Polymeric Sulfonic Acids as Molecular Templates for Preparing Conducting Polymers with Tunable Morphology, Electrochemical and Spectral Properties

A.A. Nekrasov

A.N. Frumkin Institute of Electrochemistry, Moscow, Russia, e-mail: secp@elchem.ac.ru

Possible application areas of polyaniline

- Conductive coatings (printable electronics, electromagnetic shielding, antistatic coatings)
- Anticorrosion coatings
- Hole-injection layers (organic light-emitting diodes OLED)
- Electrochromic coatings (adjustable optical filters, "smart windows", displays)
- Electromagnetic field modulation
- Sensors and biosensors (pH, oxidizing-reducing agents, some biomolecules)

Main technological drawbacks

- Bad mechanical and film-forming properties
- Adhesion problems (some substrates)
- pH- and moisture-dependent characteristics (undesirable for some applications)
- Insoluble in common organic solvents (solution processing is hardly possible)

Outlines

- Background studies (ordinary polyaniline):
- Electrochemical matrix polymerization of aniline in the presence of polymeric acids
- Chemical matrix polymerization of aniline in the presence of polymeric acids
- Characterization of the films
- Advantageous features in some possible applications
- Electrochromic device
- Conclusions
- Acknowledgements

Scheme Of Different Forms Of Polyaniline And Redox Transitions Between Them

Basic principle of separation of individual absorption bands using Alentsev-Fok method

A.A. Nekrasov, V.F. Ivanov, A.V. Vannikov, J. Electroanal. Chem. 482 (2000) 11.

No preliminary notion about possible shape of individual absorption bands (Gaussian, Loretzian or hybrid type) is necessary. No suppositions about possible number of the bands are required

Individual absorption bands in polyaniline

A.A. Nekrasov, V.F. Ivanov, A.V. Vannikov, J. Electroanal. Chem. 482 (2000) 11.

- On the basis of **spectroelectrochemical data** obtained at different potentials
- using Alentsev-Fock method
- nine individual absorption bands were separated within UV-Vis spectrum of PAn in the range 300-900 nm

Derivative Cyclic Voltabsorptometry (DCVA)

Electrochemical process: *Red* - $ne \leftrightarrow Ox$

From a combination of Beer's and Faraday's laws it follows:

$$A_{\lambda}^{Ox} = \varepsilon_{\lambda}^{Ox} Ql / nFV$$

- **A** optical absorption of **Ox** at λ (maximum of absorption band of **Ox**)
- ε extinction coefficient of Ox at λ (*presumably constant*)
- Q charge consumed in the reaction
- *l* film thickness Ratio *l* / *V* is constant
- *V* film volume
- *n* number of electrons participating in the reaction (*presumably constant*)
- **F** Faraday number (*constant*)

So, optical absorption linearly depends on charge

Cyclic Voltammetry (CVA)	Derivative Cyclic Voltabsorptometry (DCVA)		
i = dQ/dt = f(E,w)	dA/dt = f(E,w)		

Attribution of individual absorption bands: DCVA results

A.A.Nekrasov, V.F.Ivanov, O.L.Gribkova, A.V.Vannikov Electrochim. Acta. 50 (2005) 1605.

Interpolymer complexes of PANI with polymeric sulfonic acids

poly-p,p'-(2,2'-disulfoacid)-diphelylentere-phthalamid (tere-PASA, RIGID BACKBONE) DOUBLE base; MW~40000 ~ 80 units

Copolymer of i-PASA and t-PASA = co-PASA

SO₃H poly(styrenesulfonic acid) (PSSA, FLEXIBLE BACKBONE) SINGLE base MW~70000 ~380 units

ᡶᠭ᠋ᢇᡎ᠊ᢩᡰ

soluble in water
good film-forming properties
high ionic conductivity
high optical transparence

Evolution of absorption spectra during the electrochemical matrix polymerization

Nekrasov A.A., Gribkova O.L., Eremina T.V., Isakova A.A., Ivanov V.F., Tverskoj V.A., Vannikov A.V. Electrochim Acta 53 (2008) 3789

