Theory vs molecular modelling of charge transfer reactions: some problems and challenges

Renat R. Nazmutdinov

Kazan National Research State Technological University

Dubna, August., 28 2012

- 1. Motivation
- 2. Medium (solvent) coordinates
- 3. Quantum effect of solvent on activation barrier
- 4. Orbital overlap (electronic transmission coefficient)
- 5. Some problems ahead

Transition state theory (TST)

Three-dimensional reaction energy surface (solvent and intramolecular coordinates)

Computer simulations

Coulomb part of the solvation energy (Q)

kram

Stochastic theory

Reaction rate depends on <u>dynamical</u> solvent properties as well (friction, viscosity)

Hendrik A. Kramers /pioneered a stochastic appoach in chemical kinetics/

Leonid D. Zusman /extended Kramers theory to electron transfer reactions/

In terms of stochastic theory an overcoming of the activation barrier more resembles "climbing" (diffusion)

Solvent correlation function

dielectric spectrum

spectra

Examples of dielectric spectra

sucrose solutions:

$$\mathcal{E}(w) = \mathcal{E}_{\infty} + \frac{\Delta \mathcal{E}_{C}}{1 + (iw\tau_{C})^{\alpha}} + \frac{\Delta \mathcal{E}_{D}}{1 + iw\tau_{D}}$$

water-EG mixtures:

$$\varepsilon(\omega) = \frac{\Delta \varepsilon_1}{1 + i2\omega\tau_1} + \frac{\Delta \varepsilon_2}{1 + i2\omega\tau_2} + \frac{\Delta \varepsilon_3}{1 + i2\omega\tau_3} + \varepsilon_{\infty}$$

N solvent modes (exact expansion)

Reaction free energy surface can be described using N solvent coordinate (q₁, ... q_N) and (probably) one intramolecular degree of freedom (r):

$$E_{i}(q_{1},...,q_{N};r) = \sum_{j=1}^{N} \delta_{j}\lambda_{j}q_{j}^{2} + U_{i}(r)$$
reactant

N T

$$E_{f}(q_{1},...,q_{N};r) = \sum_{j=1}^{N} \delta_{j}\lambda_{j}(q_{j}-1)^{2} + U_{f}(r) + \Delta I$$
product

Usually N = 2 (e.g., dimethylacetamide), 3 (EG, alcohols etc)

S₂O₈²⁻ reduction at a mercury electrode from water-EG mixtures

$$S_2 O_8^{2-} + e = SO_4^{2-} + SO_4^{-}$$

- reaction is adiabatic

The first ET is rate limiting

 <u>BBET</u> reaction proceeds at large overvoltages, in the vicinity of activationless discharge, i.e. at <u>small</u> activation barriers

 reaction reveals an <u>anomalous solvent</u> <u>viscosity effect</u>

Exp. data (P.A. Zagrebin et al)

- Pekar factor in the solvent reorganization energy is nearly constant
- MD simulations predict even a slight increase of $<\lambda>$
 - Bulk contributions to the solvent reorganization energy as computed form molecular dynamics (O. Ismailova, M. Probst et al)

Results of Langevin molecular dynamics simulations

avoid

An attempt to explain: saddle point avoidance

Non-Gaussian fluctuations

- ferroelectric domains at a protein/water interface D.N. LeBard, D.V. Matyushov, PCCP, 12 (2010) 15335

MD simulation of the $Au(111)/[BMIM][BF_4]$ interface (S.A. Kislenko et al)

quant

Solvent coordinate vs Quantum effects

- decreasing of the activation barrier increasing rate constant
- tunneling
 decreasing rate constant

Effect of solvent quantum modes

$$k = \exp\left[-\frac{\Delta E_a^*}{k_B T}\right] \exp\left[-\sigma\right] = \exp\left[-\frac{(\lambda_s^* - \eta)^2}{4\lambda_s^* k_B T}\right] \exp\left[-\sigma\right]$$

$$\lambda_{s}^{*}=\xi\lambda_{s}$$

$$\xi = \frac{2}{\pi C} \int_{0}^{\omega^{*}} \frac{\operatorname{Im} \varepsilon(\omega)}{\omega \|\varepsilon(\omega)\|^{2}} d\omega \qquad C = \frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{st}}$$
$$\sigma = \frac{2\lambda_{s}}{\pi C} \int_{\omega^{*}}^{\infty} \frac{\operatorname{Im} \varepsilon(\omega)}{\omega^{2} \|\varepsilon(\omega)\|^{2}} d\omega \qquad \text{Pekar factor}$$

tunneling factor

w old

Dielectric spectra of water (J.A. Saxton, 1953)

new

R. Buchner and co-workers (2008)

Dielectric spectra of some ionic liquids

kapp

Electronic transmission coefficient

$$\kappa_e = \frac{1 - \exp(-2\pi\gamma_e)}{1 - (1/2)\exp(-2\pi\gamma_e)}$$

Two important limiting cases:

 $\gamma_e <<1 \Rightarrow \kappa_e \approx \gamma_e$ (non-adiabatic) $\gamma_e >>1 \Rightarrow \kappa_e \approx 1$ (adiabatic)

It is reasonable to employ the perturbation theory for large molecular systems

$$\frac{\Delta E_e}{2} \approx \int \Psi_i \hat{V} \Psi_f dV - \int \Psi_i \hat{V} \Psi_i dV \cdot \int \Psi_i \Psi_f dV$$

Perturbation (molecular electrostatic potential)

$$V(r) = -\sum_{i} \frac{Z_{i}}{|R_{i} - r|} + \sum_{j} \int \frac{|\Psi_{j}(r')|^{2} d\Omega'}{|r' - r|}$$

$$V(r) \approx \sum_{i} \frac{q_{i}^{*}}{|R_{i} - r|}$$
 ChelpG atomic charges

Моделирование методом Монте-Карло (случайное блуждание по узлам двумерной решётки)

Electronic transmission coefficient vs density of electronic states calculated with the help of MC simulations at different values of γ_e

slab, cl

Model calculation of electronic transmission coefficient for interfacial reactions: some challenges.

1. Model of a charged metal surface (cluster, slabs, "jellium", etc)

2. Solvent effect on the wave functions and perturbation

3. Asymptotic behaviour of wave functions

x, a.u.

Au₅₄ cluster

Model STM contrast

Cysteine adsorption on Au(110) elecrode (in situ STM images)

18.5 17.5 16.6 15.6		
17.5 16.6 15.6		
17.5 16.6 15.6		
17.5 16.6 15.6		
16.6		
16.6		
15.6	10.00	
15.6		
15.6		
15.6		
14.1		
52.2		
12 8		
11.8		
11.0		
10.9		
2010		
9.9		
2.		

