg)

Data is for  $Ru_{0.75 \text{ ML}}/Pt/C$  catalyst at Ru K edge (SRS 16.5)

E. Crabb, A.E. Russell et al. PCCP, (2004) 6, 8, 1792-1798 A. Rose et al. Electrochimca Acta, (2009) 52, 18, 5556-5564

## Southampton Operando studies (PEM electrolyte/fuel cell)

![](_page_13_Figure_1.jpeg)

Time resolved Pt L<sub>3</sub> EXAFS (SRS 9.3). Pt/C cathode catalyst half cell (H<sub>2</sub>|N<sub>2</sub> anode|cathode) conditions, 80  $^{\circ}$  C • For E > 0.7 V oxide growth, rapid change (within 20 s) • Extent of oxide growth corresponds to two monolayers

![](_page_13_Picture_3.jpeg)

to of the Safevoras Law

of Store Into the Lover Sta

house on Auch and Second

![](_page_14_Picture_0.jpeg)

#### EDE at ESRF ID24

#### Enhanced time resolution= energy dispersive EXAFS

![](_page_14_Picture_3.jpeg)

![](_page_15_Picture_0.jpeg)

Core-shell electrocatalysts 1: Deposition of Pd/Cu on Au/C

![](_page_16_Picture_0.jpeg)

#### Preparation of core-shell catalysts

Galvanic replacement of Cu upd layer

![](_page_16_Figure_3.jpeg)

R.R. Adzic et al.

*J. Phys. Chem. B.*, 109 (2005) 22701 *Electrochem. Comm.*, 9 (2007) 2848 *Electrocatalysis*, 1 (2010) 213 *J. Am. Chem. Soc.* 131 (2009) 17298

![](_page_16_Figure_6.jpeg)

#### Structure of Cu upd on Au

From studies of single crystal surfaces

![](_page_17_Figure_3.jpeg)

Toney et. al. *Phys. Rev. Lett.* (1995) 75 , 4472. Lee et. al. *J Phys. Chem. C*, (2009), 113, 12260 Kuzume et al. Electroanal. Chem. (2004), 570, 157.Moller et al. Electrochim. Acta (1995), 40, 1259.18Cappadonia, et al. J. Electroanal. Chem. (1997), 436, 73

#### 4 wt% Au/C

 Au nanoparticles prepared using thiol method of Brust et al. J. Chem. Soc. Chem. Comm. 1994, 801.

![](_page_18_Figure_3.jpeg)

#### Ex situ EXAFS

| Shell              | N             | R/Å             | σ <sup>2</sup> x 10 <sup>4</sup> / Å <sup>2</sup> | ΔE <sub>o</sub> /eV | R <sub>f</sub> | D)         |              |  |
|--------------------|---------------|-----------------|---------------------------------------------------|---------------------|----------------|------------|--------------|--|
| Au-Au <sub>1</sub> | $6.9\pm0.4$   | $2.85\pm0.01$   | 56 ± 2                                            |                     |                | 16-        |              |  |
| Au-S <sub>1</sub>  | $1.0\pm0.3$   | $2.31 \pm 0.01$ | $83 \pm 37$                                       | $6.4\pm0.3$         | 0.017          |            |              |  |
| Au-Au <sub>2</sub> | $1.5 \pm 0.7$ | $4.03\pm0.01$   | 59 ± 25                                           |                     | ) ± 25         |            | 177 8-<br>C. |  |
| Au-Au <sub>3</sub> | $11.0\pm3.8$  | $4.94\pm0.01$   | $104 \pm 23$                                      |                     |                |            |              |  |
|                    |               |                 |                                                   |                     |                | 0 10 15 20 | 25 30        |  |

Particle diameter / nm

#### In situ cell

![](_page_19_Picture_2.jpeg)

0.6

0.8

1.0

#### Cu upd: voltammetry

 $\,\circ\,\,$  Comparing Cu upd on bulk Au and Au/C

![](_page_20_Figure_3.jpeg)

 $\circ$   $\,$  Less clearly defined peaks

![](_page_20_Figure_5.jpeg)

21

#### In situ EXAFS of $Au/C - H_2SO_4$

![](_page_21_Figure_2.jpeg)

o No Au-S needed in fit, particles are 'clean'

 $\circ$  Au-Au<sub>1</sub> is larger than *ex situ*, particles are larger

Au-Au CN = 10.1  $\rightarrow$  3.5 nm

- Particle shape of Au/C is potential dependent
- ·  $E = 0.2 V Au Au_3 / Au Au_1 = 1$ , particles are flattened
- ·  $E \leq -0.21$  V Au-Au<sub>3</sub>/Au-Au<sub>1</sub> = 2, particles are spherical

# South<sup>UNIVERSITY OF</sup> Cu upd: Au L<sub>3</sub> edge EXAFS – $CuSO_4 + H_2SO_4$

- · Also shows shape change
- No evidence of Au-Cu in EXAFS

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_0.jpeg)

## Cu upd: Cu K edge XANES

• Transition from Cu<sup>2+</sup> to partially discharged Cu species

![](_page_23_Figure_3.jpeg)

## Cu upd: Cu K edge EXAFS

- +0.20 V and -0.21 V: octahedral  $Cu^{2+}$
- -0.42 V: Cu-O and Cu-Au neighbours, but no Cu-Cu,  $\theta = 0.44$
- -0.51 V: no Cu-O neighbours, Cu-Cu and Cu-Au found,  $\theta = 1.02$

![](_page_24_Figure_5.jpeg)

| V vs.                   | Shell              | $oldsymbol{N}$ |  |
|-------------------------|--------------------|----------------|--|
| (Hg/HgSO <sub>4</sub> ) |                    |                |  |
| +0.20                   | Cu-O <sub>eq</sub> | $4.5\pm1.8$    |  |
|                         | Cu-O <sub>ax</sub> | $2.3\pm0.9$    |  |
| -0.21                   | Cu-O <sub>eq</sub> | $3.2\pm0.3$    |  |
|                         | Cu-O <sub>ax</sub> | $2.0\pm0.2$    |  |
| -0.42                   | Cu-O               | $2.3\pm0.9$    |  |
|                         | Cu-Cu              | -              |  |
|                         | Cu-Au              | $6.4 \pm 2.4$  |  |
| -0.51                   | Cu-O               | _              |  |
|                         | Cu-Cu              | $2.6 \pm 1.1$  |  |
|                         | Cu-Au              | $2.2 \pm 1.1$  |  |

![](_page_24_Figure_7.jpeg)

## Structure of Cu upd on Au/C

- Potential dependence of Au/C
- Initial deposition at defects in outer shell of Au particles (no Cu-Cu neighbours)  $\theta = 0.44$
- Full monolayer not achieved, further deposition as iclusters and/or slands decorating Au surface

![](_page_25_Figure_5.jpeg)

Oviedo, et al. Electrochimica Acta 2010, 55, 8244

#### Acknowledgements:

Prof. Andrea Russell Dr. Anna Wise Dr. Laura Calvillo Dr. Jonathon Speed Dr. Prabalini Kannan Peter Richardson Jennifer Rhodes

#### Assistance of:

Dr. Bruce Ravel (NSLS)

Drs. Giannantonio Cibin, Andy Dent & Stephen Parry (Diamond) Drs. Tim Hyde & Don Ozkaya (JMTC)

Prof. Patrick Hendra (Ventacon)

![](_page_26_Picture_7.jpeg)

Funded by:

EPSRC

Johnson Matthey

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886