Potentiostatic synthesis at 0.75V vs. Ag/AgCl (No background electrolyte)

PAMPSA, PSSA, HCI

Polyacid with flexible backbone behaves more like ordinary inorganic acid

i-PASA, t-PASA, co-PASA

Rigid-chain polyacid → Shape of spectra is distorted

Electrochemical matrix synthesis of polyaniline (1) Flexible-backbone polyacid (PAMPSA) and HCl

- non-sigmoid shape of the dependence in HCl in the same concentration as PAMPSA
- standard sigmoid shape is observed at 10 times higher concentration of HCl
- higher local concentration of protons near the polyacid backbone
- non-sigmoid shape of the dependence in very low concentration of PAMPSA
- higher polymerization rate on polymeric acid due to association of aniline with the sulfonic groups

Electrochemical matrix synthesis of polyaniline (2) Rigid-chain polyacids t-PASA, i-PASA and co-PASA

i-PASA: no nucleation stage of electropolymerization for all concentrations

t-PASA and co-PASA: standard autocatalytic synthesis for all acid concentrations

co-PASA: highest polymerization rate among all polyacids studied

Chemical matrix synthesis of polyaniline

O.L. Gribkova, A.A. Nekrasov, M. Trchova, V.F. Ivanov, V.I. Sazikov, A.B. Razova, V.A. Tverskoy, A.V. Vannikov Polymer 52 (2011) 2474

Initial solution: Aniline/polyacid **molar ratio aniline/sulfonic group :** 1:2 **Aniline concentration**: 6 mM **Oxidant:** ammonium persulfate (1:1)

1 stage: growth of absorption near 320 nm and 650 nm – accumulation of amine and quinoid form **2 stage:** rapid shift of the absorption maximum to the area near 750 nm – formation of localized polarons

intense absorption in the near-IR region for rigid and semi-rigid polyacids

Interpolymer compelxes: Structural aspects

affecting the matrix polymerization of aniline in the presence of rigid-chain polyacids

non-autocatalityc character of the synthesis

Double-strand interpolymer complex

Scheme of aniline chemical polymerization in the presence of polyacids

Optical absorbance changes at characteristic wavelengths during synthesis

MolE-2012 26 - 31 August, 2012, Dubna, Moscow region, Russia

UV-Vis-NIR absorption spectra of solutions of PANI-polyacid complexes

O.L. Gribkova, A.A. Nekrasov, M. Trchova, V.F. Ivanov, V.I. Sazikov, A.B. Razova, V.A. Tverskoy, A.V. Vannikov Polymer 52 (2011) 2474

PANI-flexible polyacids: weak interaction between adjacent PANI chains gives higher absorption of localized polarons.

PANI-rigid polyacids: high absorption of delocalized polarone may be due to π - π stacking of adjacent polyaniline molecules

Similar spectra are observed for solution-cast films

Films are soluble in water. So, prior the experiments the films should be crosslinked by bivalent cations, Ca²⁺ or Ba²⁺

Interpolymer compelxes: Structural aspects

polyacid

tere-PASA (rigid)

PANI-PAMPSA (1:2)

Double-strand interpolymer complex

polyaniline

PANI-chains isolated from each other

Analog: PANI-poly(acrylic acid)

L. Sun, L.-M. Liu, R. Clark, S.C. Yang, Synth. Met. 84 (1997) 67

CV of electrodeposited matrix polyaniline

CV is similar to standard polyaniline

Polyacid with flexible chain can adapt its structure to polyaniline

	Potential, V					
	E ¹ _a	E ¹ c	${\rm E}^{1}_{1/2}$	ΔE^1	E ² _a	E ² _c
HCI	0.268	0.026	0.147	0.242	0.882	0.694
PAMPSA	0.330	0.034	0.182	0.296	0.881	0.682
t-PASA	0.314	0.024	0.169	0.290	0.831	0.653
i-PASA	0.338	0.049	0.194	0.289	0.818	0.647
co-PASA	0.341	0.042	0.192	0.299	0.821	0.631

Formation of quinoid fragments is hindered

In the case of polyacid with rigid polymer backbone polyaniline has to adapt its structure to the structure of polyacid

MolE-2012 26 - 31 August, 2012, Dubna, Moscow region, Russia

UV-Vis spectroelectrochemistry

DCVA-435 nm, radical cations

MolE-2012 26 - 31 August, 2012, Dubna, Moscow region, Russia

DCVA-755 nm, localized polarons

DCVA-570 nm; quinoid structures

DCVA-665 nm, radical cation dimers?

Polymeric acids: molecular modeling

much more rigid polymer backbone which is slightly bent in the case of the iso-polymer \rightarrow lower conformational adaptability \rightarrow PANI adapt to polyacid

Flexible polymer backbone **BUT...** short benzene-containing side chains hinder chain **■** bending → lower conformational adaptability **PAMPSA** decamer (flexible)

Morphology
AFM studies
PANI-i-PASAPANI-co-PASA
PANI-co-PASAImage: Descent control of the second con

Association of aniline along the polyacid molecule \rightarrow Preforming of polyaniline clusters \rightarrow More uniform nucleation \rightarrow More uniform structure **PANI-HCl**

PANI-PAMPSA

1 µm

•objects size is bigger in the case of PAMPSA with greater molecular weight

• for thick films - "velvet-like" surface

Irregular surface morphology: Objects size ranges from 0.1 to 2 microns. Result of irregular nucleation process and development of the defects due to <u>autocatalytic character of the synthesis.</u>

Spectroelectrochemistry of electrodeposited PANIpolyacid films (UV-Vis-NIR)

MolE-2012 26 - 31 August, 2012, Dubna, Moscow region, Russia

Electroactivity at high pH

A.A. Nekrasov, O.L. Gribkova V.F. Ivanov, A.V. Vannikov J Solid State Electrochem 14 (2010) 1975

- "normal" cathodic shift of peak position within the pH-range 0.5-2
- → After cycling at pH 5 the film lost electroactivity even in 1M HClO₄

- * "normal" cathodic shift of peak position within the pH-range 0.5-5
- Probably, bulky unmovable acidic dopant adjusts pH inside the film

Electroactivity at high pH (2)

A.A. Nekrasov, O.L. Gribkova V.F. Ivanov, A.V. Vannikov J Solid State Electrochem 14 (2010) 1975

PANI-acid	Anode peak position, V pH						
	0.5	1.02	2.04	3.03	4.04	5.04	0.5(after)
PANI-HCl	0.214	0.187	0.181	0.208	0.222	0.236	-
ΔE		-0.027	-0.006	0.027	0.014	0.014	
PANI-i-PASA	0.296	0.272	0.206	0.173	0.128	0.084	0.323
ΔE		-0.024	-0.066	-0.033	-0.045	-0.044	0.212
PANI-t-PASA	0.261	0.267	0.201	0.153	0.157	0.166	0.347
ΔE		0.006	-0.066	-0.048	0.004	0.009	0.095
PANI-co-PASA	0.281	0.277	0.206	0.163	0.147	0.098	0.332
ΔE		-0.004	-0.071	-0.043	-0.016	-0.059	0.183
PANI-PAMPSA	0.261	0.277	0.196	0.158	0.167	0.128	0.367
ΔE		0.016	-0.081	-0.038	0.009	-0.039	0.133

→ PANI-i-PASA interpolymer complexes have widest pH-range of electroactivity

→ followed by PANI-co-PASA (also has i-PASA fragment in the structure)

→ mixed structure of the interpolymer complex and abnormal course of the synthesis

NH₃-sensing properties

- main drawback of common PANI-HCl formation after exposition to ammonia vapors of solid ammonium chloride
- interplymer complexes can be completely washed off the hydrochloric acid without any significant deprotonation.

Response time and amplitude at 1.4 mm Hg

PANI-acid	Δt (s)	ΔΑ, %
PANI-HCl	24	8.3
PANI-i-PASA	70	30.5
PANI-t-PASA	91	14.4
PANI-co-PASA	106	20.3
PANI-PAMPSA	42	22.2

Main advantages of using polyacids for aniline matrix polymerization (conclusion)

- Low concentration of reagents (compared to synthesis in inorganic acids)
- Fast polymerization and low content of byproducts in the final polymer
- **Improved film-forming** and **mechanical properties** of the resulting polymer, **good adherence** to different substrates
- **Possibility to modify the structure** of the polymer with the purpose **to change its optical** and **electrical properties**
- Improved morphology and structural uniformity of the films
- Wide pH-range of electroactivity
- **Improved resource characteristics** of the films in various applications
- The rigidity of polymer chain of polyacid molecular template produce cardinal influence on the spectroelectrochemical processes in the interpolymer complexes of polyaniline: flexible-chain polyacid can adapt its structure to the structure of polyaniline, while in the complex with rigid-chain polyacid polyaniline is forced to change its conformation, which results in disturbing of the spectroelectrochemical properties
- The adaptability of the polyacid molecular template is dependent not only on the flexibility of the polymeric backbone, but also on the length and the structure of side chains

ELECTROCHROMIC ALL-SOLID THIN-FILM LIGHT MODULATORS

Main advantages of electrochromic optical modulators:

- 1) isotropic optical medium (high contrast, which is practically independent of the viewing angle);
- 2) energy-independent state of maximal transmittance;
- 3) "memory" effect for each of the intermediate states of transmission;
- 4) gradual change of transmittance;
- 5) simplicity of design and manufacture.

Main advantages of all-solid thin-film electrochromic cells:

- 1) low optical response time (electrochromic substance immobilized on electrode);
- 2) response time is less temperature dependent (relay-race ion transfer in semisolid electrolyte instead of diffusion);
- 3) wide temperature range of operation;
- 4) leak-proof.

SCHEME OF DUAL-LAYER ELECTROCROMIC DEVICE

- 1. Cathodic electrochromic layer (WO₃)
- 2. Optically transparent electrolyte (on the base of PAMPSA)
- 3. Anodic electrochromic layer (PANI)
- 4. Optically transparent electrodes (ITO, FTO)
- 5. Optically transparent support (glass, polymer film, e.j. PET)
- Support (optically transparent optical filter with adjustable transmission or modulator; optically reflecting – display or autodimming rearview mirror

SCHEME OF COLOR TRANSITONS IN POLYANILINE

CATHODIC ELECTROCHROMIC MATERIAL

Tungsten trioxide

WO₃ + χ e + χ H⁺ $\leftarrow \rightarrow$ H χ WO₃ colorless blue WO₃ + χ e + χ Li⁺ $\leftarrow \rightarrow$ Li χ WO₃

Transmittance spectra of PAn/WO₃ cell

Semisolid polymer electrolyte (PAMPSA+H₃PO₄)

Kinetics of transmittance change at 550 nm

Semisolid polymer electrolyte (PAMPSA+H₃PO₄)

CHARATERISTICS OF SOLID-STATE ELECTROCHROMIC OPTICAL FILTER

	Our prototype	Typical parameters of all- solid electrochromic devices described in the literature
Operation voltage, V	0-3	0-10
Optical response time, s	< 2	5-15
Number of operation cycles	1 000 000	100 000
Spectral range of transmittance modulation, nm	450-800	400-800

Possible Applications

- 1. switchable filters for light and heat (for various types of optical devices);
- 2. architectural glazing (for energy efficient windows, controlling the flow of light and heat);
- 3. electrochromic panels for automotive and aerospace application (autodimming sunroofs, windshields, visors, illuminators and rearview mirrors)
- 4. switchable sunglasses and so on

ELECTROCHROMIC DECADE INDICATOR

Non-transparent electrolyte possessing high diffuse reflectance

Acknowledgements

Head of Laboratory:Prof. Anatoly VannikovColleagues:Prof. Victor Ivanov,
Prof. Vladimir Tverskoj (Moscow University of Fine
Chemical Technology)Dr. Oxana Gribkova
Dr. Alexandra IsakovaPh.D. Students:Ol'ga Omel'chenkoGraduate students:Tat'yana Eremina, Anna Razova, Vadim Sazikov

The Russian Fund for Basic Research for financial support of the researches (projects No. No.12-03-01087-a, 12-03-90435-Ukr_a)

Thank you for your kind attention